Photosynthetica 2022, 60(2):212-218 | DOI: 10.32615/ps.2022.004

Chloroplast protease/chaperone AtDeg2 holds γ1 subunit of ATP synthase in an unaggregated state under high irradiance conditions in Arabidopsis thaliana

P. JAGODZIK, G. JACKOWSKI
Department of Plant Physiology, Institute of Experimental Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland

Little data on the role played in vivo by chloroplast protein AtDeg2 as a chaperone is available. Therefore, we sought for chloroplast proteins protected from high irradiance-induced interprotein aggregation via disulphide bridges by AtDeg2 acting as a holdase. To reach this goal, we performed analyses which involved comparative diagonal electrophoreses of lysates of chloroplasts isolated from wild type (WT) plants and transgenic plants 35S:AtDEG2ΔPDZ1-GFP which expressed AtDeg2 lacking its chaperone activity but retaining the protease activity. The results of the analyses indicate that AtDeg2 acting as a holdase prevents a single chloroplast protein, i.e., the γ1 subunit of ATP synthase from long-term high irradiance-induced homodimerization mediated by disuplhide bridges and this allows us to better understand a complexity of physiological significance of AtDeg2 - the chloroplast protein of dual protease/chaperone activity.

Additional key words: chaperone; Deg2; elevated irradiance; homodimerization; protease.

Received: July 7, 2021; Revised: December 30, 2021; Accepted: January 13, 2022; Prepublished online: February 15, 2022; Published: May 2, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
JAGODZIK, P., & JACKOWSKI, G. (2022). Chloroplast protease/chaperone AtDeg2 holds γ1 subunit of ATP synthase in an unaggregated state under high irradiance conditions in Arabidopsis thaliana . Photosynthetica60(2), 212-218. doi: 10.32615/ps.2022.004
Download citation

References

  1. Adamiec M., Jagodzik P., Wyka T.P. et al.: Chloroplast protease/chaperone AtDeg2 influences cotyledons opening and reproductive development in Arabidopsis. - Acta Soc. Bot. Pol. 87: 3584, 2018. Go to original source...
  2. Adamiec M., Luciński R., Jackowski G.: The irradiance dependent transcriptional regulation of AtCLPB3 expression. -Plant Sci. 181: 449-456, 2011. Go to original source...
  3. Arana J.L., Vallejos R.H.: Involvement of sulfhydryl groups in the activation mechanism of the ATPase activity of chloroplast coupling factor 1. - J. Biol. Chem. 257: 1125-1127, 1982. Go to original source...
  4. Baranek M., Wyka T.P., Jackowski G.: Downregulation of chloroplast protease AtDeg5 leads to changes in chronological progression of ontogenetic stages, leaf morphology and chloroplast ultrastructure in Arabidopsis. - Acta Soc. Bot. Pol. 84: 59-70, 2015. Go to original source...
  5. Boyes D.C., Zayed A.M., Ascenzi R. et al.: Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. - Plant Cell 13: 1499-1510, 2001. Go to original source...
  6. Candiano G., Bruschi M., Musante L. et al.: Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. - Electrophoresis 25: 1327-1333, 2004. Go to original source...
  7. Chen G.G., Jagendorf A.T.: Chloroplast molecular chaperone-assisted refolding and reconstitution of an active multisubunit coupling factor CF1 core. - P. Natl. Acad. Sci. USA 91: 11497-11501, 1994. Go to original source...
  8. Daum B., Nicastro D., Austin J. II. et al.: Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. - Plant Cell 22: 1299-1312, 2010. Go to original source...
  9. Davies M.J.: Reactive species formed on proteins exposed to singlet oxygen. - Photoch. Photobio. Sci. 3: 17-25, 2004. Go to original source...
  10. Davies M.J.: The oxidative environment and protein damage. - BBA-Proteins Proteom. 1703: 93-109, 2005. Go to original source...
  11. Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Bioch. 48: 909-930, 2010. Go to original source...
  12. Grabsztunowicz M., Górski Z., Luciński R., Jackowski G.: A reversible decrease in ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation activity caused by the aggregation of the enzyme's large subunit is triggered in response to the exposure of moderate irradiance-grown plants to low irradiance. - Physiol. Plantarum 154: 591-608, 2015. Go to original source...
  13. Grabsztunowicz M., Jackowski G.: Isolation of intact and pure chloroplasts from leaves of Arabidopsis thaliana plants acclimated to low irradiance for studies on Rubisco regulation. - Acta Soc. Bot. Pol. 82: 91-95, 2013. Go to original source...
  14. Haußühl K., Andersson B., Adamska I.: A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. - EMBO J. 20: 713-722, 2001.
  15. Hideg É., Barta C., Kálai T. et al.: Detection of singlet oxygen and superoxide with fluorescence sensors in leaves under stress by photoinhibition or UV radiation. - Plant Cell Physiol. l43: 1154-1164, 2002. Go to original source...
  16. Holmgren A.: Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. - J. Biol. Chem. 254: 9627-9632, 1979. Go to original source...
  17. Inohara N., Iwamoto A., Moriyama Y. et al.: Two genes, atpC1 and atpC2, for the γ subunit of Arabidopsis thaliana chloroplast ATP synthase. - J. Biol. Chem. 25: 7333-7338, 1991. Go to original source...
  18. Jackowski G., Przymusiński R.: The resolution and biochemical characterization of subcomplexes of the main light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII). -Photosynth. Res. 43: 41-48, 1995. Go to original source...
  19. Jagodzik P., Luciński R., Misztal L., Jackowski G.: The contribution of individual domains of chloroplast protein AtDeg2 to its chaperone and proteolytic activities. - Acta Soc. Bot. Pol. 87: 3570, 2018. Go to original source...
  20. Jeon S.-J., Ishikawa K.: Identification and characterization of thioredoxin and thioredoxin reductase from Aeropyrum pernix K1. - Eur. J. Biochem. 269: 5423-5430, 2002. Go to original source...
  21. Junesch U., Gräber P.: Influence of the redox state and the activation of the chloroplast ATP synthase on proton-transport-coupled ATP synthesis/hydrolysis. - BBA-Bioenergetics 893: 275-288, 1987. Go to original source...
  22. Kohzuma K., Dal Bosco C., Kanazawa A. et al.: Thioredoxin-insensitive plastid ATP synthase that performs moonlighting functions. - P. Natl. Acad. Sci. USA 109: 3293-3298, 2012. Go to original source...
  23. Laemmli U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. - Nature 227: 680-685, 1970. Go to original source...
  24. Lipińska B., King J., Ang D., Georgopoulos C.: Sequence analysis and transcriptional regulation of the Escherichia coli grpE gene, encoding a heat shock protein. - Nucleic Acids Res. 16: 7545-7562, 1988. Go to original source...
  25. Lo Conte M., Carroll K.S.: The redox biochemistry and protein sulfenylation and sulfinylation. - J. Biol.Chem. 288: 26480-26488, 2013. Go to original source...
  26. Luciński R., Misztal L., Samardakiewicz S., Jackowski G.: The thylakoid protease Deg2 is involved in stress-related degradation of photosystem II light-harvesting protein Lhcb6 in Arabidopsis thaliana. - New Phytol. 192: 74-86, 2011. Go to original source...
  27. Mao J., Chi W., Ouyang M. et al.: PAB is an assembly chaperone that functions downstream of chaperonin 60 in the assembly of chloroplast ATP synthase coupling factor 1. - P. Natl. Acad. Sci. USA 112: 4152-4157, 2015. Go to original source...
  28. Marín-Navarro J., Moreno J.: Cysteines 449 and 459 modulate the reduction-oxidation conformational changes of ribulose-1,5-bisphosphate carboxylase/oxygenase and the translocation of the enzyme to membranes during stress. - Plant Cell Environ. 29: 898-908, 2006. Go to original source...
  29. Mittler R., Vanderauwera S., Gollery M., Van Breugesem F.: Reactive oxygen gene network in plants. - Trends Plant Sci. 9: 490-498, 2004. Go to original source...
  30. Nalin C.M., McCarty R.E.: Role of disulfide bond in the gamma subunit in activation of the ATP chloroplast coupling factor 1. - J. Biol. Chem. 259: 7275-7280, 1984. Go to original source...
  31. Nikkanen L., Rintamäki E.: Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. - Philos. T. Roy. Soc. B 369: 20130224, 2014. Go to original source...
  32. Ortega J., Iwańczyk J., Jomaa A.: Escherichia coli DegP: a structure-driven functional model. - J. Bacteriol. 191: 4705-4713, 2009. Go to original source...
  33. Rehder D.S., Borges C.R.: Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. - Biochemistry 49: 7748-7755, 2010. Go to original source...
  34. Rouhier N.: Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. - New Phytol. 186: 365-372, 2010. Go to original source...
  35. Strauch K.L., Beckwith J.: An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. - P. Natl. Acad. Sci. USA 85: 1576-1580, 1988. Go to original source...
  36. Sun R., Fan H., Gao F. et al.: Crystal structure of Arabidopsis Deg2 protein reveals an internal PDZ ligand locking the hexameric resting state. - J. Biol. Chem. 287: 37564-37569, 2012. Go to original source...