

Shade effect alters leaf pigments and photosynthetic responses in Norway spruce (*Picea abies* L.) grown under field conditions

M. BERTAMINI*, K. MUTHUCHELIAN**, and N. NEDUNCHEZHIAN*,***

*Istituto Agrario di San Michele all'Adige, 38010 San Michele all'Adige, Italy**

*Center for Biodiversity and Forest Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai 625 021, India***

Abstract

The contents of chlorophyll (Chl) and carotenoids (Car) per fresh mass were lower in shade needles than in sun needles. Ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and contents of soluble proteins were also significantly lower in shade needles. In isolated thylakoids, a marked lower rate of whole chain and photosystem (PS) 2 activities were observed in shade needles. Smaller lower rate of PS1 activity was also observed in shade needles. The artificial exogenous electron donors, diphenyl carbazide (DPC) and NH₂OH, significantly restored the loss of PS2 activity in shade needles. Similar results were obtained when F_v/F_m was evaluated by Chl fluorescence measurements. The marked lower rate of PS2 activity in shade needles was due to the lower contents of 47, 33, 28–25, 23, and 17 kDa polypeptides. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the water-splitting complex was diminished significantly in shade needles.

Additional key words: chlorophyll fluorescence; diphenyl carbazole; donor side; electron transport; NH₂OH; photosystems 1 and 2; polypeptides; ribulose-1,5-bisphosphate carboxylase.

Introduction

The structure of a forest stand canopy creates differences in solar irradiance within the canopy space. The acclimation of foliage to reduced irradiance in the lower crown layers has distinct anatomical and physiological consequences leading to photosynthetic characteristics different from those found in exposed, sunny parts of the canopy (Woodman 1971, Golovko *et al.* 2004). High values of silhouette *versus* total area ratio (Leverenz 1996) and specific needle area, low chlorophyll (Chl) contents on leaf area basis, low Chl *a/b* ratio (Boardman 1977, Björkman 1981, Marek *et al.* 1997, Senevirathna *et al.* 2003, Griffin *et al.* 2004), low RuBPC activity (Priwitzer *et al.* 1998), and low electron transport rate (Evans 1987) commonly occur in shade foliage compared to sun foliage.

Plants, when exposed to high or low irradiance during growth, react with a variety of adaptations, *i.e.* the formation of sun and shade leaves as well as sun and shade chloroplasts (Lichtenthaler 1981, Lichtenthaler *et al.*

1984). Sun leaves are generally described as requiring a higher photosynthetic photon flux density (PPFD) and having a higher saturated photosynthetic rate than corresponding shade leaves (Lichtenthaler 1981). However, the basis (Charles-Edwards and Ludwig 1975) on which the photosynthetic rate is expressed will make a difference in this comparison, because sun leaves are thicker than shade leaves (Björkman *et al.* 1973, McClenden and McMillen 1982). Thus, the pigment contents of sun leaves are higher on a leaf area unit but less on a fresh mass basis than those of shade leaves. Sun leaves with sun chloroplasts possess higher rates of photosynthesis on a leaf area and Chl basis than shade leaves with their low-irradiance chloroplasts (Lichtenthaler 1981, Lichtenthaler and Burkart 1999, Feng *et al.* 2004, Laisk *et al.* 2005).

Extensive research on sun-to-shade adaptations in leaves has demonstrated that low-irradiance grown plants adapt to the irradiance-limited growth conditions by

Received 15 August 2005, accepted 12 December 2005.

*** Author for correspondence; permanent address: Govt. Higher Sec. School, Vellimeduppettai-604 207, Tindivanam, India, fax: 91-4147-222512, e-mail: nedu1963@yahoo.com

Abbreviations: Car – carotenoid; Chl – chlorophyll; DCBQ – 2,6-dichloro-p-benzoquinone; DCPIP – 2,6-dichlorophenol indophenol; DPC – diphenyl carbazole; F₀ – minimal fluorescence; F_v – variable fluorescence; MV – methyl viologen; PAR – photosynthetic active radiation; PFD – photon flux density; PS – photosystem; RuBPC – ribulose-1,5-bisphosphate carboxylase; SDS-PAGE – sodium dodecylsulphate-polyacrylamide gel electrophoresis; SiMo – silicomolybdate.

increasing the photon-harvesting ability and alter chloroplast anatomy by increasing the amount of appressed regions in thylakoid membranes (Anderson 1986). Adjustments of the concentration of Chl *b*, light-harvesting complex (LHC) proteins, and additional changes in ribulose-1,5-bisphosphate carboxylase (RuBPC) and Q_B protein contents are mostly regulated in the shade adapted leaves by changes in gene expression at the transcriptional or post-transcriptional level (Senger and Bauer 1987). In shade, additional changes in leaf photosynthetic performance result from ageing or senescence of the leaves what has eloquently been described as orderly withdrawal of materials from the general economy of the plant (Woolhouse 1987). Thus, the loss of photosynthetic activity with ageing due to shade occurs in

concert with Chl breakdown, observed as a yellowing of photosynthetic tissues, and the orchestrated degradation of chloroplast processes in a step-wise fashion, including membrane proteins, stromal enzymes, and loss of chloroplast integrity (Woolhouse 1987, Nedunchezhian *et al.* 1995, Senevirathna *et al.* 2003, Dzhibladze *et al.* 2005).

According to Boardman (1977) photosynthetic productivity of a leaf is primarily governed by its position in the plant canopy. It is therefore important to determine the changes in Chl content of the leaves as well as the relationship, if any, with different photosynthetic activities. The aim of this study was to distinguish the photosynthetic response in the sun and shade needles of tall Norway spruce (*Picea abies* L.) trees grown in a natural forest stand.

Materials and methods

Plants: The quantitative characteristics of sun and shade needles were investigated in 15-year-old Norway spruce (*Picea abies* L.) trees growing in a natural forest stand situated at Istituto Agrario di San Michele all' Adige, Italy. In order to simplify the experimental procedure, we classified the same needle age samples into two groups according to irradiance they received on the needle surface and the canopy position: shade needles were collected in the inner tree part under PAR of less than 50 $\mu\text{mol m}^{-2} \text{s}^{-1}$, whereas the sun needles were collected from well irradiated outer canopy position with a maximum PAR of 1 700 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Daily maximum and minimum air temperatures were 29–33 and 15–17 °C, respectively. Needles were sampled early in the morning before they had experienced direct sunlight. The shade influenced not only the PAR microclimate but also the air and leaf temperature; the maximal leaf temperature on sun plants was 33 °C.

Photosynthetic pigments were quantified in crude acetone extracts. Needles were frozen in liquid nitrogen, lyophilised, pulverised with a mill, and extracted with 80 % (v/v) acetone. Chl and carotenoids were measured spectrophotometrically and their concentrations calculated using extinction coefficients given by Lichtenthaler (1987).

Modulated Chl fluorescence was measured on needles using a *PAM 2000* fluorometer (Heinz Walz, Effeltrich, FRG). F₀ was measured by switching on the modulated radiation to 0.6 kHz; PPFD at the needle surface was less than 0.1 $\mu\text{mol m}^{-2} \text{s}^{-1}$. F_m was measured at 20 kHz with a 1-s pulse of 6 000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ of “white light”. Chl fluorescence on isolated thylakoid membranes at room temperature was measured with the same device. Measurements were done in 1 cm³ reaction mixture containing 50 mM Tris-HCl, pH 7.5, 2 mM MgCl₂, 10 mM NaCl, 100 mM sucrose, and 10 μg of Chl-equivalent thylakoid

membranes. The integrated measuring radiation was (480 nm) 0.15 $\mu\text{mol m}^{-2} \text{s}^{-1}$ with a red actinic radiation (650 nm) of 100 $\mu\text{mol m}^{-2} \text{s}^{-1}$.

Activities of electron transport: Thylakoid membranes were isolated from the needles as described by Berthold *et al.* (1981). Whole chain electron transport (H₂O→MV) and partial reactions of photosynthetic electron transport mediated by PS2 (H₂O→DCBQ; H₂O→SiMo) and PS1 (DCPIP_{H2}→MV) were measured as described by Nedunchezhian *et al.* (1997). Thylakoids were suspended at 10 $\mu\text{g}(\text{Chl}) \text{ cm}^{-3}$ in the assay medium containing 20 mM Tris-HCl, pH 7.5, 10 mM NaCl, 5 mM MgCl₂, 5 mM NH₄Cl, and 100 mM sucrose supplemented with 0.5 mM DCBQ and 0.2 mM SiMo.

DCPIP photoreduction was determined as the decrease in absorbance at 590 nm using a *Hitachi 557* spectrophotometer. The reaction mixture (3 cm³) contained 20 mM Tris-HCl, pH 7.5, 5 mM MgCl₂, 10 mM NaCl, 100 mM sucrose, 0.1 mM DCPIP, and thylakoid membranes equivalent to 20 μg of Chl. Where mentioned, the concentrations of MnCl₂, DPC, and NH₂OH were 5.0, 0.5, and 5.0 mM, respectively.

SDS-PAGE: Thylakoid membranes were separated using the polyacrylamide gel system of Laemmli (1970), with following modifications. Gels consisted of a 12–18 % gradient of polyacrylamide containing 4 M urea. Samples of thylakoid membrane preparation were solubilised at 20 °C for 5 min in 2 % (m/v) SDS, 60 mM DTT, and 8 % sucrose using SDS-Chl ratio of 20 : 1. Electrophoresis was performed at 20 °C with constant current of 5 mA. Gels were stained in methanol/acetic acid/water (4 : 1 : 5, v/v/v) containing 0.1 % (m/v) Coomassie brilliant blue R and de-stained in methanol/acetic acid/water (4 : 1 : 5, v/v/v). Thylakoid membrane protein was estimated according to Lowry *et al.* (1951).

Immunological determination of thylakoid proteins: The relative contents of certain thylakoid proteins per Chl unit were determined immunologically by Western blotting. Thylakoids were solubilised in 5 % SDS, 15 % glycerol, 50 mM Tris-HCl, pH 6.8, and 2 % mercaptoethanol at room temperature for 30 min. The polypeptides were separated by SDS-PAGE as described above and proteins were then transferred to nitrocellulose by electroblotting for 3 h at 0.4 A, after saturation with 10 % milk powder in TBS buffer (pH 7.5). The first antibody in 1 % gelatine was allowed to react overnight at room temperature. After washing with TBS containing 0.05 % *Tween-20*, the secondary antibody [*Anti-Rabbit IgG* (whole molecule) biotin conjugate, *Sigma*, USA] was allowed to react in 1 % gelatine for 2 h. For detection of D1 protein a polyclonal antiserum against spinach D1 protein was used (kindly provided by Prof. I. Ohad, Jerusalem, Israel), and the antibody against the 33 kDa protein of the water-splitting system was a gift from Dr. Barbato, Padova, Italy. The densitometry analysis of Western blots was performed with a *Bio-Image* analyser (*Millipore Corporation*, Michigan, USA).

Soluble proteins were extracted by grinding needles (0.3–0.5 g fresh mass) in a mortar and pestle with 6 cm³

Results

Leaf pigments: When expressed on a fresh mass basis, shade needles showed Chl and carotenoid (Car) values lower than the sun needles (Table 1). A reduction of 59 and 38 % was observed in shade needles for Chl and Car, respectively. The differences in total Chl content were

of 100 mM Tris-HCl, pH 7.8 containing 15 mM MgCl₂, 1 mM EDTA, 10 mM 2-mercaptoethanol, and 10 mM PMSF in the presence of liquid nitrogen. Homogenate was filtered through nylon cloth. After centrifugation at 11 000×g for 10 min, the concentration of soluble proteins was determined in the supernatant according to Bradford (1976).

RuBPC activity: Needles were cut into small pieces and homogenized in a grinding medium of 50 mM Tris-HCl, pH 7.8, 10 mM MgCl₂, 5 mM DTT, and 0.25 mM EDTA. The extract was clarified by centrifugation at 10 000×g for 10 min. The clear supernatant was decanted slowly and used for RuBPC activity determination. RuBPC activity was measured as described by Nedunchezhian and Kulandaivelu (1991).

Statistical analysis of the physiological responses was tested using a three-way analysis of variance (*ANOVA*) if the data met the assumptions of normality and homoscedasticity. Significant differences were determined by the Student's *t*-tests criterion. All the statistical procedures were performed with *SPSS 10.0 for Windows* (*SPSS*, Chicago, Illinois, USA).

associated with differences in Chl *a* and Chl *b*. The Chl *a/b* ratio was also markedly lower in shade needles (Table 1). In contrast to this, the Car/Chl ratio was higher in shade needles than in the sun ones (Table 1).

Table 1. Changes in leaf pigments, soluble proteins, and RuBPC of Norway spruce needles collected from sun and shade canopy positions. For abbreviations see the text. *Figures in parentheses* are percentage of sun needles. Means ± S.E.; *n* = 5, *** *p* < 0.001, ** *p* < 0.01.

Parameter	Sun	Shade
Chl <i>a</i> [g kg ⁻¹ (f.m.)]	1.10 ± 0.04	0.42 ± 0.01 (38)
Chl <i>b</i> [g kg ⁻¹ (f.m.)]	0.44 ± 0.01	0.21 ± 0.01 (47)
Chl <i>a+b</i> [g kg ⁻¹ (f.m.)]	1.54 ± 0.03	0.63 ± 0.03 ** (41)
Car [g kg ⁻¹ (f.m.)]	0.52 ± 0.02	0.32 ± 0.01 ** (62)
Chl <i>a/b</i>	2.50 ± 0.02	2.00 ± 0.01
Car/Chl	0.34 ± 0.01	0.52 ± 0.01
Soluble proteins [g kg ⁻¹ (f.m.)]	28.20 ± 1.22	18.40 ± 0.64 *** (35)
Soluble protein/Chl ratio	18.00 ± 0.51	9.60 ± 0.31 ** (62)
RuBPC [nmol(CO ₂) kg ⁻¹ (protein) s ⁻¹]	8.92 ± 0.31	5.53 ± 0.23 *** (38)

Chl fluorescence and photosynthetic activities: To obtain information on PS2 activity, the ratio F_v/F_m, which reflects the quantum yield of PS2 photochemistry (Krause and Weis 1991), was determined *in vivo* using needles dark-adapted for 30 min. The effect of shade on the variable part of fluorescence was prominent (F_v) and showed no changes in F₀. The F_v and F_v/F_m were much lower in shade needles than in the sun needles (Fig. 1).

F_v/F_m in the sun needles was 0.766 and the ratio was lower (0.583) in shade needles (Fig. 1).

When photosynthetic electron transport was studied using isolated thylakoids from sun and shade needles, the rate of DCPIP_H→MV (PS1) was about 5 % lower in shade needles as compared with sun needles (Fig. 2). The PS2 activities measured as H₂O→DCBQ and H₂O→SiMo were about 12 and 40 % lower in shade needles

than in sun needles (Fig. 2). A similar trend was also noticed for whole chain ($H_2O \rightarrow MV$) electron transport (Fig. 2).

To locate the possible site of inhibition in the PS2 reaction, we followed the DCPIP reduction supported by various exogenous electron donors in thylakoids of both types of the needles. Wydrzynski and Govindjee (1975) showed that $MnCl_2$, DPC, and NH_2OH could donate the electrons in the PS2 reaction. Fig. 3 shows the electron transport activity of PS2 in the presence and absence of the three above compounds. In the shade needles, the PS2 activity was reduced to about 42 % when water served as the electron donor. A similar trend was also found using

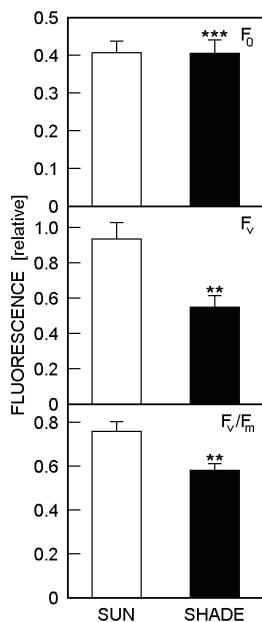


Fig. 1. Changes in the relative fluorescence emitted as minimal fluorescence (F_0), variable fluorescence (F_v), and the ratio of variable to maximum fluorescence (F_v/F_m) in sun and shade needles. Means \pm S.E.; $n = 5$, *** $p < 0.001$, ** $p < 0.01$.

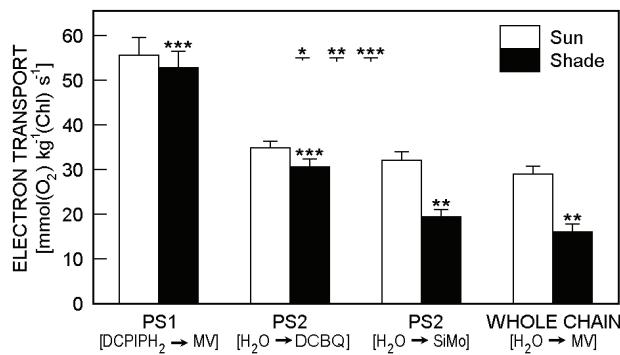


Fig. 2. Changes in the rates of whole chain ($H_2O \rightarrow MV$), PS2 ($H_2O \rightarrow DCBQ$; $H_2O \rightarrow SiMo$), and PS1 ($DCPIP-H_2 \rightarrow MV$) electron transport activities in thylakoids isolated from sun and shade needles. Means \pm S.E.; $n = 5$, *** $p < 0.001$, ** $p < 0.01$.

$MnCl_2$ as donor. In contrast to this, a significant restoration of PS2 mediated DCPIP reduction was observed when NH_2OH and DPC were used electron donors in the shade needles (Fig. 3).

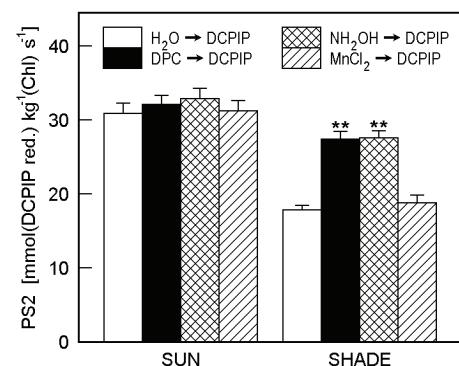


Fig. 3. Effect of various exogenous electron donors on PS2 activity ($H_2O \rightarrow DCPIP$) in thylakoid membranes isolated from sun and shade needles. Means \pm S.E.; $n = 5$, ** $p < 0.01$.

These results agree with measurements obtained by modulated Chl fluorescence with various exogenous electron donors used in the sun and shade thylakoids (Table 2). The addition of DPC and NH_2OH to the shade thylakoids induced a significant increase of variable fluorescence (F_v). The F_v/F_m ratio also increased from 0.555 to 0.680 and 0.673 for DPC and NH_2OH , respectively (Table 2).

Thylakoid membrane proteins: Since the changes in photosynthetic electron transport activities could be caused primarily by changes or reorganisation of thylakoid components, the thylakoid polypeptide profiles of the sun and shade needles were analysed by SDS-PAGE. A comparison of thylakoid polypeptides indicated a decrease in the amounts of 47, 33, 25, 23, and 17 kDa polypeptides in the shade needles (Fig. 4).

D1 and 33 kDa proteins tested by immunoblot: Shade induced inhibition of PS2 activity in the thylakoids was compared with changes in the relative contents of D1 and 33 kDa proteins as determined by Western blotting (Fig. 5) followed by quantification by the *Bio-Image* apparatus (Fig. 5). Decrease in the relative content of D1 protein in the shade needles was negligible (4 %) but that of 33 kDa protein was significant (48 %).

RuBPC activity and soluble proteins: When the enzyme activity in crude needle extracts was expressed on a protein basis, significantly less RuBPC activity was observed in shade needles (by 38 %) than in sun needles (Table 1). A similar result was also noticed for soluble proteins in shade needles (Table 1).

Discussion

In our experiment, the contents of Chl and Car were significantly lower in shade needles in comparison with sun needles. Both Chl *a* and Chl *b* contents were lower and shade probably also enhanced the chlorophyllase activity in needle tissues. An increase in the Car/Chl ratio and a decrease in the Chl *a/b* ratio in shade needles has been observed before (Björkman *et al.* 1972, Marini and Marini 1983, Feng *et al.* 2004, Baig *et al.* 2005). Because all Chl is non-covalently attached to either reaction centre or LHC (Green 1988), the differences in Chl *a/b* indicated that shade affected the distribution of Chl between the Chl-protein complexes. Also an increase of Car/Chl is due to the relatively faster decrease of Chl than Car. These differences in pigment ratios between sun and shade were described before. They are due to the high-

Table 2. Changes in the relative fluorescence emitted as minimal fluorescence (F_0), variable fluorescence (F_v), and the ratio of variable to maximum fluorescence (F_v/F_m) in thylakoids isolated from sun and shade needles with or without exogenous electron donors. Concentrations of $MnCl_2$, DPC, and NH_2OH were 5.0, 0.5, and 5.0 mM, respectively (mean \pm S.E.; $n = 5$, *** $p < 0.001$, ** $p < 0.01$).

	Addition	F_0	F_v	F_v/F_m
Sun	None	1.60 \pm 0.04	4.00 \pm 0.15	0.714 \pm 0.040
	DPC	1.60 \pm 0.03	4.20 \pm 0.13	0.724 \pm 0.030**
	NH_2OH	1.60 \pm 0.03	1.60 \pm 0.14	0.719 \pm 0.030**
	$MnCl_2$	1.60 \pm 0.04	1.60 \pm 0.14	0.714 \pm 0.020
Shade	None	1.60 \pm 0.04	2.00 \pm 0.07	0.555 \pm 0.020
	DPC	1.60 \pm 0.05	3.40 \pm 0.13	0.680 \pm 0.020**
	NH_2OH	1.60 \pm 0.04	3.30 \pm 0.10	0.673 \pm 0.030**
	$MnCl_2$	1.60 \pm 0.03	2.20 \pm 0.06	0.578 \pm 0.020

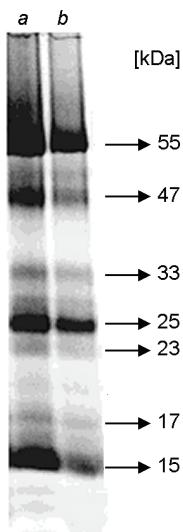


Fig. 4. Coomassie blue stained polypeptide profiles of thylakoid membranes isolated from sun (*a*) and shade (*b*) needles. Gel lanes were loaded with equal amounts of protein (100 μ g).

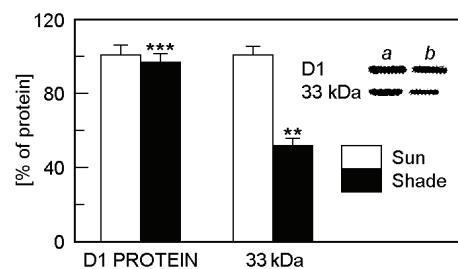


Fig. 5. Degradation of the D1 and 33 kDa proteins in thylakoids of sun (*a*) and shade (*b*) needles. Each lane was loaded equal amounts (5 μ g) of chlorophyll. *Histogram*: Bio-Image densitometric evaluation. *Inset*: Western-blot. Means \pm S.E.; $n = 5$, *** $p < 0.001$, ** $p < 0.01$.

irradiance adaptation response of the photosynthetic pigment apparatus of sun needles with much less LHC2 and more reaction centres on a total Chl basis compared to shade needles which exhibit higher and broader grana thylakoid antenna (Lichtenthaler *et al.* 1982, 2000, Laisk *et al.* 2005).

Chl fluorescence induction curves, reflecting photosynthesis and electron transport, have characteristic patterns, which undergo changes when the photosynthetic system becomes impaired. They can therefore be used as indicators of damage (Govindjee and Papageorgiou 1971). The sun needles showed a high PS2 activity, measured as the F_v/F_m ratio, while shade leaves showed the lowest F_v/F_m ratio (Senevirathna *et al.* 2003, Griffin *et al.* 2004). The extent of variable fluorescence (F_v) was markedly lower in the shade leaves without affecting the F_0 level. Reduction in variable fluorescence yield, as often shown, indicates impairment of PS2 activity, particularly at the donor site (Allakhverdiev *et al.* 1987, Šetlik *et al.* 1990).

Analysis of various electron transport activities measured by using electron acceptors in thylakoids isolated from sun and shade needles, showed a lower activity of the whole chain electron transport activity of shade needles as compared to sun needles; only a marginal effect on PS1 mediated reactions was noticed. Hence the shade must have action site(s) in the PS2 reaction. Similar lower rates of PS2 activity have been reported in low-irradiance grown plants of *Atriplex* (Boardman *et al.* 1975) and *Picea* (Lewandowska and Jarvis 1977). An analysis of electron transport in the thylakoids isolated from shade needles showed that O_2 evolution was significantly lower when SiMo was used as electron acceptor, but this decline was not significant when the electron acceptor was DCBQ. Since DCBQ accepts the electrons directly from Q_A^- (Cao and Govindjee 1990), the rates measured represent the true rate of photochemistry by PS2, uninfluenced by the PQ pool. This proved that shade effect induced changes on the donor side of PS2 in Norway spruce.

In order to locate the possible site of shade induced inhibition, we measured PS2 mediated DCPIP reduction in the presence of various artificial exogenous electron donors acting at the oxidizing side of PS2. Among the artificial electron donors tested, DPC and NH₂OH were most effective in increasing the PS2 activity in the shade needles. These results were also confirmed by measurement of modulated Chl fluorescence in isolated thylakoids. After addition of DPC and NH₂OH to thylakoids from shade needles, a marked increase in the level of variable fluorescence occurred. These results indicate that shade needles had changes on the donor side of PS2, perhaps close to the DPC donation side. The present results agree with the findings that the water-oxidising system is sensitive to ageing (Misra and Biswal 1982, Nedunchezian *et al.* 1995, 1996).

The most likely explanation for the lower PS2 activity in shade needles is that the related protein(s) is(are) affected because they are exposed at the thylakoid surface (Seidler 1994). The extrinsic proteins of 33, 23, and 17 kDa associated with the lumen surface of the thylakoid membranes are required for optimal functioning of the oxygen evolving machinery (Millner *et al.* 1987, Enami *et al.* 1994). Removal of the 33 and 23 kDa proteins from PS2 membrane preparations by treatments with CaCl₂ or NaCl (Enami *et al.* 1994) results in strong inhibition of O₂ evolution. The lower contents of 33, 23, and 17 kDa polypeptides accompanied the observed lower PS2 activity in shade needles. From the results we confirm that the significant lower contents of 33, 23, and 17 kDa polypeptides could be one of the reasons for significantly lower O₂ evolution capacity in shade needles. Thylakoid stacking, energy distribution, and damage to the LHC have multiple effects on the photosynthetic system. In our experiment a significant lower content of LHCP2 (28–25 kDa) polypeptides was observed in shade needles.

References

Allakhverdiev, S.I., Šetlíková, E., Klimov, V.V., Šetlík, I.: In phototoinhibited photosystem II particles pheophytin photoreduction remains unimpaired. – *FEBS Lett.* **226**: 186-190, 1987.

Anderson, J.M.: Photoregulation of the composition, function, and structure of thylakoid membranes. – *Annu. Rev. Plant Physiol.* **37**: 93-136, 1986.

Baig, M.J., Anand, A., Mandal, P.K., Bhatt, R.K.: Irradiance influences contents of photosynthetic pigments and proteins in tropical grasses and legumes. – *Photosynthetica* **43**: 47-53, 2005.

Berthold, D.A., Babcock, G.T., Yocom, C.F.: A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. EPR and electron-transport properties. – *FEBS Lett.* **134**: 231-234, 1981.

Björkman, O.: Responses to different quantum flux densities. – In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.): *Physiological Plant Ecology I*. Pp. 57-107. Springer-Verlag, Berlin – Heidelberg – New York 1981.

Björkman, O., Ludlow, M.M., Morrow, P.A.: Photosynthetic performance of two rainforest species in their native habitat and analysis of their gas exchange. – *Carnegie Inst. Washington Year Book* **77**: 94-102, 1972.

Björkman, O., Troughton, J., Nobs, M.: Photosynthesis in relation to leaf structure. – *Brookhaven Symp. Biol.* **25**: 206-226, 1973.

Boardman, N.K.: Comparative photosynthesis of sun and shade plants. – *Annu. Rev. Plant Physiol.* **28**: 355-377, 1977.

Boardman, N.K., Björkman, O., Anderson, J.M., Goodchild, D.J., Thorne, S.W.: Photosynthetic adaptation of higher plants to light intensity: Relationship between chloroplast structure, composition of the photosystems and photosynthetic rates. – In: Avron, M. (ed.): *Proceedings of the Third International Congress on Photosynthesis*. Vol. III. Pp. 1809-1827. Elsevier, Amsterdam – Oxford – New York 1975.

Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. – *Anal. Biochem.* **72**: 248-254, 1976.

Burkey, K.O., Wilson, R.F., Wells, R.: Effects of canopy on the

This could be one of the reasons for the observed marked lower PS2 activity in shade needles. As shown by the corresponding Western blots, a marginally lower content of the D1 protein occurs in shade needles. This lower content of the D1 protein was accompanied by a significantly lower content of the 33 kDa protein of the water-splitting system, showing that the whole PS2 was present at low levels in shade needles.

The needles grown under the shade had relatively low contents of soluble proteins and soluble protein/Chl ratio (Table 1) that concurs with similar report observed in *Erythrina variegata* (Muthuchelian *et al.* 1989) and soybean leaves (Burkey *et al.* 1997). The content of soluble proteins was markedly lower in the shade needles that might have been due to the lower synthesis of RuBPC, the major soluble protein of assimilation tissue, since a lower RuBPC activity was observed in shade needles. The carboxylating enzyme RuBPC is not fully activated at low irradiance and thus the degree of activation may regulate the flux of carbon through the photosynthetic pathway (Usuda *et al.* 1985).

Our results demonstrate that needles collected from Norway spruce grown under sun and shade have different leaf pigment composition, contents of ribulose-1,5-bisphosphate carboxylase and soluble proteins, and photosynthetic activities of the thylakoids. In addition, the shade induced changes on the donor side of PS2 in Norway spruce needles. This is due to (1) a marked inhibition of PS2 activity when SiMo is used as an electron acceptor, (2) artificial exogenous donors DPC and NH₂OH significantly increase the PS2 activity, (3) the contents of 33 and 23 kDa polypeptides are reduced, and (4) the content of 33 kDa protein is significantly lower by the immunological studies in the shade needles than in the sun ones.

lipid composition of soybean leaves. – *Physiol. Plant.* **101**: 591-598, 1997.

Cao, J., Govindjee: Chlorophyll *a* fluorescence transient as an indicator of active and inactive Photosystem II in thylakoid membranes. – *Biochim. biophys. Acta* **1015**: 180-188, 1990.

Charles-Edwards, D.A., Ludwig, L.J.: The basis of expression of leaf photosynthetic activities. – In: Marcelle, R. (ed.): Environmental and Biological Control of Photosynthesis. Pp. 37-44. Dr W. Junk Publ., The Hague 1975.

Dzhibladze, T.G., Polesskaya, O.G., Alekhina, N.D., Egorova, E.A., Bukhov, N.G.: Redox states of photosystems I and II in irradiated leaves of wheat seedlings grown under different conditions of nitrogen nutrition. – *Russ. J. Plant Physiol.* **52**: 141-146, 2005.

Enami, I., Kitamura, M., Tomo, T., Isokawa, Y., Ohta, H., Katoh, S.: Is the primary cause of thermal inactivation of oxygen evolution in spinach PS II membranes release of the extrinsic 33 kDa protein or of Mn? – *Biochim. biophys. Acta* **1186**: 52-58, 1994.

Evans, J.R.: The relationship between electron transport components and photosynthetic capacity in pea leaves grown at different irradiances. – *Aust. J. Plant Physiol.* **14**: 157-170, 1987.

Feng, Y.-L., Cao, K.-F., Zhang, J.-L.: Photosynthetic characteristics, dark respiration, and leaf mass per unit area in seedlings of four tropical tree species grown under three irradiances. – *Photosynthetica* **42**: 431-437, 2004.

Golovko, T.K., Dymova, O.V., Tabalenkova, G.N.: The effect of light regime on source-sink relations in the shade-enduring *Ajuga reptans* plant. – *Russ. J. Plant Physiol.* **51**: 604-608, 2004.

Govindjee, Papageorgiou, G.: Chlorophyll fluorescence and photosynthesis: Fluorescence transients. – In: Giese, A.C. (ed.): Photophysiology. Vol. VI. Pp. 1-46. Academic Press, New York – London 1971.

Green, B.R.: The chlorophyll-protein complexes of higher plant photosynthetic membranes or Just what green band is that? – *Photosynth. Res.* **15**: 3-32, 1988.

Griffin, J.J., Ranney, T.G., Pharr, D.M.: Photosynthesis, chlorophyll fluorescence and carbohydrate content of *Illicium* taxa grown under varied irradiance. – *J. amer. Soc. hort. Sci.* **129**: 46-53, 2004.

Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **42**: 313-349, 1991.

Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. – *Nature* **227**: 680-685, 1970.

Laisk, A., Eichelmann, H., Oja, V., Rasulov, B., Padu, E., Bichele, I., Pettai, H., Kull, O.: Adjustment of leaf photosynthesis to shade in a natural canopy: rate parameters. – *Plant Cell Environ.* **28**: 375-388, 2005.

Leverenz, J.W.: Shade-shoot structure, photosynthetic performance in the field and photosynthetic capacity of evergreen conifers. – *Tree Physiol.* **19**: 109-114, 1996.

Lewandowska, M., Jarvis, P.G.: Changes in chlorophyll and carotenoid content, specific leaf area and dry weight fraction in Sitka spruce, in response to shading and season. – *New Phytol.* **79**: 247-256, 1977.

Lichtenthaler, H.K.: Adaptation of leaves and chloroplasts to high quanta fluence rates. – In: Akoyunoglou, G. (ed.): Photosynthesis. Vol. VI. Pp. 273-287. Balaban Int. Sci. Service, Philadelphia 1981.

Lichtenthaler, H.K.: Chlorophylls and carotenoids – pigments of photosynthetic biomembranes. – In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Vol. **148**. Pp. 350-382. Academic Press, San Diego – New York – Berkeley – Boston – London – Sydney – Tokyo – Toronto 1987.

Lichtenthaler, H.K., Babani, F., Langsdorf, G., Buschmann, C.: Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging. – *Photosynthetica* **38**: 521-529, 2000.

Lichtenthaler, H.K., Burkart, S.: Photosynthesis and high light stress. – *Bulg. J. Plant Physiol.* **25**: 3-16, 1999.

Lichtenthaler, H.K., Kuhn, G., Prenzel, U., Meier, D.: Chlorophyll-protein levels and degree of thylakoid stacking in radish chloroplasts from high-light, low-light and bentazon-treated plants. – *Physiol. Plant.* **56**: 183-188, 1982.

Lichtenthaler, H.K., Meier, D., Buschmann, C.: Development of chloroplasts at high and low light quanta fluence rates. – *Isr. J. Bot.* **33**: 185-194, 1984.

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. – *J. biol. Chem.* **193**: 265-275, 1951.

Marek, M.V., Markova, I., Kalina, J., Janous, D.: An effect of thinning on photosynthetic characteristic of a Norway spruce canopy. II. Seasonal changes of photosynthetic pigment content. – *Lesnictví – Forestry* **43**: 141-153, 1997.

Marini, R.P., Marini, M.C.: Seasonal changes in specific leaf weight, net photosynthesis, and chlorophyll content of peach leaves as affected by light penetration and canopy position. – *J. amer. Soc. hort. Sci.* **108**: 600-605, 1983.

McClenden, J.H., McMillen, G.G.: The control of leaf morphology and the tolerance to shade by woody plants. – *Bot. Gaz.* **143**: 79-83, 1982.

Millner, P.A., Gogel, G., Barber, J.: Investigation of the spatial relationships between photosystem 2 polypeptides by reversible crosslinking and diagonal electrophoresis. – *Photosynth. Res.* **13**: 185-198, 1987.

Misra, A.N., Biswal, U.C.: Changes in the content of plastid macromolecules during aging of attached and detached leaves, and of isolated chloroplasts of wheat seedlings. – *Photosynthetica* **16**: 22-26, 1982.

Muthuchelian, K., Paliwal, K., Gnanam, A.: Influence of shading on net photosynthesis, and transpiration rates, stomatal diffusive resistance, nitrate reductase and biomass productivity of a woody legume tree species (*Erythrina variegata* Lam). – *Proc. Indian Acad. Sci.* **99**: 539-546, 1989.

Nedunchezhian, N., Kulandaivelu, G.: Effect of UV-B enhanced radiation on ribulose-1,5-bisphosphate carboxylase in leaves of *Vigna sinensis* L. – *Photosynthetica* **25**: 431-435, 1991.

Nedunchezhian, N., Morales, F., Abadia, A., Abadia, J.: Decline in photosynthetic electron transport activity and changes in thylakoid protein pattern in field grown iron deficient peach (*Prunus persica* L.). – *Plant Sci.* **129**: 29-38, 1997.

Nedunchezhian, N., Ravindran, K.C., Kulandaivelu, G.: Changes in photosynthetic apparatus during dark incubation of detached leaves from control and ultraviolet-B treated *Vigna* seedlings. – *Biol. Plant.* **37**: 341-348, 1995.

Nedunchezhian, N., Ravindran, K.C., Kulandaivelu, G.: Ultraviolet-B (280-320 nm) radiation induced changes in photosynthetic electron transport during aging of isolated *Vigna* chloroplasts. – *Photosynthetica* **32**: 381-391, 1996.

Priwitzer, T., Urban, O., Šprtová, M., Marek, M.V.: Chloroplastic carbon dioxide concentration in Norway spruce (*Picea abies* [L.] Karst.) needles relates to the position within the crown. – *Photosynthetica* **35**: 561-571, 1998.

Seidler, A.: Expression of the 23 kDa protein from the oxygen-evolving complex of higher plants in *Escherichia coli*. – *Biochim. biophys. Acta* **1187**: 73-79, 1994.

Senevirathna, A.M.W.K., Stirling, C.M., Rodrigo, V.H.L.: Growth, photosynthetic performance and shade adaptation of rubber (*Hevea brasiliensis*) grown in natural shade. – *Tree Physiol.* **23**: 705-712, 2003.

Senger, H., Bauer, B.: The influence of light quality on adaptation and function of the photosynthetic apparatus. – *Photochem. Photobiol.* **45**: 939-946, 1987.

Šetlík, I., Allakhverdiev, S.I., Nedbal, L., Šetlíková, E., Klimov, V.V.: Three types of photosystem II photoinactivation. 1. Damaging processes on the acceptor side. – *Photosynth. Res.* **23**: 39-48, 1990.

Usuda, H., Ku, M.S.B., Edwards, G.E.: Influence of light intensity during growth on photosynthesis and activity of several key photosynthetic enzymes in a C₄ plant (*Zea mays*). – *Physiol. Plant.* **63**: 65-67, 1985.

Woodman, J.N.: Variation of net photosynthesis within the crown of a large forest grown conifer. – *Photosynthetica* **5**: 50-54, 1971.

Woolhouse, H.W.: Regulation of senescence in the chloroplast. – In: Thomson, W.W., Nothnagel, E.A., Huffaker, R.C. (ed.): *Plant Senescence: Its Biochemistry and Physiology*. Pp. 132-145. Amer. Soc. Plant Physiologists, Rockville 1987.

Wydryzynski, T., Govindjee: A new site of bicarbonate effect in photosystem II of photosynthesis: Evidence from chlorophyll fluorescence transients in spinach chloroplasts. – *Biochim. biophys. Acta* **387**: 403-408, 1975.

Pessarakli, M. (ed.): **Handbook of Photosynthesis. 2nd Ed.** – Tailor & Francis, Boca Raton – London – New York – Singapore 2005. ISBN 0-8247-5839-0. 928 pp., USD 159.95, GBP 92.00.

First edition of this manual was certainly successful and this is why after eight years a new edition appeared. On the first sight it differs from the first edition not only by a change of cover colour (a darker tone of green), but also by larger volume dimensions (220×285 mm *versus* 180×260 mm). The second edition is not a revised edition, but has some characteristics of a new book.

The first edition contained 63 chapters in XIV parts, but the new one contains only 46 chapters in XIV sections that have similar titles. The chapters are supplemented with full references to the respective papers. There are 27 to 271 references per chapter, mostly to papers published in the last fifteen years. In the 1st Ed. only short references were presented and such manner remained in some chapters (chapter 34) that were transferred without change from the first edition (last reference in this case is from the year 1995). This is strange, because during eight years new facts were certainly found in all analysed fields and hence these chapters appear as old-fashioned. I do not think that abstracts should be cited in manuals of this type. On the other hand, the chapters and topics contained only in the first edition are not cited here. There is also a change in style of the chapters – they are induced by contents preceding the text. Some figures and schemes were newly produced, some were overtaken from the first edition.

Who wrote the chapters? Most authors, some well known and some less known, are from the U.S.A. (21), followed by India (9), Argentina (6), Bulgaria, Hungary, Japan, and Slovakia (5 each), France and Pakistan (4 each), Canada, Germany, and the U.K. (3 each), China, Czech Republic, the Netherlands, and Poland (2 each), and Israel and Spain (1 each). Thirty four of these authors wrote chapters to both editions, 49 are new comers.

There are almost no new topics in this book and thus the reader only sees that some topics are missing (chlororespiration, effects of leaf age, plants cultivated *in vitro*, stomata patchiness, midday depression, photosynthetic bacteria, *etc.*). Some chapters have different numbers in both editions (e.g. chapters 1 and 9, 7 and 11).

I do not think that publishing this book under the same title was a good solution. It will certainly lead to a mess in references. If a book appears in a new edition, the main lay-out should remain the same or the title should be changed (at least to, say, New Handbook of Photosynthesis).

What are the positive sides of this edition? First, larger letter size and the two-column setting help in reading. The index is detailed enough. Some new chapters bring interesting information. Hence I believe that this second edition will again find its readers.

Z. ŠESTÁK (*Praha*)