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Abstract

By measurement of gas exchange and chlorophyll fluorescence, the effects of salt shock on photosynthesis and the me-
chanisms to protect photosynthetic machinery against photodamage during salt shock were investigated in leaves of
Rumex seedlings. Salt shock induced significant decrease in photosynthesis both in 21 and 2 % O,. In 21 % O,, quantum
yield of photosystem 2 (PS2) electron transport (®ps,) decreased slightly and qp remained constant, suggesting that the
excitation pressure on PS2 did not increase during salt shock. In 2 % O,, however, both ®pg, and qp decreased signifi-
cantly, suggesting that the excitation pressure on PS2 increased during salt shock. NPQ increased slightly in 21 % O,
whereas it increased significantly in 2 % O,. The data demonstrated that during salt shock a considerable electron flow
was allocated to oxygen reduction in the Mehler-peroxidase reaction (MPR). Under high irradiance and in the presence
of saturating CO,, the susceptibility of PS2 to photoinhibition in salt-shocked leaves was increased when the electron
flow to oxygen in MPR was inhibited in 2 % O,. Hence, MPR is important in photoprotection of Rumex seedlings during
salt shock.

Additional key words: chlorophyll fluorescence; NaCl; net photosynthetic rate; non-photochemical quenching; oxygen concentration;
quantum yield of photosystem 2; stomatal conductance.

Introduction

Cultivated plants frequently cope with stress caused by
salt accumulation in the soil or by irrigation with saline
water. High exogenous salt concentrations result in ion
toxicity and osmotic stress. Under salt stress, photo-
synthetic capacity is typically declined. So far its under-
lying mechanism is not well understood. Some studies
showed that salt stress inhibited PS2 activity, whereas
some other studies stated that the decreased photosynthe-
tic activity was due to decreased conductance to CO, dif-
fusion in the mesophyll (Brugnoli and Lauteri 1991,
Bethke and Drew 1992).

The decrease in photosynthesis will inevitably result
in accumulation of excess photon energy. If not dissipa-
ted safely, the excess energy will cause damages of pho-
tosynthetic apparatus (Demmig-Adams and Adams 1992).
During the course of evolution, plants have developed
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a number of protective mechanisms to reduce the photo-
damage. One mechanism is called thermal energy dissi-
pation, which involves the release of photon energy as
heat within the antenna pigments (Krause et al. 1982).
Thermal energy dissipation can be measured by non-pho-
tochemical quenching of chlorophyll fluorescence (NPQ).
In vivo, at least three components can be resolved by ana-
lyzing dark relaxation kinetics (Krause and Weis 1991).
Another mechanism is the alternative electron transport
which can consume the excess electrons. The reduction of
oxygen in the Mehler-peroxidase reaction (MPR) has re-
ceived particular attention. The MPR consists of the
Mehler reaction, which is the photoreduction of oxygen
by photosystem 1 (PS1) to a superoxide anion radical,
followed by the dismutation of this radical by superoxide
dismutase to hydrogen peroxide and oxygen. Hydrogen
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Abbreviations: AOS — active oxygen species; F,, — maximal fluorescence in dark adapted state; F,,” — maximal fluorescence in light
adapted state; F; — steady state fluorescence; F,/F,, — maximal efficiency of PS2 photochemistry; F,’/F,,” — efficiency of excitation
energy capture by open PS2 reaction centres; Fy, — minimal fluorescence; MPR — Mehler-peroxidase reaction, NPQ — non-
photochemical quenching; NRD — non-radiative energy dissipation; PCO — photorespiratory carbon oxidation cycle; PCR —
photosynthetic carbon reduction cycle; PPFD — photosynthetic photon flux density; qg — energy-dependent quenching; qp —
photochemical quenching; ®ps, — quantum yield of PS2 electron transport.
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peroxide is then reduced by ascorbate peroxidase (APX)
to water, followed by the regeneration of ascorbate by di-
rect reduction of monodehydroascorbate reductase. MPR
results in electron flow from PS2 to PS1 (Asada 1999,
Makino et al. 2002). Therefore, MPR consumes excess
electrons and protects against photodamage (Osmond and
Grace 1995, Li et al. 2003). In addition, MPR contributes
to the acidification of intra-thylakoids, which in turn pro-
motes non-radiative dissipation of excess energy. In in-
tact chloroplasts, MPR is important for qg (Schreiber and
Neubauer 1990, Neubauer and Yamamoto 1992). How-
ever, some recent studies show that MPR does not sup-
port a significant flow of electron transport in a number
of species such as grape (Flexas et al. 1999), tobacco
(Ruuska et al. 2000), and tomato (Haupt-Herting and
Fock 2002). By contrast, evidence for a significant
electron flow in MPR is lacking. Moreover, it is not
known whether or not MPR can protect photosynthetic
apparatus against damage, because the reduction of mo-
lecular oxygen results in the formation of harmful radical
species (Asada and Takahashi 1987) and the resulting da-
mage to PS1 and PS2 may far outweigh any potential

Materials and methods

Plants: Field-grown seedlings of Rumex were trans-
planted to pots (15 cm both in diameter and in height)
containing 1/2 Hoagland nutrient solution. The solution
in the pots was refreshed twice every week. The seedlings
experienced natural sunlight (0—1 000 pmol m™ s™) and
temperature (20-28 °C). One week later when the seed-
lings were acclimated to the transition, the latest fully
expanded leaves were used in the experiment.

Salt shock: Attached leaves of Rumex seedlings were ir-
radiated by a PPFD of 600 pmol m? s™'. After steady-
state photosynthesis was reached, the Hoagland solution
was rapidly replaced by 200 mM NaCl.

Photoinhibitory treatment and recovery: One hour
after salt shock, leaves were irradiated to induce photoin-
hibition by a high PPFD of 1 600 umol m™ s in 21 %
oxygen and 2 % oxygen in air (oxygen balanced by N,).
To suppress photorespiration, both treatments were made
in the presence of saturating CO, (5000 pmol mol™).
Photoinhibition was assessed by decrease in the ratio of
variable fluorescence to maximal fluorescence (F,/F,).
F,/F,, was measured 15 min after the leaf was kept in the
dark. After photoinhibitory treatment, the leaves were
placed at a PPFD of about 20 pumol m™ s for recovery.

Measurement of gas exchange was carried out by a por-
table photosynthesis system CIRAS-1 (PP Systems, UK).
Net photosynthetic rate (Py) and stomatal conductance
(gs) were determined at a CO, concentration of
380 umol mol™, temperature of about 25 °C, and a PPFD
of 600 pmol m=s™".
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benefit (Clarke and Johnson 2001).

Most of previous studies on the effects of salt stress
on photosynthesis and PS2 photochemistry were perfor-
med on salt adapted plants (Morales et al. 1992, Sharma
and Hall 1992). However, less information is available
about the initial responses when plants are subjected to
salt shock. These rapid responses may be critically im-
portant since they may determine whether or not the plant
will survive the rapid environmental changes. Salt shock
generally results in dramatic decrease in photosynthesis
and as a result, much excess excitation energy will be
produced in the chlorophyll antennae. The objective of
this study is to examine: (/) how the excess photon
energy was dissipated; (2) whether or not MPR plays an
important role in dissipation of excess energy.

To address these questions, seedlings of Rumex plants
were used. Rumex, a hybrid of Rumex patientiaxR. tian-
schaious, is a salt-tolerant fodder crop with a high content
of leaf protein. In northwest of China, this crop is used in
the reclamation of dry and saline soil. The study on this
plant may contribute to the understanding of adaptation
of plants to salt stress.

Chlorophyll (Chl) fluorescence was measured with a
portable pulse modulated fluorometer (FMS2, Hansatech,
UK) in combination with CIRAS-I photosynthesis sys-
tem. The optic detecting head of the FMS-2 was placed in
the automatic cuvette of CIRAS-1 with an angle of 45°.
Measurement of Chl fluorescence was performed si-
multaneously with the measurement of gas exchange.

The minimal fluorescence (F,) with all PS2 reaction
centres open was determined at a modulated irradiance
which was low enough not to induce any significant va-
riable fluorescence. The maximal fluorescence (F,,) with
all reaction centres closed was determined by a 0.8 s sa-
turating irradiance of about 7 000 umol m™ s on dark-
adapted leaf. The leaf was then irradiance-adapted by
actinic radiation of 600 umol m™ s™'. After the leaf rea-
ched steady state photosynthesis, parameters of gas ex-
change and fluorescence were recorded. At intervals the
steady-state fluorescence (F;) was recorded and a second
0.8 s saturating PPFD of about 7 000 pmol m™ s™' was
given to determine the maximal fluorescence (F,”) in the
light-adapted state. The actinic radiation was then turned
off for 3 s to determine the minimal fluorescence in the
light-adapted state (F,’). The following fluorescence
parameters were calculated: (/) qp, the photochemical
quenching coefficient, qp = (F,," —F)/(Fn’ —F¢’); (2)
F,’/Fy’, the efficiency of excitation energy capture by
open PS2 reaction centres, F,’/F,’ = (F," = F¢’)/Fy’; (3)
Dps), quantum yield of PS2 electron transport in the light-
adapted state, @ps,= (F,,” — Fy)/Fy (Genty et al. 1989);
(4) NPQ, non-photochemical quenching, NPQ =
(Fm - Fm,)/Fm,~
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Electron transport rate through PS2 (Jy) was estimated
from the fluorescence data according to the following
equation:

Jf: PPFDX(DPSZX(I,

where @pg, is the quantum yield of PS2 electron transport
(Genty et al. 1989), and o is a constant that depends on
the molar ratio of PS2/PS1 and the efficiency of absorp-
tion of photons by the leaves. o was determined accor-
ding to Miyake and Yokota (2000). In Rumex leaves, o
was determined to be 0.38.

The rate of electron transport required to maintain the
photosynthetic carbon reduction cycle (PCR) and photo-
respiratory carbon oxidation cycle (PCO) was calculated
from gas exchange according to Caemmerer and Farquhar
(1981):

Results

In the first 27 min, both Py and g, remained constant, ind-
icating that photosynthesis had reached steady state.
Upon transferring the roots of Rumex seedlings to solu-
tion of 200 mM NaCl (27 min after start of experiment),
Py increased immediately and reached the maximal rate
18 min after the start of salt shock (Fig. 14). This incre-
ase was thereafter followed by a rapid decrease, and
70 min after the start of salt shock Py reached its mini-
mum, which accounted for 33.3 % of the original value.
Subsequently, Py recovered to 5.5 pmol m? s'. The
response of g, was similar to that of Py (Fig. 24). Salt
shock also caused decrease in ®ps, (Fig. 1B). Comparing
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Fig. 1. Time-course of the changes in leaves of Rumex seedlings
of net photosynthetic rate, Py (A) and quantum yield of PS2
electron transport, ®pg, (m) in response to salt shock in 21 %
oxygen (4) and 2 % oxygen (B). Leaves were irradiated by a
PFD of 600 pmol m? s'. When leaves reached steady-state
photosynthesis, Py and chlorophyll fluorescence were recorded.
Roots of Rumex seedlings were transferred to 200 mM NaCl
solution after 27 min as the arrows indicate. Means = SE of
three replicates.

Jo;=(Pnt+Rp) (4 C.+8D)/(C.—T)

where Rp, is rate of mitochondrial respiration in the light,
C. is the pressure of CO, at site of carboxylation, and I is
the partial pressure of CO, at which the rate of carboxy-
lation of RuBP equals to the rate of photorespiratory evo-
Iution of CO,. Rp and I" were determined according to the
methods of Brooks and Farquhar (1985). C, was determi-
ned by equation: C, = C; — Pn/gn, Where g, is mesophyll
conductance to CO, determined according to Harley et al.
(1992). In Rumex leaves, I' was determined to be 4.32 Pa
and g, was 0.86 mol m? s'. The rate of alternative
electron transport was calculated from the following
equation:

Jo=Ji—1,

the change in ®@pg, with that in Py showed that the former
was not as pronounced as the latter. Hence other electron
transport rather than PRC was operating during salt
shock. Such electron flow was regarded as the alternative
electron transport.

Time courses of changes in Py, g, and ®pg, in re-
sponse to salt shock were further investigated in 2 % oxy-
gen (Figs. 1 and 24). Py and g, exhibited similar respon-
ses to salt shock, which consisted of three distinct phases.
The first phase, characterized by rapid increase in Py or
gs, was followed by a second phase in which both Py and
g decreased dramatically, and then in the third phase they
remained unchanged. ®pg, also decreased dramatically
when Py began to decrease. In 2 % oxygen the decrease
in @ps, was much more marked than that in 21 % oxygen,
suggesting that the alternative electron transport during
salt shock depended on oxygen concentration.

Since Dpg; is determined by the product of qp and
F,’/F’, we further investigated the responses of qp and
F,’/F.,’ to salt shock to distinguish which was the deter-
mining one (Fig. 2B,C). In 21 % oxygen, no change in qp
was observed during salt shock, whereas F,’/F,,” decrea-
sed significantly under salt shock. These results sugges-
ted that the change of ®pg, was due to that of F,”/F,’. In
2 % oxygen, however, both qp and F,’/F,,” decreased dra-
matically under salt shock. Obviously, the changes in
Dps; in 2 % oxygen were due to the changes of both gp
and F,’/F,,’. Also the time courses of NPQ were modified
by salt shock (Fig. 2D). In 21 % oxygen, NPQ increased
slightly during period in which Py decreased dramatically
and then it decreased to a steady level. In 2 % oxygen,
NPQ increased significantly and then remained high.

To examine the distribution of photosynthetic elec-
trons during salt shock, we calculated the electron trans-
port rate through PS2 (J;) and the electron transport rate
required to maintain photosynthetic carbon reduction and
photorespiration (J,). The difference of J; and J, represen-
ted the rate of alternative electron transport (J,). Both
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J¢ and J, decreased gradually upon salt shock (Fig. 3). J
was significantly higher than J, during the period of salt
shock. J, increased rapidly and reached its maximum 70
min after the start of salt shock.
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Fig. 2. Time-course of changes in (4) stomatal conductance, g,
(B) photochemical quenching, gp, (C) efficiency of excitation
energy capture by open PS2 reaction centres, F,’/F,’, and (D)
non-photochemical quenching, NPQ in response to salt shock in
21 % oxygen (¢) and in 2 % oxygen (m) in Rumex leaves.
Means + SE of three replicates. The same treatments as in
Fig. 1.

Fig. 4 shows the effects of oxygen on the suscepti-
bility of PS2 to photoinhibition. The Rumex leaves were
irradiated by a high PPED of 1 600 umol m™ s either in
21 or 2% oxygen. A significant decrease in F,/F, in
Rumex leaves was observed both in 21 and 2 % oxygen
when the Rumex leaves were exposed to high irradiance,
indicating the occurrence of photoinhibition. However,

Discussion
We found that salt shock resulted in dramatic decrease in
Py, which was accompanied by a parallel decrease in g.

We also observed that under saturating CO,, Py of Rumex
leaves was not affected by salt shock within the time of
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the decrease in F,/F,, in 2 % oxygen was more pronoun-
ced compared with that in 21 % oxygen. During recovery
under dim irradiation, F,/F,, in 21 % oxygen recovered
faster than in 2 % oxygen and it almost recovered within
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Fig. 3. Time-course of changes in the rate of electron transport
from chlorophyll fluorescence (J;, 0), gas exchange (J,, 0), and
alternative electron flow (J,, A) in leaves of Rumex seedlings in
response to salt shock. The same treatments as in Fig. 1.
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Fig. 4. Changes in the maximal efficiency of PS2 photo-
chemistry (F,/F,,) in salt-stressed leaves in saturating CO,
(5000 pmol mol™), 21 % oxygen (¢), or 2% oxygen (A)
during photoinhibitory treatment (1 600 pmol m? s™) and
subsequent recovery in dim irradiance (20 pmol m™ s™). Arrow
shows the end of photoinhibitory treatment and the start of
recovery. Means + SE of four replicates.

6 h. By comparison, F,/F,, in leaves treated in 2 % oxygen
only partially recovered within 6 h. These results demon-
strated that under high irradiance photoinhibition was in-
creased when the oxygen concentration was reduced to
2 %. Both photoinhibitory treatments were made in the
presence of saturating CO,. Under these conditions, the
photorespiration was largely inhibited and the effect of
oxygen concentration on photoinhibition was due to the
MPR. Therefore, our results suggest that MPR is impor-
tant for photoprotection in Rumex leaves during salt
shock.

investigation (values not shown). These observations sug-
gested that the decrease in Py was caused by closure of
stomata. However, to our surprise, a slight increase in Py
as well as in g5 was observed at the very beginning of salt
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shock (Fig. 1). Such phenomenon has not yet been repor-
ted and the underlying mechanism was still unclear.

Under normal condition, most of photon energy is
used via photochemistry and less is dissipated as heat and
re-emitted as fluorescence. During salt shock, Py decrea-
sed dramatically (Fig. 1). Such decrease in Py would po-
tentially result in accumulation of excess energy. The ex-
cess energy would over-excite PS2 and thus lead to da-
mages to photosynthetic apparatus (Miiller et al. 2001).
®pg, decreased only slightly (Fig. 14), indicating that al-
ternative electron transport was operating under salt
shock. In addition, the data demonstrated that such elec-
tron flow was dependent on oxygen (Fig. 1). There are
two oxygen-dependent processes which can maintain the
photosynthetic electron flow: one is photorespiration and
the other is oxygen reduction in MPR (Osmond and
Grace 1995). The data in Fig. 3 suggest that the alterna-
tive electron transport was restricted to MPR. The elec-
tron flow in MPR increased as Py decreased, and reached
about 40 % of the total electron flow when Py decreased
to its minimum. Such considerable electron flow in MPR
would certainly consume some of the excess electrons
and mitigate photoinhibition under high irradiance, as
confirmed by much less decrease in F,/F,, in 21 % oxy-
gen than in 2 % oxygen (Fig.4). The electron flow to
oxygen in MPR was greater than expected from earlier
research. Transgenic tobacco with reduced content of
ribulose-1,5-bisphosphate carboxylase/oxygenase did not
show a significant electron flow allocating to MPR
(Ruuska et al. 2000). It was thought that the MPR is unli-
kely to support a significant flow of electron, due to a
strong control of MPR in the absence of ATP consump-
tion by PCR and PCO cycles (Badger et al. 2000). There
is a need to explore why there was a considerable elec-
tron flow to oxygen in MPR during salt shock.

Apart from the role as a sink for excess electrons, the
MPR was supposed to have an additional role in creating
a trans-membrane proton gradient (Schreiber and Neu-
bauer 1990, Neubauer and Yamamoto 1992). In the pre-
sent study, however, it seemed that MPR did not have
such a role. Non-radiative energy dissipation, determined
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