Table 3S. The measured quantum yield ($\Phi_{PPFD \leq 200}$, $\Phi_{PPFD \leq 160}$, $\Phi_{PPFD \leq 120}$), light saturation point (LSP), light-saturated net photosynthetic rate (P_{Nmax}), light compensation point (LCP), dark respiration rate (R_D) and their fitted values by using the four models of *Pinus tabulaeformis* under different relative soil water contents (RWC). Each value is the mean of 27 replications or the mean ± SE of the fitted parameters at 0.05 significant level. The coefficient of determination (R^2), the mean square error (MSE) and the mean absolute error (MAE) are listed for each model. $\Phi_{PPFD \leq 200}$, $\Phi_{PPFD \leq 160}$, $\Phi_{PPFD \leq 120}$ are the apparent quantum yield when the upper limits of photosynthetic photon flux density (PPFD) are 200, 160, and 120 μmol m$^{-2}$ s$^{-1}$, respectively; Φ_0 and Φ_c are the quantum yield at the light compensation point and at zero irradiance, respectively; Φ_c is the absolute value of the slope of the photosynthetic rate-light response curve between zero irradiance and LCP.

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>RWC = 92.60%</th>
<th>RWC = 84.71%</th>
<th>RWC = 63.98%</th>
<th>RWC = 50.51%</th>
<th>RWC = 39.86%</th>
<th>RWC = 33.38%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_{PPFD \leq 200}$</td>
<td>0.0310</td>
<td>0.0352</td>
<td>0.0466</td>
<td>0.0420</td>
<td>0.0376</td>
<td>0.0260</td>
<td>0.0288</td>
</tr>
<tr>
<td>$\Phi_{PPFD \leq 160}$</td>
<td>0.0312</td>
<td>0.0358</td>
<td>0.0469</td>
<td>0.0425</td>
<td>0.0380</td>
<td>0.0306</td>
<td>0.0323</td>
</tr>
<tr>
<td>$\Phi_{PPFD \leq 120}$</td>
<td>0.0316</td>
<td>0.0366</td>
<td>0.0476</td>
<td>0.0427</td>
<td>0.0386</td>
<td>0.0270</td>
<td>0.0311</td>
</tr>
<tr>
<td>LSP [μmol m$^{-2}$ s$^{-1}$]</td>
<td>597</td>
<td>1019</td>
<td>1200</td>
<td>807</td>
<td>604</td>
<td>511</td>
<td>406</td>
</tr>
<tr>
<td>P_{Nmax} [μmol m$^{-2}$ s$^{-1}$]</td>
<td>11.01</td>
<td>13.20</td>
<td>13.73</td>
<td>12.51</td>
<td>11.7</td>
<td>9.26</td>
<td>4.51</td>
</tr>
<tr>
<td>LCP [μmol m$^{-2}$ s$^{-1}$]</td>
<td>43</td>
<td>45</td>
<td>41</td>
<td>45.33</td>
<td>44</td>
<td>42.67</td>
<td>50.33</td>
</tr>
<tr>
<td>R_D [μmol m$^{-2}$ s$^{-1}$]</td>
<td>1.34</td>
<td>1.51</td>
<td>2.07</td>
<td>1.96</td>
<td>1.81</td>
<td>1.57</td>
<td>1.33</td>
</tr>
<tr>
<td>Rectangular hyperbola model</td>
<td>Φ_0</td>
<td>0.0594 ± 0.016</td>
<td>0.0725 ± 0.017</td>
<td>0.0817 ± 0.017</td>
<td>0.0734 ± 0.013</td>
<td>0.0670 ± 0.012</td>
<td>0.0488 ± 0.038</td>
</tr>
<tr>
<td></td>
<td>Φ_c</td>
<td>0.0526</td>
<td>0.0650</td>
<td>0.0713</td>
<td>0.0629</td>
<td>0.0587</td>
<td>0.0428</td>
</tr>
<tr>
<td></td>
<td>Φ_c</td>
<td>0.0559</td>
<td>0.0686</td>
<td>0.0763</td>
<td>0.0680</td>
<td>0.0627</td>
<td>0.0457</td>
</tr>
<tr>
<td></td>
<td>LSP [μmol m$^{-2}$ s$^{-1}$]</td>
<td>24</td>
<td>725</td>
<td>792</td>
<td>368</td>
<td>270</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>P_{Nmax} [μmol m$^{-2}$ s$^{-1}$]</td>
<td>21.42 ± 0.85</td>
<td>26.50 ± 0.96</td>
<td>29.10 ± 0.91</td>
<td>26.43 ± 0.88</td>
<td>25.28 ± 0.83</td>
<td>23.17 ± 1.10</td>
</tr>
<tr>
<td></td>
<td>LCP [μmol m$^{-2}$ s$^{-1}$]</td>
<td>22.73</td>
<td>20.54</td>
<td>25.02</td>
<td>28.84</td>
<td>25.83</td>
<td>32.40</td>
</tr>
<tr>
<td></td>
<td>R_D [μmol m$^{-2}$ s$^{-1}$]</td>
<td>1.27 ± 0.89</td>
<td>1.41 ± 0.72</td>
<td>1.91 ± 0.56</td>
<td>1.96 ± 0.85</td>
<td>1.62 ± 0.75</td>
<td>1.48 ± 1.41</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.994</td>
<td>0.996</td>
<td>0.98</td>
<td>0.99</td>
<td>0.993</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>MSE</td>
<td>0.135</td>
<td>0.147</td>
<td>0.223</td>
<td>0.256</td>
<td>0.173</td>
<td>0.266</td>
</tr>
<tr>
<td></td>
<td>MAE</td>
<td>0.330</td>
<td>0.309</td>
<td>0.521</td>
<td>0.468</td>
<td>0.337</td>
<td>0.428</td>
</tr>
<tr>
<td>Non-rectangular hyperbola model</td>
<td>Φ_0</td>
<td>0.0361 ± 0.002</td>
<td>0.0364 ± 0.004</td>
<td>0.0565 ± 0.001</td>
<td>0.0521 ± 0.002</td>
<td>0.0438 ± 0.003</td>
<td>0.0066 ± 0.002</td>
</tr>
<tr>
<td></td>
<td>Φ_c</td>
<td>0.0304</td>
<td>0.0337</td>
<td>0.0456</td>
<td>0.0406</td>
<td>0.0374</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>Φ_c</td>
<td>0.0345</td>
<td>0.0359</td>
<td>0.0531</td>
<td>0.0494</td>
<td>0.0419</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>LSP [μmol m$^{-2}$ s$^{-1}$]</td>
<td>256</td>
<td>738</td>
<td>800</td>
<td>376</td>
<td>285</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>P_{Nmax} [μmol m$^{-2}$ s$^{-1}$]</td>
<td>18.22 ± 0.44</td>
<td>20.21 ± 0.49</td>
<td>21.41 ± 0.24</td>
<td>19.91 ± 0.39</td>
<td>18.43 ± 0.32</td>
<td>16.76 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>LCP [μmol m$^{-2}$ s$^{-1}$]</td>
<td>40.32</td>
<td>42.02</td>
<td>38.05</td>
<td>42.07</td>
<td>42.21</td>
<td>43.38</td>
</tr>
<tr>
<td></td>
<td>R_D [μmol m$^{-2}$ s$^{-1}$]</td>
<td>3.39 ± 0.13</td>
<td>1.51 ± 0.24</td>
<td>2.02 ± 0.41</td>
<td>2.08 ± 0.44</td>
<td>1.77 ± 0.40</td>
<td>1.53 ± 0.44</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.997</td>
<td>0.998</td>
<td>0.981</td>
<td>0.995</td>
<td>0.995</td>
<td>0.995</td>
</tr>
<tr>
<td></td>
<td>MSE</td>
<td>0.075</td>
<td>0.071</td>
<td>0.295</td>
<td>0.192</td>
<td>0.119</td>
<td>0.121</td>
</tr>
<tr>
<td></td>
<td>MAE</td>
<td>0.229</td>
<td>0.223</td>
<td>0.409</td>
<td>0.343</td>
<td>0.266</td>
<td>0.311</td>
</tr>
<tr>
<td>Exponential</td>
<td>Φ_0</td>
<td>0.0474 ± 0.008</td>
<td>0.0495 ± 0.009</td>
<td>0.0586 ± 0.008</td>
<td>0.0493 ± 0.011</td>
<td>0.0468 ± 0.010</td>
<td>0.0328 ± 0.012</td>
</tr>
<tr>
<td></td>
<td>(\Phi_0)</td>
<td>(\Phi_{c0})</td>
<td>(LSP) [(\mu \text{mol m}^{-2} \text{s}^{-1})]</td>
<td>(P_{\text{simus}}) [(\mu \text{mol m}^{-2} \text{s}^{-1})]</td>
<td>(R_D) [(\mu \text{mol m}^{-2} \text{s}^{-1})]</td>
<td>(R^2)</td>
<td>MSE</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Modified</td>
<td>0.0292</td>
<td>0.0393</td>
<td>0.0445</td>
<td>0.0326</td>
<td>0.0365</td>
<td>0.0285</td>
<td>0.0704</td>
</tr>
<tr>
<td>rectangular</td>
<td>0.0354</td>
<td>0.0395</td>
<td>0.0447</td>
<td>0.0390</td>
<td>0.0374</td>
<td>0.0292</td>
<td>0.1552</td>
</tr>
<tr>
<td>hyperbola</td>
<td>0.0403</td>
<td>0.0366</td>
<td>0.0603</td>
<td>0.0552</td>
<td>0.0436</td>
<td>0.0338</td>
<td>0.0397</td>
</tr>
<tr>
<td>model</td>
<td>0.0329</td>
<td>0.0351</td>
<td>0.0576</td>
<td>0.0447</td>
<td>0.0421</td>
<td>0.0301</td>
<td>0.0302</td>
</tr>
<tr>
<td></td>
<td>0.0333 ± 0.002</td>
<td>0.0355 ± 0.005</td>
<td>0.0597 ± 0.007</td>
<td>0.0551 ± 0.006</td>
<td>0.0428 ± 0.005</td>
<td>0.0374 ± 0.007</td>
<td>0.0310 ± 0.006</td>
</tr>
<tr>
<td>Modified</td>
<td>0.0403</td>
<td>0.0366</td>
<td>0.0603</td>
<td>0.0552</td>
<td>0.0436</td>
<td>0.0338</td>
<td>0.0397</td>
</tr>
<tr>
<td>rectangular</td>
<td>0.0329</td>
<td>0.0351</td>
<td>0.0576</td>
<td>0.0447</td>
<td>0.0421</td>
<td>0.0301</td>
<td>0.0302</td>
</tr>
<tr>
<td>hyperbola</td>
<td>0.0333 ± 0.002</td>
<td>0.0355 ± 0.005</td>
<td>0.0597 ± 0.007</td>
<td>0.0551 ± 0.006</td>
<td>0.0428 ± 0.005</td>
<td>0.0374 ± 0.007</td>
<td>0.0310 ± 0.006</td>
</tr>
<tr>
<td>model</td>
<td>0.0403</td>
<td>0.0366</td>
<td>0.0603</td>
<td>0.0552</td>
<td>0.0436</td>
<td>0.0338</td>
<td>0.0397</td>
</tr>
<tr>
<td></td>
<td>0.0329</td>
<td>0.0351</td>
<td>0.0576</td>
<td>0.0447</td>
<td>0.0421</td>
<td>0.0301</td>
<td>0.0302</td>
</tr>
<tr>
<td></td>
<td>0.0333 ± 0.002</td>
<td>0.0355 ± 0.005</td>
<td>0.0597 ± 0.007</td>
<td>0.0551 ± 0.006</td>
<td>0.0428 ± 0.005</td>
<td>0.0374 ± 0.007</td>
<td>0.0310 ± 0.006</td>
</tr>
</tbody>
</table>