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Benson-Bassham-Calvin cycle contribution to the organic life on our planet
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“Science is more about failure than success.”
A.A. Benson

Abstract

The review is devoted to the outstanding contributions to the path of carbon in photosynthesis by Professor Emeritus
Andrew A. Benson, on the occasion of his death at the age of 97, on January 16, 2015. Benson is the legendary co-
discoverer of the photosynthetic reductive pentose phosphate cycle, known to every student of photosynthesis as the
Benson-Bassham-Calvin cycle. This pathway evolved into the dominant assimilation mechanism for atmospheric carbon
into metabolites. The fundamental ecological and biochemical optimization and evolutionary stability of this mechanism
unfolded elegantly in Benson’s hands, as he was the first to recognize the building blocks for the synthesis of essential
organic compounds that satisfy the energetic needs and demands of most life forms. Photosynthetic carbon metabolism
together with other energy and oxidative reactions and secondary biosynthetic processes are critical for the formation of

organic matter; and, thereby, the Benson-Bassham-Calvin cycle ensures maintenance of the biosphere.
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Introduction

As a young scientist in the 1940’s, Andrew Benson held
the world’s supply of radioactive carbon dioxide that had
a sufficiently long half-life to apply to plants and follow its
path to sugars (Calvin and Benson 1948). The ensuing
discovery and description of the cyclic sequence of
reactions of photosynthetic fixation and reduction of
atmospheric carbon into organic substances before 1960
was one of the greatest achievements of the 20" century.
This discovery has led not simply to the knowledge
accumulation concerning the regular sequence of
biochemical reactions taking place in green parts of the
plant, but more importantly, to understanding a key
photosynthetic process — the phenomenon, thanks to which
organic life developed. Floristic eukaryotes are the main
sources of food, protection, and sanitation of all
heterotrophic creatures, including human beings.

Striking is the fact that this may be the sole discovery
of the first order that does not show the other side of medal,
i.e., it has not been used to the detriment of all living
things.

Received 3 February 2015, accepted 11 March 2015.

Thanks to Andrew Benson, the method, which
combines the use of radioactive substrates and chromato-
graphic analysis for labeled products, began a new stage in
the study of biochemical pathways occurring in living
organisms. The significance of this methodological
development for biological sciences and science in general
is hard to overestimate.

It should be also noted that efforts to improve the
efficiency of photosynthetic carbon metabolism have been
on-going in the field of photosynthetic biochemistry.
Among the most successful results in this direction are
those which may be regarded as the link to regulation of
the photosynthetic carbon fixation products (Nonomura
and Benson 2014).

Andrew Benson’s scientific path has been described in
several reviews (Benson 2002a, 2002b, Adrianov et al.
2007, Titlyanov and Titlyanova 2007, Lichtenthaler et al.
2008, Buchanan and Wong 2013). Here, we focused on the
Benson-Bassham-Calvin cycle contribution to the organic
life on our planet.
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Discoverers of the photosynthetic carbon reduction cycle

The credit for the first recognition of the mechanism of
photosynthetic carbon metabolism belongs to a trio of
American scientists, Andrew A. Benson, James A.
Bassham, and Melvin Calvin (Fig. 1). Their enormous
erudition in different fields, dedication, keen minds,
inquisitive nature, engineering and design talents, and
profound understanding of science allowed the exploration
and description of the biochemical reaction sequence that
fix and reduce atmospheric carbon into organic matter in
the green plant cell. And it all came together in a relatively
short period of recent history (Calvin and Benson 1948,
Benson and Calvin 1950a, 19505, Benson et al, 1950,
Benson 1952, Bassham et al. 1954).

The reductive pentose phosphate cycle, named the
Benson-Bassham-Calvin cycle in honor of its discoverers,
or in accordance with the primary product of CO, fixation,
Cs photosynthesis (Fig. 2), was developed by the authors
mainly based on experiments with microalgae. They
proved that primary CO» photoassimilation occurs in the
carboxylation reaction of ribulose-1,5-bisphosphate
(RuBP) and the first stable products are two molecules of
3-phosphoglyceric acid (3-PGA), which is then reduced to
3-phosphoglyceric aldehyde and dihydroxyacetone phos-
phate (DOAP) (Fig. 2). These triose phosphates yield
hexose phosphate esters that are then used for the synthesis
of sucrose and/or starch. Regeneration of RuBP provided
interconversion of phosphoric sugar esters (PES) in the
sequence of the transketolase and aldolase reactions that
lead ultimately to the formation of ribulose-5-phosphate.
Then ribulose-5-phosphate is phosphorylated with the
expenditure of ATP.
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During the same period of time, analogous research
was carried out by scientists in the Soviet Union on species
of different higher plant families confirming the existence
of this cycle in all photosynthetic eukaryotes (Doman
1952, Nichiporovich 1953, Doman et al. 1958). At the
present time, it is known that the reductive pentose
phosphate cycle is inherent not only to all eukaryotic plants
and cyanobacteria, but also in most known chemo-
autotrophic bacteria and purple phototrophic bacteria

Fig. 1. Discoverers of photosynthetic carbon reduction cycle
(from left to right): James A. Bassham, Andrew A. Benson, and
Melvin Calvin. Andrew A. Benson gave this photo as a present
to Karl Biel in September 09, 1988.
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Fig. 2. Photosynthetic carbon reduction cycle. BisP — bisphosphate, P — phosphate, TPNH — reduced triphosphopyridine nucleotide,
1 — carboxydismutase system, 2 — triosephosphate dehydrogenase, 3 — phosphotriose isomerase, 4 — aldolase, 5 — phosphatase, 6 —
transketolase, 7 — phosphopentoisomerase, 8 — phosphoketopentose epimerase, 9 — phosphopentokinase.
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(Kondratieva 1963, 1996; Bassham and Buchanan 1982).

It was also estimated that during the reduction of CO,
under illumination, along with PES, plants produce
organic and amino acids, such as malate, glycolate, glyce-
rate, alanine, aspartate, glycine, and serine. Intermediates
of the glycolate pathway (GOGAT) are physiologically

associated with photorespiration and originate from
S-carbon intermediates of the Benson-Bassham-Calvin
cycle (Zelitch 1973, 1972; Tolbert 1981, 1997; etc.).
Formation of alanine and C4 acids occurrs due to the
conversion of 3-PGA, leading out of the reductive pentose
phosphate cycle (Tarchevsky 1964, 1982).

Types of photosynthetic carbon metabolism in prokaryotes and eukaryotes

It should be noted that, after discovery of the reductive
pentose phosphate cycle, many different ways of photo-
synthetic carbon fixation and reduction were discovered
and described, thanks to Andrew Benson's method, in both
prokaryotes and eukaryotes, such as the 3-hydroxy-
propionate bicycle (Herter et al. 2002, Zarzycki et al.
2009); the reducing citrate or Arnon-Buchanan cycle
(Evans et al. 1966, Buchanan and Sirevag 1977, Buchanan
and Arnon 1990), Crassulacean acid metabolism (CAM)
(Osmond and Allaway 1974, Kluge 1976, Osmond 1978,
Winter and Troughton 1978), C4 or cooperative photo-
synthesis (Hartt et al. 1954, Nezgovorova, 1956, 1957,
Karpilov 1960, 1969, Kortschak et al. 1965, Hatch and

Slack 1966); Cs/C4 photosynthesis (Monson et al. 1984),
and C4-CAM photosynthesis (Bil' and Gedemov 1980, Bil'
etal. 1981, 1983, Shomer-Ilan et al. 1981, Nishio and Ting
1987, Guralnick 2002). All of these variations of
prokaryotic and eukaryotic phototrophic photosynthesis
contribute to the total photosynthetic productivity of
aquatic and terrestrial landscapes.

However, none of the currently known pathways for
photosynthetic CO, fixation neither is as widespread nor
carries out such an important role in the creation of organic
matter on a global scale, as do the representatives of flora
that possess the Benson-Bassham-Calvin cycle.

The specificity of the final photosynthetic products in different eukaryotic species

The anatomical structure of higher plant leaves is usually
represented by palisade and spongy parenchymal cells or
several layers of palisade cells, and in rare cases, by
palisade cells and colorless bundle cells around the
vascular bundles (see e.g. Biel 1993, Biel et al. 2010, 2014;
Fomina and Biel 2014). A wide variety of morphology and
anatomy is also peculiar to various aquatic photosynthetic
species, such as algae and photosymbionts. The variety of
the anatomical structure of leaves, for example, in
terrestrial Cs species, often originates from diverse
habitats. Even within the same species from different
geographic areas, or in the same plant in different seasons,
significant differences in the morphology and meso-
structure of the photosynthetic apparatus are demonstrated
(see e.g. Mokronosov 1981, 1983; Biel 1993, Fomina and
Biel 2014).

In Cs plants, several specific variants of primary bio-
synthetic assimilates were identified (Mokronosov 1981):

(I) species with an absolute predominance of the
synthesis of sucrose and starch [up to 90-95% of the CO»
converted into these compounds in potato (Solanum
tuberosum L.), sugar beet (Beta vulgaris L. subsp.
vulgaris), and many species of arctic and alpine cryophilic
early spring ephemeral flora;

(2) species forming a part of the photoassimilates, such
as raffinose, stachyose, verbascose, and other galactose-
containing oligo- and polysaccharides (this group includes
practically all species of the Cucurbitaceae, containing up
to 30-40% of the amount of assimilates in oligoses; these
compounds are the main transport form of assimilates in
Cucurbitaceae);

(3) species where, along with the formation of sucrose
and starch, phosphohexoses are partially reduced into the
sugar alcohols, mannitol and sorbitol. Mannitol, for
example, is produced in the leaves of celery (4pium), lilac
(Syringa), ash (Fraxinus), oak (Quercus); in thalli of
brown algae (Phacophyceace); and other species. Sorbitol,
as a product of photosynthesis and transport form of
assimilates, was detected in apple (Malus) and other
woody Rosaceae;

(4) species where a significant portion of the early
products of photosynthesis is involved in the shikimate
pathway and associated with the synthesis of phenolic
compounds [synthesis of phenolic compounds is charac-
teristic for many tree crops, such as tea (Camellia
sinensis), plants containing tannins]; and

(5) species with large pools of serine, glycine, and
glycolate (for example, Fabaceae).

The plant world (according to A. T. Mokronosov 1981)
demonstrates a significant genotypic diversity in modifi-
cations of primary biosynthesis. Nevertheless, they are all
variations of either events prior to incorporation of CO> in
the Benson-Bassham-Calvin cycle or different bio-
synthetic pathways already occurring in the cytoplasm due
to incoming intermediates of this cycle and substantially
serve as intermediaries between primary and secondary
processes of photosynthetic carbon metabolism.

Targeted regulation of photosynthetic carbon metabo-
lism in plants and algae (Benson and Muscatine 1974,
Benson et al. 1978, 2009; Blanquet ef al. 1979, Benson and
Nonomura 1992, Nonomura and Benson 1992, 2013; Biel
etal. 2010, Nonomura et al. 2011) was shown in works led

163



K. BIEL, I. FOMINA

by Andrew Benson, especially, in the lectin cycle
(Nonomura and Benson 2014). Lectins possess “lock and
key” protein conformations that allow them to bind
selectively. Specific substrates bind more tightly than
glucose and displace it off of lectin, freeing the energy

source for growth. Adaptation of this new technology has
broad implications that can lead to crop improvement via
modulation of the energy flow. This is an elegant scientific
advancement of all agriculture.

Origin and development of photosynthetic carbon metabolism and advantages of the Benson-Bassham-

Calvin cycle

Analysis of information collected by various scientists
enables us to represent the sequence of evolutionary origin
and development of photosynthetic carbon metabolism. Its
simplest form likely reflects the diversity of autotrophic
carbon cycles (Marakushev and Belonogova 2011) in
modern anaerobic, chemo- and phototrophic prokaryotes,
whereas, higher plants exhibit complex, cooperative
interactions of different organelles, cells, and tissues in-
volved in the process of photosynthesis (Biel et al. 2014).

In general, the strategy of carbon metabolism adap-
tation in the evolution of photosynthesis can be
summarized as follows:

Anoxygenic photo- and chemotrophs brought to the
living kingdom of the Earth the opportunity to replenish
the organic compounds consumed through heterotrophic
nutrition. Perhaps the selforganization of chemo-
autotrophic metabolism in hydrothermal conditions
(Marakushev 2008) was the first step of the probiotic
evolution, leading to the accumulation of primordial soup.
At the same time, improving the structure of pigments and
the mechanisms of the photosynthetic electron transport
chain enabled to use water as an electron donor. This
cardinal step in the evolutionary history of photosynthesis
could be performed only with the simultaneous develop-
ment of aerobic respiration and increasing stability of
cellular structures to the adverse effects of oxygen.
Oxygenation of the atmosphere and the development of the
metabolic pathways for aerobic respiration occurred
simultaneously with changes in the composition of
volcanic gases in the World Ocean.

The use of oxygen as an electron acceptor by the
oxidative electron transport chain allowed ancient
oxygenic photosynthetic organisms to intensify greatly
recycling of reduced nicotinamide adenine dinucleotide
and break down organic compounds to carbon dioxide and
water in the central link of the respiratory metabolism, i.e.,
in the Krebs cycle.

In turn, an increase of the oxygen concentration in the
environment and the decrease of its reducing properties
intensified the important accumulation of the photo-
synthetic products. The role of the Benson-Bassham-
Calvin cycle in photosynthetic carbon metabolism has
significantly increased over eons, but at the same time, the
role of the Arnon-Buchanan cycle has been lessened.

In the light of the collective evidence gathered about
the Benson-Bassham-Calvin cycle, we are struck by its
fundamental ecological and biochemical optimization and
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evolutionary stability.

In particular, populating the land with floral species
caused the urgent need for their adaptation to the deficit of
previously inexhaustible substrates in the aqueous medium
— water and bicarbonate, and to the extensive solar
radiation in unprotected terrestrial habitats having no
water column to absorb harmful wavelengths.

In terrestrial environments, especially in higher plants,
this caused a great number of structural and functional
adaptations throughout the plant body. In photosynthesis,
the cooperation between carbon metabolism pathways
among different organelles (within the one cell) and
differentiated tissues were deployed to optimize the flow
of metabolites from light and dark stages of photo-
synthesis. Negative impacts of external and internal factors
on this process were, thus, prevented.

As a consequence of the developed multifunctional
adaptations, the reductive pentose phosphate carbon cycle
has not changed its fundamental biochemical nature over
millions of years during the evolution. Plants attended to
and protected the Benson-Bassham-Calvin cycle, creating
the necessary structural and functional improvements, i.e.,
the development of biochemical and structural add-ins
around the cycle. For example, C4 and CAM plants are not
deprived of benefits of the reductive pentose phosphate
cycle and its key role in photosynthetic carbon
metabolism. The Benson-Bassham-Calvin cycle was, and
remains for now, the main depot for the production of basic
blocks of organic material.

Today, it is well known that the photosynthetic
organisms, which carry out photosynthesis solely using the
Benson-Bassham-Calvin cycle, show a wide ecological
variety and form most of the basic known flora. We can
say figuratively that the reductive pentose phosphate cycle,
using energy equivalents of photosynthetic electron
transport chain, is the main industry for fixing and
reducing atmospheric carbon. The flow of atmospheric
carbon dioxide (as well as internal CO, released during
oxidative processes) to the sites of RuBP carboxylation in
the Benson-Bassham-Calvin cycle can be diverse and
complex, using special biochemical mechanisms
developed in the course of evolution. The primary mecha-
nisms of CO, delivery are: (1) CO; - carbonic anhydrase
concentrating mechanism, which is inherent to the
majority of algal and a number of terrestrial phototrophs;
(2) dark fixation of carbon in the B-carboxylation reactions
of phosphoenolpyruvate and its accumulation in the form
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of malic acid in cell vacuoles in CAM plants; and, (3) Cs4
pumps of malate and aspartate groups and multiple
combinations thereof.

An important task for these biochemical super-
structures is an uninterrupted carbon sequestration from
atmospheric or aqueous phases and its timely delivery to
sites of RuBP carboxylation in the reductive pentose
phosphate cycle.

However, these biochemical superstructures also
perform some other necessary functions. For example, the

Conclusion

The Benson-Bassham-Calvin cycle evolved as the
dominant mechanism for the photoassimilation of
atmospheric carbon into metabolites which are then used
as the building blocks for the synthesis of essential organic
compounds that satisfy the energetic needs and demands
of phototrophic cells, heterotrophic tissues of the plant, or
in certain cases, its symbiotic partner.

Plants protect the Benson-Bassham-Calvin cycle from
inherent stresses of internal and external environments.
Protection of the Cs photosynthesis is performed by a huge
array of stress-protective agents including various
biochemical reactions which neutralize ever-present
reactive oxygen species and repair damage. Light

Addendum

We dedicated this article to Andrew Alm Benson, a
distinguished emeritus Professor of Biology at Scripps
Institution of Oceanography, University of California, San
Diego, and renowned as one of the world’s leading plant
scientists of the twentieth century, who died peacefully
from natural causes on January 16, 2015, at University of
California, San Diego’s Thornton Hospital (see e.g.
Vacquier et al. 2015).

The authors of this paper and a great team of Russian
biologists are sincerely grateful to the brilliant scientist,
discoverer of the photosynthetic reductive pentose
phosphate cycle, Academician of the National Academy of
Sciences of the USA, Professor Andrew A. Benson for his
outstanding contribution to the development of biological
science in general and photosynthesis, in particular.

Fig. 3. Andrew Alm Benson
(*24 September 1917 — 116 January 2015)
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