

Changes in morphology, anatomy, and photosynthetic capacity of needles of Japanese larch (*Larix kaempferi*) seedlings grown in high CO₂ concentrations

N. EGUCHI*, E. FUKATSU*, R. FUNADA*, H. TOBITA**, M. KITAO**, Y. MARUYAMA**, and T. KOIKE***

Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan*

Forest and Forest Products Research Institute, Sapporo 062-8516, Japan**

Hokkaido University Forests, FSC, Sapporo 060-0809, Japan***

Abstract

Photosynthetic traits of two-year-old Japanese larch seedlings (*Larix kaempferi* Carr.) grown at elevated CO₂ concentrations were studied in relation to structural changes in the needles. Seedlings were grown at two CO₂ concentrations, 360 (AC) and 720 (EC) $\mu\text{mol mol}^{-1}$ at high and low nutrient supply rates, high N (HN) and low N (LN). The photosynthetic capacity fell significantly in EC+LN, but increased significantly in EC+HN. Since the mesophyll surface area exposed to intercellular space per unit leaf area (A^{mes}/A) is correlated with the photosynthetic rate, we measured A^{mes}/A for larch needles growing in EC. Changes of A^{mes}/A in both EC+HN and EC+LN were very similar to the changes in photosynthetic capacity. This suggests that the changes of A^{mes}/A in EC probably caused the changes in the photosynthetic capacity. The changes of A^{mes}/A in EC were attributed to changes in the mesophyll cell size and mesophyll cell number. The photosynthetic capacity in EC can be explained by taking morphological and structural adaptations into account as well as biochemical factors.

Additional key words: carboxylation efficiency; cell number; intercellular CO₂ concentration; mesophyll surface area; needle thickness and width; net photosynthetic rate; nitrogen content; specific leaf area; starch.

Introduction

Plants raised under high concentrations of CO₂ usually show photosynthetic depression, recognized as photosynthetic down-regulation (Cook *et al.* 1998, Koike *et al.* 2000, Ainsworth *et al.* 2003). However, the down-regulation mechanism is still uncertain, since the response differs with species (Sage *et al.* 1989), leaf age (Turnbull *et al.* 1998), and tree size (Greenep *et al.* 2003).

There are two major reasons for photosynthetic down-regulation. The first is reduction of nitrogen concentration in foliage (Coleman *et al.* 1993, Nakano *et al.* 1997). The second is reduced CO₂ diffusion within the leaves, following from reduction in stomatal conductance (Vodnik *et al.* 2002) and excessive accumulation of

starch inside the chloroplasts (Makino 1994).

A further important factor affecting photosynthetic capacity is structural features within the leaves (Šesták *et al.* 1985, Tichá 1985, Terashima *et al.* 2001). Intercellular space per unit leaf area (A^{mes}/A) is a particularly important parameter that is correlated with the photosynthetic rate (Nobel *et al.* 1975, Nobel 1999, Slaton and Smith 2002). The A^{mes}/A is changed easily by the environmental influences (e.g. Körner and Larcher 1988, Nobel 1999).

In the higher latitudes of the northern hemisphere, larch is the dominant species, having huge biomass even in permafrost regions (Gower and Richards 1990). Since

Received 1 December 2003, accepted 17 March 2004.

*Fax: (+81)-11-706-3450, e-mail: pg717@exfor.agr.hokudai.ac.jp

†Present address: Forest Tree Breeding Center, Ibaraki 319-1391, Japan.

‡Present address: Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo 183-8509, Japan.

Abbreviations: A^{mes}/A = the mesophyll surface area exposed to intercellular space per unit leaf area; AC = ambient CO₂ concentration; C_i = internal needle CO₂ partial pressure; EC = enhanced CO₂ concentration; HN = high nutrient supply; LN = low nutrient supply; P = photosynthetic rate; P_{growth} = photosynthetic rate at growing environment; P_{max} = photosynthetic rate under CO₂ saturation; SLA = specific leaf area.

Acknowledgement: We gratefully acknowledge partial financial support by the "Carbon Management of Asia in 21st Century" through FFPRI and JSPS. We are also grateful to Dr. Amane Makino and Dr. Thomas T. Lei for their constructive comments of the manuscript.

the Japanese larch (*Larix kaempferi* Carr.) grows very fast, this species has been widely planted in Japan and Europe (Matyssek and Schulze 1987, Koike *et al.* 2000, Onaindia and Amezaga 2000). In experiments with Siberian larch (*Larix sibirica*) in high concentrations of CO₂, photosynthetic depression was accompanied by low nutrient condition (Koike *et al.* 2000); growth rates increased significantly with better nutrient condition (Yazaki *et al.* 2001). However, no information is available to infer the physiological depression as related to anatomical structure of larch species in raised [CO₂] (Koike *et al.* 2000). It is expected that down-regulation or physiological adjustment may be correlated with both physiological function and structural changes in high [CO₂].

To access this expectation, we tried to find the photo-

synthetic traits of Japanese larch at raised [CO₂] (EC) from the inner structural changes in the needles. Since inside structure of leaves is readily altered by environmental factors (Körner and Larcher 1988, Yáñez-Espinosa *et al.* 2003), larch seedlings were grown in a growth cabinet under precisely regulated environmental conditions in order to study the effect of EC on the morphology and anatomy of the needles. In addition, since photosynthetic traits at EC are strongly affected by soil nutrient conditions (Koike *et al.* 2000, Yazaki *et al.* 2001), our larch seedlings were raised under two nutrient regimes, known as high (HN) and low (LN) nutrient condition. We then determined the photosynthetic capacity and the factors believed to influence it (nitrogen and starch contents, and structural features inside the needles).

Materials and methods

Plants: Two-year-old seedlings of Japanese larch (*Larix kaempferi* Carr.) were cultivated at Kuriyama town, near Sapporo, northern Japan (43°N, 141°E). The mean height and diameter of seedlings at the stem base were 12.5 cm and 3.0 mm, respectively. These seedlings were raised in four environmental growth cabinets (*Koito Industries*, Yokohama, Japan) at the Forestry and Forest Products Research Institute (FFPRI) located in Sapporo; full specifications are given by Koike (1995). In May 2003, the seedlings were transplanted to 9 500 cm³ vinyl pots filled with a 1 : 1 (v/v) mixture of Kanuma pumice soil and clay soil. The pots were large enough to allow unrestricted root growth during the experiment. The environmental treatments commenced in May 2003 and finished in October 2003; total 160 d.

Treatments: Six seedlings per treatment were grown in two concentrations of CO₂ (360 and 720 μmol mol⁻¹) with two nutrient supply rates (HN and LN). Liquid fertilizer (*Hyponex*, 5 : 10 : 5, N : P : K, *O.M. Scott and Sons*, Marysville, OH, USA) was supplied once a week [HN: 18 g(N) m⁻³ week⁻¹] or just once at the start of CO₂ treatment [LN: 18 g(N) m⁻³ per five-months]. Seedlings were grown under natural daylight and photoperiod. The photosynthetic photon flux density (PPFD) in each chamber was about 80 % of full sunlight (Yazaki *et al.* 2001). The day/night temperatures were maintained at optimal values (26/16 °C) (Koike *et al.* 2000). All pots were moved monthly across the chambers, and weekly within the chambers, to minimize any effect of individual chambers or locations (Koike 1995, Yazaki *et al.* 2001).

Photosynthetic characteristics of larch needles were determined using three machines of a gas analysis system (*Li-6400*, *Li-Cor*, Lincoln, NE, USA). Four samples were used per treatment. P/C_i response curves (Farquhar and Sharkey 1982) were determined by measuring the steady-state response of photosynthetic rate (P) to varying

internal needle CO₂ partial pressures (C_i). External CO₂ concentrations were supplied in seven steps, from 1 500 to 0 μmol mol⁻¹. The PPFD in the leaf chamber (measured with a *Li-6400* device; *Li-Cor*, Lincoln, NE, USA) was 1 500 μmol m⁻² s⁻¹, which is saturation level for Japanese larch (Koike *et al.* 2000, Kitaoka *et al.* 2001). The temperature in the leaf chamber was 25 °C at all CO₂ concentrations. The water vapour deficit in the leaf chamber was about 1.5 kPa. P/C_i curves were determined on August 28th and 29th, about 90 d after treatment began and when the long shoot needles had expanded fully. After photosynthetic measurement, the needle surface areas were calculated by image processing and analysis software, *Image J* (National Institutes of Health, Maryland, USA) in order to determine P per unit area and the specific leaf area (SLA). The initial slope of the P/C_i curves (giving the carboxylation efficiency, CE) and the photosynthetic rate at growing environment (P_{growth}) and under CO₂ saturation (P_{max}) were also calculated from the P/C_i curves.

Nitrogen and starch measurements: After the photosynthetic measurements, the needles were collected and dried. The nitrogen content per unit dry needle mass was determined using a *N.C.* Analyzer *NC-900* (*Shimadzu*, Kyoto, Japan). The nitrogen content per unit needle area was calculated from the SLA and needle moisture content. Four samples were used per treatment.

The starch content in the needles was determined by the anthron-sulphuric acid technique (Koehler 1952). Four samples were used per treatment. Needles were collected and dried after photosynthetic measurement. 50 mg samples of powdered needles were used, and each sample was washed three times in hot 80 % ethanol to remove soluble sugar and protein. The beaker containing the residue was then placed in boiling water for 10 min. Next, 6.5 cm³ of 52 % HClO₄ was added to hydrolyze starch into glucose. The mixture was stirred for 10 min and left

for 24 h. After filtration, the filtrate was made up to 50 cm³. 1 cm³ of this extracted solution was mixed with 2 cm³ of antron-sulphuric acid in a test tube on ice. The test tube was then placed in boiling water for 7.5 min. After cooling, the absorption at 630 nm was measured using a spectrophotometer (*Ultraspec 3000 pro*, *Amersham Biosciences*, Tokyo, Japan). This value corresponds to the sucrose concentration deriving from starch, so that the starch concentration was given by multiplying the glucose concentration by 0.9. Then, the starch content per dry mass was calculated.

Structural features inside the needles: Four samples were used per treatment. After photosynthetic measurement, the needles were fixed overnight in 4 % glutaraldehyde, and then dehydrated through a graded ethanol series and embedded in epoxy resin (Yazaki *et al.* 2001). Transverse sections of 1 μ m thickness were cut with an ultra-microtome (*EM-Ultracut-J*, *JEOL Co.*, Tokyo, Japan) and double-stained with a solution of 1 % safranin and 1 % gentian violet in water (Kitin *et al.* 1999). Digital images (512 \times 512 pixels, 256 level on a gray scale) were obtained with a confocal laser scanning microscope (*LSM-310*, *Carl Zeiss*, Oberkochen, Germany) operating in transmission mode (Funada *et al.* 1997). The images were analyzed with *Image J* (National Institutes of Health, Maryland, USA).

Results

Photosynthetic characteristics: Differences were visible in P/C_i curves between EC and AC with both LN and HN treatments (Fig. 1A,B). The carboxylation efficiency was significantly reduced in EC+LN, but did not differ significantly between the CO₂ concentrations in HN (Table 1). P_{growth} did not differ significantly between CO₂ concentrations in LN, but increased significantly in EC+HN (Table 1). P_{max} was significantly reduced in EC+LN, but increased significantly in EC+HN (Table 1).

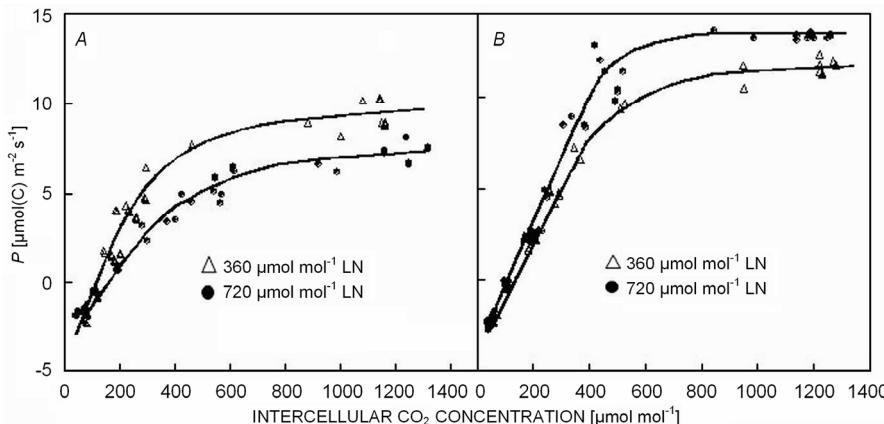


Fig. 1. Response of photosynthetic rate (P) to intercellular CO₂ concentration (C_i) ($n = 4$). A: Low nutrient supply (LN). B: High nutrient supply (HN).

Thickness and width of needles were measured from the observed images. The calculation methods of the surface area of mesophyll cells exposed to intercellular space per unit needle area (A^{mes}/A) have been suggested by many researchers (Thain 1983, James *et al.* 1999, Nobel 1999, Michèle *et al.* 2002, Oguchi *et al.* 2003). James *et al.* (1999) and Michèle *et al.* (2002) provided the methods using the oblique-paradermal section, which could indicate more accurate A^{mes}/A data. In our study, however, we determined relative value of A^{mes}/A in the needles with use of the transversal sections for comparison between two CO₂ conditions. We applied transversal sections to calculate A^{mes}/A following the methods of Oguchi *et al.* (2003) and Thain (1983), which assume that mesophyll cells are cylinders having flat ends or are spheroid. Images of the transversal sections were examined with use of this method to investigate the anatomical traits within the needles of pine and spruce (Koike *et al.* 1994). The corresponding curvature factors (F) were 1.34–1.41 and 1.36–1.43, respectively (Thain 1983).

Statistical analysis: The effect of CO₂ was evaluated by one-way analysis of variance (ANOVA) for each nutrient treatment, using the *Statview* software package (*SAS Institute*, Cary, NC, USA). Differences were considered significant at $p < 0.05$.

Nitrogen and starch measurements: Nitrogen contents per needle dry mass and needle area did not differ significantly between the CO₂ concentration treatments at either LN or HN (Table 1). Needle starch content increased significantly in EC with both LN and HN (Table 1).

Structural features inside needles: Fig. 2 shows light micrographs of transverse sections of needles from each

Table 1. Carboxylation efficiency, photosynthetic rate at growing environment (P_{growth}) and under CO_2 saturation (P_{max}), calculated from P/C_i curves (Fig. 1) and nitrogen content of needles per unit dry mass and per unit area, and starch content of needles per unit dry mass. LN = low nutrients, HN = high nutrients. Means \pm S.E., $n = 4$. * $p < 0.05$, ** $p < 0.01$, NS = non-significant.

Treatment Parameter	LN		p	HN		P
	360 $\mu\text{mol mol}^{-1}$	720 $\mu\text{mol mol}^{-1}$		360 $\mu\text{mol mol}^{-1}$	720 $\mu\text{mol mol}^{-1}$	
Carboxylation efficiency	0.033 \pm 0.004	0.022 \pm 0.001	**	0.045 \pm 0.001	0.044 \pm 0.001	NS
P_{growth} [$\mu\text{mol(C m}^{-2} \text{s}^{-1}$]	4.14 \pm 0.24	5.13 \pm 0.35	NS	4.86 \pm 0.06	10.46 \pm 0.35	**
P_{max} [$\mu\text{mol(C m}^{-2} \text{s}^{-1}$]	9.28 \pm 0.31	6.79 \pm 0.18	**	11.81 \pm 0.23	13.30 \pm 0.07	**
Nitrogen in needle [g kg^{-1}]	11.5 \pm 0.6	10.0 \pm 0.9	NS	17.7 \pm 0.4	17.4 \pm 0.7	NS
Nitrogen in needle [g m^{-2}]	13.5 \pm 0.5	12.7 \pm 0.9	NS	22.9 \pm 1.6	22.1 \pm 0.8	NS
Starch in needle [g kg^{-1}]	50.4 \pm 3.6	65.0 \pm 2.6	*	26.4 \pm 1.4	35.3 \pm 2.1	*

Table 2. Architectural features calculated from light micrographs (Fig. 3). Means \pm S.E., $n = 4$. * $p < 0.05$, ** $p < 0.01$, NS = non-significant. SLA = specific leaf area. A^{mes}/A = surface area of mesophyll cells exposed to intercellular space per unit leaf area.

Treatment Parameter	LN		p	HN		P
	360 $\mu\text{mol mol}^{-1}$	720 $\mu\text{mol mol}^{-1}$		360 $\mu\text{mol mol}^{-1}$	720 $\mu\text{mol mol}^{-1}$	
SLA [$\text{cm}^2 \text{g}^{-1}$]	50.50 \pm 1.90	47.20 \pm 2.20	NS	46.70 \pm 2.30	47.10 \pm 0.90	NS
Needle thickness [mm]	0.37 \pm 0.20	0.34 \pm 0.09	NS	0.52 \pm 0.31	0.48 \pm 0.43	NS
Needle width [mm]	0.91 \pm 0.68	0.93 \pm 0.23	NS	1.31 \pm 0.59	1.03 \pm 0.65	*
A^{mes}/A [$\text{m}^2 \text{m}^{-2}$]	11.70 \pm 0.38	9.60 \pm 0.35	**	14.20 \pm 0.37	15.60 \pm 0.30	*
Mesophyll cell height [μm]	38.50 \pm 1.51	48.10 \pm 4.66	NS	60.80 \pm 2.67	47.90 \pm 3.35	*
Mesophyll cell diameter [μm]	21.00 \pm 1.31	33.00 \pm 1.08	*	31.20 \pm 2.18	28.60 \pm 1.51	**
Mesophyll cell number per μm^{-2}	0.12 \pm 0.01	0.09 \pm 0.01	**	0.12 \pm 0.01	0.15 \pm 0.01	*

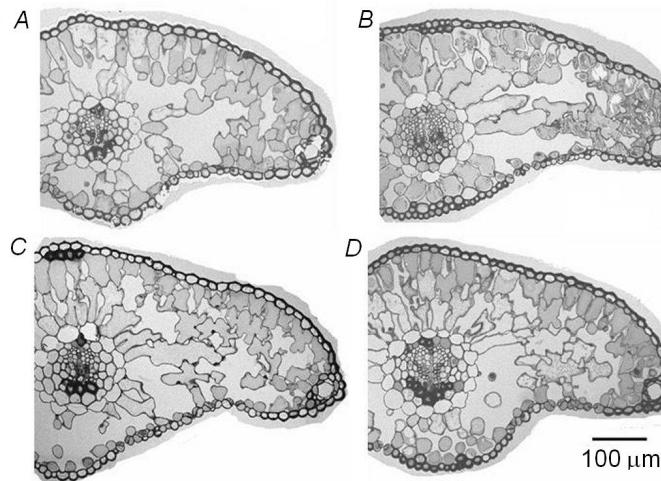


Fig. 2. Light micrographs of transverse sections of needles grown (A) at 360 $\mu\text{mol mol}^{-1}$ CO_2 (AC) with low nutrients (LN), (B) at 720 $\mu\text{mol mol}^{-1}$ (EC) with LN, (C) at AC with high nutrients (HN), or (D) at EC with HN. The bar is 100 μm .

treatment. The specific leaf area (SLA) tended to decrease in EC+LN, but the difference between the CO_2 concentration treatments was not significant with HN (Table 2). Needle thickness did not differ significantly between CO_2 concentrations with either LN or HN (Table 2). Needle width did not differ significantly between CO_2 concentrations with LN, but decreased significantly in EC+HN (Table 2). A^{mes}/A decreased signifi-

cantly in EC+LN, but increased significantly in EC+HN (Table 2). Mesophyll cell height tended to increase in EC+LN, but decreased significantly in EC+HN (Table 2). Mesophyll cell diameter increased in EC+LN, but decreased significantly in EC+HN (Table 2). Mesophyll cell number per unit area decreased in EC+LN, but increased significantly in EC+HN (Table 2).

Discussion

Down-regulation of photosynthesis of larch seedlings grown in EC+LN (Fig. 1A and Table 1) was observed. However, the photosynthetic capacity increased in EC+HN (Fig. 1B and Table 1). To explain the photosynthetic changes observed in larch seedlings in EC, we focused on the nitrogen and starch contents, and the morphological and anatomical traits in the needles, all of which affect the photosynthetic rate (Šesták *et al.* 1985, Coleman *et al.* 1993, Makino 1994).

The nitrogen content in the needles tended to decrease in EC with both LN and HN, though the difference was not significant (Table 1). This might explain why down-regulation of photosynthesis was observed in EC+LN, but cannot explain the increase in photosynthetic capacity in EC+HN.

The starch content in the needles increased significantly in EC with both LN and HN, more markedly with LN (Table 1). In general, sink-source balance of photosynthate is lost in EC (Issop *et al.* 2000) that probably induces excess accumulation of starch in chloroplasts. This reduces CO₂ diffusion in chloroplasts (Makino 1994) and is likely to be related to down-regulation. Usuda and Shimogawara (1998) reported that plants with high sink activity (for example, radish) were not down-regulated in EC because excess photosynthate did not accumulate in the leaves. In the present study, starch accumulation in EC+LN was probably one reason why photosynthetic down-regulation was observed, as a consequence of high diffusion resistance in chloroplasts (Makino 1994). However, this cannot explain the increase in photosynthetic capacity in EC+HN.

The morphological and anatomical traits of the

needles also affect the photosynthetic capacity (Šesták *et al.* 1985, Tichá 1985, Terashima *et al.* 2001). In particular, A^{mes}/A is a key parameter that is correlated with the photosynthetic rate (Nobel *et al.* 1975, Nobel 1999, Slaton and Smith 2002). In our study, A^{mes}/A decreased significantly in EC+LN and increased significantly in EC+HN (Table 2). These changes of A^{mes}/A in EC with both LN and HN were very similar to the changes of P/C_i curve, or the photosynthetic capacity (Table 1). Consequently, the changes of A^{mes}/A in EC probably explain the down-regulation of photosynthesis observed in EC+LN, and the increase in photosynthetic capacity in EC+HN.

It remains to explain why A^{mes}/A changed in EC. This depends on the mesophyll cell size and mesophyll cell number inside the needles. With LN, the mesophyll cell size increased but the mesophyll cell number decreased in EC (Table 2). This probably caused the decrease in total mesophyll surface area, reducing A^{mes}/A. In the HN condition, by contrast, the mesophyll cell size decreased but the mesophyll cell number increased in EC (Table 2). This probably caused the increase in total mesophyll surface area, increasing A^{mes}/A.

In conclusion, morphological and anatomical traits inside the needles significantly influence the photosynthetic capacity of Japanese larch seedlings grown in EC. In particular, A^{mes}/A is probably responsible for changes in the photosynthetic capacity in EC. Changes of A^{mes}/A in EC are attributed to changes in mesophyll cell size and mesophyll cell number. The photosynthetic capacity in EC can be explained by taking into account morphological and structural adaptations as well as biochemical factors.

References

Ainsworth, E.A., Davey, P.A., Hymus, G.J., Osborne, C.P., Rogers, A., Blum, H., Nösberger, J., Long, S.P.: Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with *Lolium perenne* grown for 10 years at two nitrogen fertilization levels under Free Air CO₂ Enrichment (FACE). – *Plant Cell Environ.* **26**: 705-714, 2003.

Coleman, J.S., McConaughay, K.D.M., Bazzaz, F.A.: Elevated CO₂ and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? – *Oecologia* **93**: 195-200, 1993.

Cook, A.C., Tissue, D.T., Robert, S.W., Oechel, W.C.: Effect of long-term elevated [CO₂] from natural CO₂ springs on *Nardus stricta*: photosynthesis, biochemistry, growth and phenology. – *Plant Cell Environ.* **21**: 417-425, 1998.

Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis. – *Annu. Rev. Plant Physiol.* **33**: 317-345, 1982.

Funada, R., Abe, H., Furusawa, O., Imaizumi, H., Fukazawa, K., Ohtani, J.: The orientation and localization of cortical microtubules in differentiating conifer tracheids during cell expansion. – *Plant Cell Physiol.* **38**: 210-212, 1997.

Gower, S.T., Richards, J.H.: Larches: Deciduous conifers in an evergreen world. – *BioSciences* **40**: 818-826, 1990.

Greene, H., Turnbull, M.H., Whitehead, D.: Response of photosynthesis in second-generation *Pinus radiata* trees to long-term exposure to elevated carbon dioxide partial pressure. – *Tree Physiol.* **23**: 569-576, 2003.

Issop, H., Frehner, M., Long, S.P., Nösberger, J.: Sucrose-phosphate synthase responds differently to source-sink relations and to photosynthetic rates: *Lolium perenne* L. growing at elevated pCO₂ in the field. – *Plant Cell Environ.* **23**: 597-607, 2000.

James, S.A., Smith, W.K., Vogelmann, T.C.: Ontogenetic differences in mesophyll structure and chlorophyll distribution in *Eucalyptus globulus* ssp. *globulus* (Myrtaceae). – *Amer. J. Bot.* **86**: 198-207, 1999.

Kitaoka, S., Koike, T., Quoreshi, A.M., Takagi, K., Wang, W., Shi, F., Kayama, M., Ishida, N., Mamiya, H., Sasa, K.: Seasonal changes in the photosynthetic capacity of Japanese larch trees planted on the Tomakomai National Forest, northern Japan. – *Proc. AsiaFlux Net* **1**: 109-112, 2001.

Kitin, P., Funada, R., Sano, Y., Beeckman, H., Ohtani, J.: Variations in the lengths of fusiform cambial cells and vessel elements in *Kalopanax pictus*. – *Ann. Bot.* **84**: 621-632, 1999.

Koehler, L.H.: Differentiation of carbohydrates by anthrone reaction rate and color intensity. – *Anal. Chem.* **24**: 1576-1579, 1952.

Koike, T.: Effects of CO₂ in interaction with temperature and soil fertility on the foliar phenology of alder, birch, and maple seedlings. – *Can. J. Bot.* **73**: 149-157, 1995.

Koike, T., Häslér, R., Item, H.: Needles longevity and photosynthetic performance in Cembran pine and Norway spruce growing on the north- and east-facing slopes at the timberline of Stillberg in Swiss Alps. – *USDA, INT-GTR* **309**: 78-80, 1994.

Koike, T., Yazaki, K., Funada, R., Kitao, M., Maruyama, Y., Takahashi, K., Maximov, T.C., Ivanov, B.I.: Photosynthetic characteristics of Dahurian larch, Scotch pine and white birch seedlings native to eastern Siberia raised under elevated CO₂. – *Eurasian J. Forest Res.* **1**: 31-37, 2000.

Körner, C., Larcher, W.: Plant life in cold climates. – In: Long, S.P., Woodward, F.I. (ed.): *Plants and Temperature*. Pp. 25-57. Society for Experimental Biology, Cambridge 1988.

Makino, A.: Biochemistry of C₃-photosynthesis in high CO₂. – *J. Plant Res.* **107**: 79-84, 1994.

Matyssek, R., Schulze, E.-D.: Heterosis in hybrid larch (*Larix decidua* × *leptolepis*). I. The role of leaf characteristics. – *Trees* **1**: 219-224, 1987.

Michèle, R., Slaton, R., Smith, W.K.: Mesophyll architecture and cell exposure to intercellular air space in alpine, desert, and forest species. – *Int. nat. J. Plant Sci.* **163**: 937-948, 2002.

Nakano, H., Makino, A., Mae, T.: The effect of elevated partial pressures of CO₂ on the relationship between photosynthetic capacity and N content in rice leaves. – *Plant Physiol.* **115**: 191-198, 1997.

Nobel, P.S.: Leaves and fluxes: CO₂ conductances and resistances. – In: *Physicochemical & Environmental Plant Physiology*. 2nd Ed. Pp. 315-324. Academic Press, San Diego 1999.

Nobel, P.S., Zaragoza, L.J., Smith, W.K.: Relation between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of *Plectranthus parviflorus* Henckel. – *Plant Physiol.* **55**: 1067-1070, 1975.

Oguchi, R., Hikosaka, K., Hirose, T.: Does the photosynthetic light-acclimation need change in leaf anatomy? – *Plant Cell Environ.* **26**: 505-512, 2003.

Onaindia, M., Amezaga, I.: Seasonal variation in the seed banks of native woodland and coniferous plantations in Northern Spain. – *Forest Ecol. Manage.* **126**: 163-172, 2000.

Sage, R.F., Sharkey, T.D., Seemann, J.R.: Acclimation of photosynthesis to elevated CO₂ in five C₃ species. – *Plant Physiol.* **89**: 590-596, 1989.

Šesták, Z., Tichá, I., Čatský, J., Solárová, J., Pospíšilová, J., Hodáňová, D.: Integration of photosynthetic characteristics during leaf development. – In: Šesták, Z. (ed.): *Photosynthesis during Leaf Development*. Pp. 263-286. Dr W. Junk Publ., Dordrecht – Boston – Lancaster; Academia, Praha 1985.

Slaton, M.R., Smith, W.K.: Mesophyll architecture and cell exposure to intercellular air space in alpine, desert, and forest species. – *Int. nat. J. Plant Sci.* **163**: 937-948, 2002.

Terashima, I., Miyazawa, S.-I., Hanba, Y.T.: Why are sun leaves thicker than shade leaves? – Consideration based on analysis of CO₂ diffusion in the leaf. – *J. Plant Res.* **114**: 93-105, 2001.

Thain, J.F.: Curvature correction factors in the measurement of cell surface areas in plant tissues. – *J. exp. Bot.* **34**: 87-94, 1983.

Tichá, I.: Ontogeny of leaf morphology and anatomy. – In: Šesták, Z. (ed.): *Photosynthesis during Leaf Development*. Pp. 16-50. Dr W. Junk Publ., Dordrecht – Boston – Lancaster; Academia, Praha 1985.

Turnbull, M.H., Tissue, D.T., Griffin, K.L., Rogers, G.N.D., Whitehead, D.: Photosynthetic acclimation to long-term exposure to elevated CO₂ concentration in *Pinus radiata* D. Don. is related to age of needles. – *Plant Cell Environ.* **21**: 1019-1028, 1998.

Usuda, H., Shimogawara, K.: The effects of increased atmospheric carbon dioxide on growth, carbohydrates, and photosynthesis in radish, *Raphanus sativus*. – *Plant Cell Physiol.* **39**: 1-7, 1998.

Vodník, D., Pfanz, H., Maček, I., Kastelec, D., Lojen, S., Batič, F.: Photosynthesis of cockspur [*Echinochloa crus-galli* (L.) Beauv.] at sites of naturally elevated CO₂ concentration. – *Photosynthetica* **40**: 575-579, 2002.

Yáñez-Espinosa, L., Terrazas, T., López-Mata, L., Valdez-Hernández, J.I.: Leaf trait variation in three species through canopy strata in a semi-evergreen neotropical forest. – *Can. J. Bot.* **81**: 398-404, 2003.

Yazaki, K., Funada, R., Mori, S., Maruyama, Y., Abaimov, A.P., Kayama, M., Koike, T.: Growth and annual ring structure of *Larix sibirica* grown at different carbon dioxide concentrations and nutrient supply rates. – *Tree Physiol.* **21**: 1223-1229, 2001.