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Shade effect alters leaf pigments and photosynthetic responses
in Norway spruce (Picea abies L.) grown under field conditions
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Abstract

The contents of chlorophyll (Chl) and carotenoids (Car) per fresh mass were lower in shade needles than in sun needles.
Ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and contents of soluble proteins were also significantly lower
in shade needles. In isolated thylakoids, a marked lower rate of whole chain and photosystem (PS) 2 activities were
observed in shade needles. Smaller lower rate of PS1 activity was also observed in shade needles. The artificial
exogenous electron donors, diphenyl carbazide (DPC) and NH,OH, significantly restored the loss of PS2 activity in
shade needles. Similar results were obtained when F,/F,, was evaluated by Chl fluorescence measurements. The marked
lower rate of PS2 activity in shade needles was due to the lower contents of 47, 33, 28-25, 23, and 17 kDa polypeptides.
This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the water-
splitting complex was diminished significantly in shade needles.
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Introduction

The structure of a forest stand canopy creates differences
in solar irradiance within the canopy space. The accli-
mation of foliage to reduced irradiance in the lower
crown layers has distinct anatomical and physiological
consequences leading to photosynthetic characteristics
different from those found in exposed, sunny parts of the
canopy (Woodman 1971, Golovko et al. 2004). High
values of silhouette versus total area ratio (Leverenz
1996) and specific needle area, low chlorophyll (Chl)
contents on leaf area basis, low Chl a/b ratio (Boardman
1977, Bjorkman 1981, Marek et al. 1997, Senevirathna
et al. 2003, Griffin et al. 2004), low RuBPC activity
(Priwitzer et al. 1998), and low electron transport rate
(Evans 1987) commonly occur in shade foliage compared
to sun foliage.

Plants, when exposed to high or low irradiance during
growth, react with a variety of adaptations, i.e. the for-
mation of sun and shade leaves as well as sun and shade
chloroplasts (Lichtenthaler 1981, Lichtenthaler et al.
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1984). Sun leaves are generally described as requiring
a higher photosynthetic photon flux density (PPFD) and
having a higher saturated photosynthetic rate than
corresponding shade leaves (Lichtenthaler 1981). How-
ever, the basis (Charles-Edwards and Ludwig 1975) on
which the photosynthetic rate is expressed will make
a difference in this comparison, because sun leaves are
thicker than shade leaves (Bjorkman et al. 1973,
McClenden and McMillen 1982). Thus, the pigment
contents of sun leaves are higher on a leaf area unit but
less on a fresh mass basis than those of shade leaves. Sun
leaves with sun chloroplasts possess higher rates of pho-
tosynthesis on a leaf area and Chl basis than shade leaves
with their low-irradiance chloroplasts (Lichtenthaler
1981, Lichtenthaler and Burkart 1999, Feng et al. 2004,
Laisk et al. 2005).

Extensive research on sun-to-shade adaptations in
leaves has demonstrated that low-irradiance grown plants
adapt to the irradiance-limited growth conditions by
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Abbreviations: Car — carotenoid; Chl — chlorophyll; DCBQ — 2,6-dichloro-p-benzoquinone; DCPIP — 2,6-dichlorophenol indophenol;
DPC — diphenyl carbazide; Fy, — minimal fluorescence; F, — variable fluorescence; MV — methyl viologen; PAR — photosynthetic
active radiation, PFD — photon flux density; PS — photosystem; RuBPC — ribulose-1,5-bisphosphate carboxylase; SDS-PAGE —
sodium dodecylsulphate-polyacrylamide gel electrophoresis; SiMo — silicomolybdate.
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increasing the photon-harvesting ability and alter chloro-
plast anatomy by increasing the amount of appressed
regions in thylakoid membranes (Anderson 1986).
Adjustments of the concentration of Chl b, light-har-
vesting complex (LHC) proteins, and additional changes
in ribulose-1,5-bisphosphate carboxylase (RuBPC) and
Qg protein contents are mostly regulated in the shade
adapted leaves by changes in gene expression at the
transcriptional or post-transcriptional level (Senger and
Bauer 1987). In shade, additional changes in leaf
photosynthetic performance result from ageing or senes-
cence of the leaves what has eloquently been described as
orderly withdrawal of materials from the general econo-
my of the plant (Woolhouse 1987). Thus, the loss of
photosynthetic activity with ageing due to shade occurs in

Materials and methods

Plants: The quantitative characteristics of sun and shade
needles were investigated in 15-year-old Norway spruce
(Picea abies L.) trees growing in a natural forest stand
situated at Istituto Agrario di San Michele all' Adige,
Italy. In order to simplify the experimental procedure, we
classified the same needle age samples into two groups
according to irradiance they received on the needle
surface and the canopy position: shade needles were
collected in the inner tree part under PAR of less than
50 umol m* s', whereas the sun needles were collected
from well irradiated outer canopy position with a maxi-
mum PAR of 1700 pumol m?*s'. Daily maximum and
minimum air temperatures were 29-33 and 15-17 °C,
respectively. Needles were sampled early in the morning
before they had experienced direct sunlight. The shade
influenced not only the PAR microclimate but also the air
and leaf temperature; the maximal leaf temperature on
sun plants was 33 °C.

Photosynthetic pigments were quantified in crude ace-
tone extracts. Needles were frozen in liquid nitrogen, lyo-
philised, pulverised with a mill, and extracted with 80 %
(v/v) acetone. Chl and carotenoids were measured spec-
trophotometrically and their concentrations calculated
using extinction coefficients given by Lichtenthaler
(1987).

Modulated Chl fluorescence was measured on needles
using a PAM 2000 fluorometer (Heinz Walz, Effeltrich,
FRG). Fy was measured by switching on the modulated
radiation to 0.6 kHz; PPFD at the needle surface was less
than 0.1 pmol m?2 s . F, was measured at 20 kHz with
a 1-s pulse of 6 000 pmol m 2 s of “white light”. Chl
fluorescence on isolated thylakoid membranes at room
temperature was measured with the same device. Measu-
rements were done in 1 cm’ reaction mixture containing
50 mM Tris-HCI, pH 7.5, 2 mM MgCl,, 10 mM NacCl,
100 mM sucrose, and 10 pg of Chl-equivalent thylakoid

228

concert with Chl breakdown, observed as a yellowing of
photosynthetic tissues, and the orchestrated degradation
of chloroplast processes in a step-wise fashion, including
membrane proteins, stromal enzymes, and loss of chloro-
plast integrity (Woolhouse 1987, Nedunchezhian et al.
1995, Senevirathna et al. 2003, Dzhibladze et al. 2005).

According to Boardman (1977) photosynthetic pro-
ductivity of a leaf is primarily governed by its position in
the plant canopy. It is therefore important to determine
the changes in Chl content of the leaves as well as the
relationship, if any, with different photosynthetic acti-
vities. The aim of this study was to distinguish the photo-
synthetic response in the sun and shade needles of tall
Norway spruce (Picea abies L.) trees grown in a natural
forest stand.

membranes. The integrated measuring radiation was
(480 nm) 0.15 pmol m* s~ with a red actinic radiation
(650 nm) of 100 pmol m*s ™.

Activities of electron transport: Thylakoid membranes
were isolated from the needles as described by Berthhold
et al. (1981). Whole chain electron transport (H,O—MV)
and partial reactions of photosynthetic electron transport
mediated by PS2 (H,0—DCBQ; H,0—SiMo) and PS1
(DCPIPH,—MV) were measured as described by
Nedunchezhian et al. (1997). Thylakoids were suspended
at 10 pg(Chl) cm™ in the assay medium containing
20 mM Tris-HCI, pH 7.5, 10 mM NaCl, 5 mM MgCl,,
5 mM NH,CL, and 100 mM sucrose supplemented with
0.5 mM DCBQ and 0.2 mM SiMo.

DCPIP photoreduction was determined as the decrease
in absorbance at 590 nm using a Hitachi 557 spectro-
photometer. The reaction mixture (3 c¢m’) contained
20 mM Tris-HCI, pH 7.5, 5 mM MgCl,, 10 mM NacCl,
100 mM sucrose, 0.1 mM DCPIP, and thylakoid mem-
branes equivalent to 20 pg of Chl. Where mentioned, the
concentrations of MnCl,, DPC, and NH,OH were 5.0,
0.5, and 5.0 mM, respectively.

SDS-PAGE: Thylakoid membranes were separated using
the polyacrylamide gel system of Laemmli (1970), with
following modifications. Gels consisted of a 12-18 %
gradient of polyacrylamide containing 4 M urea. Samples
of thylakoid membrane preparation were solubilised
at 20 °C for 5 min in 2 % (m/v) SDS, 60 mM DTT, and
8 % sucrose using SDS-Chl ratio of 20:1. Electro-
phoresis was performed at 20 °C with constant current of
5 mA. Gels were stained in methanol/acetic acid/water
(4:1:5, v/v/v) containing 0.1 % (m/v) Coomassie
brilliant blue R and de-stained in methanol/acetic
acid/water (4 : 1 : 5, v/v/v). Thylakoid membrane protein
was estimated according to Lowry ef al. (1951).
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Immunological determination of thylakoid proteins:
The relative contents of certain thylakoid proteins per Chl
unit were determined immunologically by Western blot-
ting. Thylakoids were solubilised in 5 % SDS, 15 % gly-
cerol, 50 mM Tris-HCI, pH 6.8, and 2 % mercaptoethanol
at room temperature for 30 min. The polypeptides were
separated by SDS-PAGE as described above and proteins
were then transferred to nitrocellulose by electroblotting
for 3 h at 0.4 A, after saturation with 10 % milk powder
in TBS buffer (pH 7.5). The first antibody in 1 % gelatine
was allowed to react overnight at room temperature. After
washing with TBS containing 0.05 % 7Tween-20, the
secondary antibody [Anti-Rabbit IgG (whole molecule)
biotin conjugate, Sigma, USA] was allowed to react in
1 % gelatine for 2 h. For detection of D1 protein a poly-
clonal antiserum against spinach D1 protein was used
(kindly provided by Prof. 1. Ohad, Jerusalem, Israel), and
the antibody against the 33 kDa protein of the water-
splitting system was a gift from Dr. Barbato, Padova,
Italy. The densitometry analysis of Western blots was
performed with a Bio-Image analyser (Millipore
Corporation, Michigan, USA).

Soluble proteins were extracted by grinding needles
(0.3-0.5 g fresh mass) in a mortar and pestle with 6 cm’

Results

Leaf pigments: When expressed on a fresh mass basis,
shade needles showed Chl and carotenoid (Car) values
lower than the sun needles (Table 1). A reduction of 59
and 38 % was observed in shade needles for Chl and Car,
respectively. The differences in total Chl content were

of 100 mM Tris-HCIL, pH 7.8 containing 15 mM MgCl,,
1 mM EDTA, 10 mM 2-mercaptoethanol, and 10 mM
PMSF in the presence of liquid nitrogen. Homogenate
was filtered through nylon cloth. After centrifugation
at 11 000xg for 10 min, the concentration of soluble
proteins was determined in the supernatant according to
Bradford (1976).

RuBPC activity: Needles were cut into small pieces and
homogenized in a grinding medium of 50 mM Tris-HCI,
pH 7.8, 10 mM MgCl,, 5 mM DTT, and 0.25 mM EDTA.
The extract was clarified by centrifugation at 10 000xg
for 10 min. The clear supernatant was decanted slowly
and used for RuBPC activity determination. RuBPC
activity was measured as described by Nedunchezhian
and Kulandaivelu (1991).

Statistical analysis of the physiological responses was
tested using a three-way analysis of variance (ANOVA) if
the data met the assumptions of normality and homosce-
dasticity. Significant differences were determined by the
Student’s f-tests criterion. All the statistical procedures
were performed with SPSS 10.0 for Windows (SPSS,
Chicago, Illinois, USA).

associated with differences in Chl ¢ and Chl b. The
Chl a/b ratio was also markedly lower in shade needles
(Table 1). In contrast to this, the Car/Chl ratio was higher
in shade needles than in the sun ones (Table 1).

Table 1. Changes in leaf pigments, soluble proteins, and RuBPC of Norway spruce needles collected from sun and shade canopy

ook

positions. For abbreviations see the text. Figures in parentheses are percentage of sun needles. Means + S.E.; n=5, p<0.001,
"p<0.01.

Parameter Sun Shade

Chl a [g kg (fm.)] 1.10 £ 0.04 0.42 +0.01 (38)
Chl b [g kg '(fm.)] 0.44 +£0.01 0.21 £0.01 (47)
Chl a+b [g kg™ (f.m.)] 1.54+0.03  0.63+0.03" (41)
Car [gkg™(fm.)] 052£0.02  0.32+0.017 (62)
Chl a/b 2.50 +0.02 2.00+0.01
Car/Chl 0.34+0.01 0.52+0.01
Soluble proteins [g kg (f.m)] 2820+1.22 1840 +0.64"" (35)
Soluble protein/Chl ratio 18.00 £ 0.51 9.60 + 0.317" (62)
RuBPC [nmol(CO,) kg '(protein) s™']  8.92 +0.31 5.53+0.23"" (38)

Chl fluorescence and photosynthetic activities: To
obtain information on PS2 activity, the ratio F,/F,,, which
reflects the quantum yield of PS2 photochemistry (Krause
and Weis 1991), was determined in vivo using needles
dark-adapted for 30 min. The effect of shade on the
variable part of fluorescence was prominent (F,) and
showed no changes in Fy. The F, and F,/F,, were much
lower in shade needles than in the sun needles (Fig. 1).

F,/F, in the sun needles was 0.766 and the ratio was
lower (0.583) in shade needles (Fig. 1).

When photosynthetic electron transport was studied
using isolated thylakoids from sun and shade needles, the
rate of DCPIPH,—»MV (PS1) was about 5 % lower in
shade needles as compared with sun needles (Fig. 2). The
PS2 activities measured as H,O—DCBQ and H,O0—
SiMo were about 12 and 40 % lower in shade needles
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than in sun needles (Fig. 2). A similar trend was also
noticed for whole chain (H,O—MYV) e¢lectron transport
(Fig. 2).

To locate the possible site of inhibition in the PS2
reaction, we followed the DCPIP reduction supported by
various exogenous electron donors in thylakoids of both
types of the needles. Wydrzynski and Govindjee (1975)
showed that MnCl,, DPC, and NH,OH could donate the
electrons in the PS2 reaction. Fig. 3 shows the electron
transport activity of PS2 in the presence and absence of
the three above compounds. In the shade needles, the PS2
activity was reduced to about 42 % when water served as
the electron donor. A similar trend was also found using
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Fig. 1. Changes in the relative fluorescence emitted as minimal
fluorescence (F), variable fluorescence (F,), and the ratio of
variable to maximum fluorescence (F,/F,) in sun and shade
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Fig. 2. Changes in the rates of whole chain (H,O—MV), PS2
(H,0—-DCBQ; H,0—SiMo), and PS1 (DCPIPH,—MV) elec-
tron transport activities in thylakoids isolated from sun and
shade needles. Means + S.E.; n =5, ™" p<0.001, “p<0.01.
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MnCl, as donor. In contrast to this, a significant resto-
ration of PS2 mediated DCPIP reduction was observed
when NH,OH and DPC were used electron donors in the
shade needles (Fig. 3).
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Fig. 3. Effect of various exogenous electron donors on PS2
activity (H,O—DCPIP) in thylakoid memb{fmes isolated from
sun and shade needles. Means + S.E.; n =15, p<0.01.

These results agree with measurements obtained by
modulated Chl fluorescence with various exogenous
electron donors used in the sun and shade thylakoids
(Table 2). The addition of DPC and NH,OH to the shade
thylakoids induced a significant increase of variable fluo-
rescence (F,). The F,/F,, ratio also increased from 0.555
to 0.680 and 0.673 for DPC and NH,0OH, respectively
(Table 2).

Thylakoid membrane proteins: Since the changes in
photosynthetic electron transport activities could be
caused primarily by changes or reorganisation of thyla-
koid components, the thylakoid polypeptide profiles of
the sun and shade needles were analysed by SDS-PAGE.
A comparison of thylakoid polypeptides indicated a
decrease in the amounts of 47, 33, 25, 23, and 17 kDa
polypeptides in the shade needles (Fig. 4).

D1 and 33 kDa proteins tested by immunoblot: Shade
induced inhibition of PS2 activity in the thylakoids was
compared with changes in the relative contents of D1 and
33 kDa proteins as determined by Western blotting
(Fig. 5) followed by quantification by the Bio-Image ap-
paratus (Fig. 5). Decrease in the relative content of D1
protein in the shade needles was negligible (4 %) but that
of 33 kDa protein was significant (48 %).

RuBPC activity and soluble proteins: When the en-
zyme activity in crude needle extracts was expressed on a
protein basis, significantly less RuBPC activity was
observed in shade needles (by 38 %) than in sun needles
(Table 1). A similar result was also noticed for soluble
proteins in shade needles (Table 1).
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Discussion

In our experiment, the contents of Chl and Car were sig-
nificantly lower in shade needles in comparison with sun
needles. Both Chl ¢ and Chl b contents were lower and
shade probably also enhanced the chlorophyllase activity
in needle tissues. An increase in the Car/Chl ratio and
a decrease in the Chl a/b ratio in shade needles has been
observed before (Bjorkman er al. 1972, Marini and
Marini 1983, Feng et al. 2004, Baig et al. 2005). Because
all Chl is non-covalently attached to either reaction centre
or LHC (Green 1988), the differences in Chl a/b
indicated that shade affected the distribution of Chl
between the Chl-protein complexes. Also an increase of
Car/Chl is due to the relatively faster decrease of Chl than
Car. These differences in pigment ratios between sun and
shade were described before. They are due to the high-

Table 2. Changes in the relative fluorescence emitted as
minimal fluorescence (F), variable fluorescence (F,), and the
ratio of variable to maximum fluorescence (F,/F,,) in thylakoids
isolated from sun and shade needles with or without exogenous
electron donors. Concentrations of MnCl,, DPC, and NH,OH
were 5.0, 0.5, and 5.0 mM, respectively (mean + S.E.; n =15,

sokok

0 <0.001, “p <0.01).

Addition F, F, F,/Fn

Sun  None 1.60+0.04 4.00+0.15 0.714 +0.040
DPC 1.60+0.03 4.20+0.13 0.724+0.030"
NH,OH 1.60+0.03 1.60+0.14 0.719+0.030""
MnCl, 1.60+0.04 1.60+0.14 0.714+0.020

Shade None 1.60+£0.04 2.00+0.07 0.555+0.020
DPC 1.60£0.05 3.40+0.13  0.680 +0.020""
NH,OH 1.60+0.04 3.30+0.10 0.673+0.030"
MnCl, 1.60+0.03 220+0.06 0.578 =0.020

Fig. 4. Coomassie blue stained polypeptide profiles of thylakoid
membranes isolated from sun (a) and shade (b) needles. Gel
lanes were loaded with equal amounts of protein (100 pg).
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Fig. 5. Degradation of the D1 and 33 kDa proteins in thylakoids
of sun (@) and shade (b) needles. Each lane was loaded equal
amounts (5 pg) of chlorophyll. Histogram: Bio-Image
densitometric evaluation. Inset: Western-blot. Means + S.E.;
n=>5,"""p<0.001, “p<0.01.

irradiance adaptation response of the photosynthetic pig-
ment apparatus of sun needles with much less LHCP2
and more reaction centres on a total Chl basis compared
to shade needles which exhibit higher and broader grana
thylakoid antenna (Lichtenthaler e al. 1982, 2000, Laisk
et al. 2005).

Chl fluorescence induction curves, reflecting photo-
synthesis and electron transport, have characteristic
patterns, which undergo changes when the photosynthetic
system becomes impaired. They can therefore be used as
indicators of damage (Govindjee and Papageorgiou
1971). The sun needles showed a high PS2 activity, mea-
sured as the F,/F,, ratio, while shade leaves showed the
lowest F,/F,, ratio (Senevirathna ef al. 2003, Griffin et al.
2004). The extent of variable fluorescence (F,) was mar-
kedly lower in the shade leaves without affecting the Fy
level. Reduction in variable fluorescence yield, as often
shown, indicates impairment of PS2 activity, particularly
at the donor site (Allakhverdiev et al. 1987, Setlik et al.
1990).

Analysis of various electron transport activities
measured by using electron acceptors in thylakoids
isolated from sun and shade needles, showed a lower
activity of the whole chain electron transport activity of
shade needles as compared to sun needles; only a mar-
ginal effect on PS1 mediated reactions was noticed.
Hence the shade must have action site(s) in the PS2
reaction. Similar lower rates of PS2 activity have been
reported in low-irradiance grown plants of Atriplex
(Boardman et al. 1975) and Picea (Lewandowska and
Jarvis 1977). An analysis of electron transport in the
thylakoids isolated from shade needles showed that O,
evolution was significantly lower when SiMo was used as
electron acceptor, but this decline was not significant
when the electron acceptor was DCBQ. Since DCBQ
accepts the electrons directly from Q, (Cao and
Govindjee 1990), the rates measured represent the true
rate of photochemistry by PS2, uninfluenced by the PQ
pool. This proved that shade effect induced changes on
the donor side of PS2 in Norway spruce.
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In order to locate the possible site of shade induced
inhibition, we measured PS2 mediated DCPIP reduction
in the presence of various artificial exogenous electron
donors acting at the oxidizing side of PS2. Among the
artificial electron donors tested, DPC and NH,OH were
most effective in increasing the PS2 activity in the shade
needles. These results were also confirmed by
measurement of modulated Chl fluorescence in isolated
thylakoids. After addition of DPC and NH,OH to
thylakoids from shade needles, a marked increase in the
level of variable fluorescence occurred. These results
indicate that shade needles had changes on the donor side
of PS2, perhaps close to the DPC donation side. The
present results agree with the findings that the water-
oxdising system is sensitive to ageing (Misra and Biswal
1982, Nedunchezhian et al. 1995, 1996).

The most likely explanation for the lower PS2 activity
in shade needles is that the related protein(s) is(are)
affected because they are exposed at the thylakoid surface
(Seidler 1994). The extrinsic proteins of 33, 23, and
17 kDa associated with the lumen surface of the thylakoid
membranes are required for optimal functioning of the
oxygen evolving machinery (Millner ez al. 1987, Enami
et al. 1994). Removal of the 33 and 23 kDa proteins from
PS2 membrane preparations by treatments with CaCl, or
NaCl (Enami et al. 1994) results in strong inhibition of
O, evolution. The lower contents of 33, 23, and 17 kDa
polypeptides accompanied the observed lower PS2 acti-
vity in shade needles. From the results we confirm that
the significant lower contents of 33, 23, and 17 kDa
polypeptides could be one of the reasons for significantly
lower O, evolution capacity in shade needles. Thylakoid
stacking, energy distribution, and damage to the LHC
have multiple effects on the photosynthetic system. In our
experiment a significant lower content of LHCP2
(28-25 kDa) polypeptides was observed in shade needles.
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First edition of this manual was certainly successful and
this is why after eight years a new edition appeared. On
the first sight it differs from the first edition not only by a
change of cover colour (a darker tone of green), but also
by larger volume dimensions (220%285 mm versus
180%260 mm). The second edition is not a revised edi-
tion, but has some characteristics of a new book.

The first edition contained 63 chapters in XIV parts,
but the new one contains only 46 chapters in XIV sec-
tions that have similar titles. The chapters are supple-
mented with full references to the respective papers.
There are 27 to 271 references per chapter, mostly to
papers published in the last fifteen years. In the 1% Ed.
only short references were presented and such manner re-
mained in some chapters (chapter 34) that were trans-
ferred without change from the first edition (last
reference in this case is from the year 1995). This is
strange, because during eight years new facts were
certainly found in all analysed fields and hence these
chapters appear as old-fashioned. I do not think that ab-
stracts should be cited in manuals of this type. On the
other hand, the chapters and topics contained only in the
first edition are not cited here. There is also a change in
style of the chapters — they are induced by contents
preceding the text. Some figures and schemes were newly
produced, some were overtaken from the first edition.
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Who wrote the chapters? Most authors, some well
known and some less known, are from the U.S.A. (21),
followed by India (9), Argentina (6), Bulgaria, Hungary,
Japan, and Slovakia (5 each), France and Pakistan (4
each), Canada, Germany, and the U.K. (3 each), China,
Czech Republic, the Netherlands, and Poland (2 each),
and Israel and Spain (1 each). Thirty four of these authors
wrote chapters to both editions, 49 are new comers.

There are almost no new topics in this book and thus
the reader only sees that some topics are missing (chloro-
respiration, effects of leaf age, plants cultivated in vitro,
stomata patchiness, midday depression, photosynthetic
bacteria, efc.). Some chapters have different numbers in
both editions (e.g. chapters 1 and 9, 7 and 11).

I do not think that publishing this book under the
same title was a good solution. It will certainly lead to a
mess in references. If a book appears in a new edition, the
main lay-out should remain the same or the title should
be changed (at least to, say, New Handbook of Photosyn-
thesis).

What are the positive sides of this edition? First,
larger letter size and the two-column setting help in read-
ing. The index is detailed enough. Some new chapters
bring interesting information. Hence I believe that this
second edition will again find its readers.
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