Supplementary Information

A representative, but incomplete, list of studies relying on excised-branch gas exchange measurements for eco-physiological inference. 

The studies included here rely on observations of gas exchange variables (predominantly photosynthesis and stomatal conductance) performed on detached branches. In most of these studies, observations were conducted in the field on the same day the branches were cut. Those preceded by a ‘*’ indicate studies in which branch samples were taken back to a laboratory.  Those preceded by a ‘**’ indicate studies whose methods indicate that excised branches were permitted to acclimate in a laboratory for a period of >12 hours before gas exchange measurements began. Approximately 40% of these studies report either qualitatively or quantitatively on results from preliminary tests to assess the magnitude of excision related biases, and are included in Table 1 of the main text; the remaining ~60% do not discuss preliminary assessments of branch excision effects on the gas exchange variables. 
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Correcting photosynthetic rates for the effects of leaf temperature

In order to quantify the effects of Tleaf on PN in our dataset, we analyzed all measurements of PN taken using intact branches (see Figure S1) using linear mixed models for each species, including repeated measurements with a first-order autoregressive structure. Tleaf was included as a continuous covariate in the analyses. Day of year was included as a random effect in the analyses. 
For all three species, measurements of PN were corrected to a leaf temperature of 25 degrees C using the following equation:
,
where PN,25 = the temperature-corrected value of measured PN, corrected to 25 degrees C; m1 = the parameter estimate for Tleaf (see Table S1); Tleaf  = measured leaf temperature, in degrees C.
Details on the species-specific parameterization are given in Table S1. 

Table 1S. Parameter estimates (m1) and significance for the effects of Tleaf on measured PN for leaves on intact branches, and ranges in Tleaf  (degrees C) in the dataset.

	Species
	m1
	p-value for m1
	Range in Tleaf for intact measurements
	Range in Tleaf for all measurements

	Sugar maple
	0.187
	< 0.0005
	13.6 – 24.9
	13.6 – 24.9

	Tulip poplar
	0.344
	< 0.0005
	11.7 – 24.9
	11.7 – 24.9

	White oak
	0.588
	   0.082
	21.6 – 25.6
	21.6 – 26.0
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Fig. 1S. Measured PN (μmol CO2 m-2s-1) versus Tleaf (degrees C) for all measurements taken using intact branches only, broken down by species and day of year during which measurements were performed.

Correcting stomatal conductance for the effects of VPD

In order to quantify the effects of VPD on gs in our dataset, we analyzed all measurements of gs taken using intact branches (Figure S2) using linear mixed models for each species, including repeated measurements with a first-order autoregressive structure. ln VPD was included as a continuous covariate in the analyses. Day of year was included as a random effect in the analyses. For tulip poplar and white oak, measurements of gs were not corrected because the parameter estimates for ln VPD had high p-values (p > 0.39; see Table 2). For sugar maple, measurements of gs were corrected to VPD = 1.5 kPa according to the parameter estimate from the linear mixed model using the following equation:
,
where  = the VPD-corrected value of measured gs, corrected to VPD = 1.5 kPa based on parameter estimates modeled from our dataset; m2 = the parameter estimate for ln VPD (see Table S2); VPD = measured vapor pressure deficit, in kPa. The correction value of VPD = 1.5 kPa was chosen so that measurements of gs for sugar maple are corrected to fall within the same range in VPD exhibited in the measurements for tulip poplar and white oak. 

Table 2S. Parameter estimates (m2) and significance for the effects of ln VPD on measured gs for leaves on intact branches, and ranges in VPD (kPa) in the dataset.

	Species
	intercept
	m2
	p-value for m2
	Range in VPD for intact measurements
	Range in VPD for all measurements

	Sugar maple
	97.7
	-41.6
	0.001
	0.72 – 1.70
	0.72 – 1.70

	Tulip poplar
	196.6
	-20.0
	0.436
	0.57 – 1.65
	0.57 – 1.65

	White oak
	87.2
	 41.6
	0.390
	1.31 – 1.97
	1.31 – 2.02
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Fig. 2S. Measured gs (mmol H2O m-2s-1) versus ln VPD (kPa) for all measurements taken using intact branches, broken down by species and day of year during which measurements were performed.

Supplementary figure for intercellular CO2 concentration (Ci)
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Fig. 3S. The intercellular CO2 concentration (Ci) before (black bars) and after (gray bars) excision for the study species. Long- and short excised branches have been averaged together here. The p-value is shown for the difference between pre- and post-excision Ci of white oak; differences were not significant for the other species. 
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