Photosynthetica 2015, 53(2):288-298 | DOI: 10.1007/s11099-015-0113-6

Effect of drought stress on the photosynthesis of Acacia tortilis subsp. raddiana at the young seedling stage

S. Kebbas1,2,3, S. Lutts2,*, F. Aid3
1 Département de Biologie, Faculté des Sciences de la Nature et de la Vie, Université Blida 1, Blida, Algeria
2 Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
3 Equipe de Physiologie Végétale, LBPO, FSB, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar-Algiers, Algeria

Water stress usually impairs photosynthesis and plant growth. Acacia tortilis subsp. raddiana is well adapted to dry environments. The aim of the present study was to determine the impact of a progressive decrease in soil water content on photosynthetic-related parameters at the young seedling stage. Drought-induced plant responses occurred according to two types of kinetics. Water potential, stomatal conductance, and transpiration rates were rapidly affected by a decrease in soil water content, while chlorophyll fluorescence-related parameters and chlorophyll concentrations decreased only when soil water content was lower than 40%. The maximal efficiency of PSII photochemistry in the dark-adapted state remained unaffected by the treatment, whatever the stress duration. A. raddiana accumulated high concentrations of soluble sugars in relation to a stress-induced early stimulation of sucrose-phosphate synthase activity, while stimulation of invertase and sucrose synthase led to fructose accumulation only at the end of the stress period. We suggested that sugar accumulation may be involved in osmotic adjustment and protection of stressed tissues. A. raddiana was thus able to protect its photosynthetic machinery under drought conditions and may be considered as a promising species for revegetation of dry areas.

Additional key words: gas exchange; growth parameters; stomata; sugar metabolism; water-use efficiency

Received: January 14, 2014; Accepted: August 28, 2014; Published: June 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kebbas, S., Lutts, S., & Aid, F. (2015). Effect of drought stress on the photosynthesis of Acacia tortilis subsp. raddiana at the young seedling stage. Photosynthetica53(2), 288-298. doi: 10.1007/s11099-015-0113-6
Download citation

References

  1. Ait Said S., Torre F., Derridi A. et al.: Gender, Mediterranean drought, and seasonality: photosystem II photochemistry in Pistacia lentiscus. - Photosynthetica 51: 552-564, 2013. Go to original source...
  2. Akinnifesi F.K., Rowe E.C., Livesley S.J. et al.: Tree root architecture. - In: Van Noordwijk M., Cadisch G., Ong C.K. (ed.): Below-ground Interactions in Tropical Agroecosystems. Concept and Models with Multiple Plant Components. Pp. 61-81. CABI Publishing, London 2004. Go to original source...
  3. Andersen G.L., Krzywinski K.: Longevity and growth of Acacia tortilis; insights from 14C content and anatomy of wood. - BMC Ecology 7: doi: 10.1186/1472-6785-7-4, 2007. Go to original source...
  4. Barbieri G., Valone S., Orsini F. et al.: Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.). - J. Plant Physiol. 169: 1737-1746, 2012. Go to original source...
  5. Barrs H.D., Weatherley P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves - Aust. J. Biol. Sci. 24: 519-570, 1962. Go to original source...
  6. Bensaïd S.: [The genus Acacia Miller.] - Ann. Inst. Natl. Agron. 21: 547-550, 1988. [In French]
  7. Bensaïd S.: [Germination under laboratory and natural environment conditions and growth in minirhizotron of Acacia raddiana Savi.] - In: Riedaker A, Dreyer E. (ed.): Tree and Shrub Physiology in Arid and Semi-arid Zones. Pp. 405-412. John Libbey Eurotext, Paris 1991. [In French]
  8. Bensaid S., Ait Mohand L., Echaib B.: Spatiotemporal evolution of Acacia tortilis (Forssk.) Hayne raddiana (Savi) Brenan populations in Ougarta Mountains (North Sahara). - Sécheresse 7: 173-178, 1996. [In French]
  9. Bradford M.M.: A rapid and sensitive method for determining microgram quantities of protein using the principle of proteindye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  10. Chen W., Feng W., Guo D. et al.: Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis and osmotic adjustment of cotton plants. - Photosynthetica 49: 417-425, 2011. Go to original source...
  11. Delpérée C., Kinet J.M., Lutts S.: Low irradiance modifies the effect of water stress on survival and growth-related parameters during the early developmental stages of buckwheat (Fagopyrum esculentum). - Physiol. Plantarum 119: 211-220, 2003. Go to original source...
  12. Flores J., Jurado E.: Are nurse-protégé interactions more common among plants from arid environments? - J. Veg. Sci. 14: 911-916, 2003. Go to original source...
  13. Gimeno T.E., Sommerville K.E., Valladares F., Atkin O.K.: Homeostasis of respiration under drought and its important consequences for foliar carbon balance in a drier climate: insights from two contrasting Acacia species. - Funct. Plant Biol. 37: 323-333, 2010. Go to original source...
  14. Grego S., Moscatelli M.C., Di Mattia E. et al.: [Rhizosphere biochemical activities of Acacia raddiana in North and South Sahara.] - In: Grouzis M., Le Floc'h, E. (ed.): A Tree in the Desert, Acacia raddiana. Pp. 231-247. Éditeurs Scientifiques IRD, Paris 2003. [In French]
  15. Grouzis M., Akpo E. L.: [Influence of Acacia raddiana on structure and functions of herbal zone in Senegalese Ferlo.] - In: Grouzis M., Le Floc'h, E. (ed.): A Tree in the Desert, Acacia raddiana. Pp. 249-262. Editeurs Scientifiques IRD, Paris 2003. [In French]
  16. Grouzis M., Le Floc'h, E.: A Tree in the Desert, Acacia raddiana. Éditeurs Scientifiques IRD, Paris 2003. [In French]
  17. Huber J.L., Hite D.R.C., Outlaw W.H., Huber S.C.: Inactivation of highly activated spinach leaf sucrose phosphate synthase by dephosphorylation. - Plant Physiol. 95: 291-297, 1991. Go to original source...
  18. Jaouadi W., Hamrouni L., Souayeh N., Khouja M.L.: [Study of the germination of Acacia tortilis under various abiotic constraints.] - Biotechnol. Agron. Soc. Environ. 14: 643-652, 2010. [In French]
  19. Kennenni L.: Geography and phytosociology of Acacia tortilis in the Sudan. - Afr. J. Ecol. 29: 1-10, 1991. Go to original source...
  20. King S.P., Lunn J.E., Furbank R.T.: Carbohydrate content and enzyme metabolism in developing canola siliques. - Plant Physiol. 114: 153-160, 1997. Go to original source...
  21. Lassouane N., Aïd F., Lutts S.: Water stress impact on young seedling growth of Acacia arabica. - Acta Physiol. Plant. 35: 2157-2169, 2013. Go to original source...
  22. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350-382, 1987. Go to original source...
  23. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - A practical guide - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  24. McCready R.M., Guggolz J., Silviera V., Owens H.S.: Determination of starch and amylose in vegetables. - Anal. Chem. 22: 1156-1158, 1950. Go to original source...
  25. Munzbergová Z., Ward D.: Acacia trees as keystone species in Negev desert ecosystems. - J. Veg. Sci. 13: 227-236, 2002. Go to original source...
  26. Noumi Z., Abdallah F., Torre F. et al.: Impact of Acacia tortilis ssp. raddiana tree on wheat and barley yield in the south of Tunisia. - Acta Oecol. 37: 117-123, 2011. Go to original source...
  27. Noureddine N.E., Amrani S., Aïd F.: [Symbiotic status and rhizobial strains associated to Acacia tortilis subsp. raddiana (Acacia raddiana s.s.), a Mimosoideae from desert regions of Algeria.] - Botany 88: 39-53, 2010. [In French] Go to original source...
  28. Novriyanti E., Watanabe M., Makoto K. et al.: Photosynthetic nitrogen- and water-use efficiency of acacia and eucalypt seedlings as afforestation species. - Photosynthetica 50: 273-281, 2012. Go to original source...
  29. Orsini F., Alnayef M., Bona S. et al.: Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. - Environ. Exp. Bot. 81: 1-10, 2012. Go to original source...
  30. Otieno D.O., Schmidt M.W.T., Adiku S., Tenhunen J.: Physiological and morphological responses to water stress in two Acacia species from contrasting habitats. - Tree Physiol. 25: 361-371, 2005. Go to original source...
  31. Vandoorne B., Mathieu A.S., Van den Ende W. et al.: Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. - J. Exp. Bot. 63: 4359-4373, 2012. Go to original source...
  32. Vidanarachchi J.K., Iji P.A., Mikkelsen L.L. et al.: Isolation and characterization of water-soluble prebiotic compounds from Australian and New Zealand plants. - Carbohyd. Polym. 77: 670-676, 2009. Go to original source...
  33. Warren C.R., Aranda I., Cano F.J.: Response to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp. - Plant Cell Environ. 34: 1609-1629, 2011. Go to original source...
  34. Xu S.M., Liu L.X., Woo K.C., Wang D.L.: Changes in photosynthesis, xanthophyll cycle, and sugar accumulation in two North Australia tropical species differing in leaf angles. - Photosynthetica 45: 348-354, 2007. Go to original source...
  35. Xu Z., Zhou G.: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. - J. Exp. Bot. 59: 3317-3325, 2008. Go to original source...
  36. Yemm E.W., Willis J.: The estimation of carbohydrates in plant extracts by anthrone. - J. Biochem. 57: 508-514, 1954. Go to original source...
  37. Yu H., Ong B.L.: The effect of phyllode temperature on gas exchange and chlorophyll fluorescence of Acacia mangium. - Photosynthetica 40: 635-639, 2002. Go to original source...
  38. Zhu G.Y., Kinet J.M., Lutts S.: Characterization of rice (Oryza sativa L.) F3 populations selected for salt resistance. I. Physiological behavior during vegetative growth. - Euphytica 121: 251-263, 2001. Go to original source...