Photosynthetic apparatus performance and anatomical modulations of *Alcantarea imperialis* (Bromeliaceae) exposed to selenium during *in vitro* growth


Department of Agrarian and Biological Sciences, Federal University of Espírito Santo, Litorâneo – 29932-540 São Mateus, ES, Brazil

Abstract

Elements not usually included in culture medium formulations, such as selenium (Se), may have beneficial effects on micropropagated plants. We evaluated the effects of Se on the physiological and anatomical responses of *Alcantarea imperialis* during *in vitro* culture. Plants were cultured in a medium containing a gradient of Se concentrations (0, 4, 8, 16, or 32 µM Se). After 56 d, the growth traits, chlorophyll *a* fluorescence, and root and leaf anatomy were analyzed. The fresh mass declined at the highest Se concentration. Higher Se concentrations induced bigger stomata, while the stomatal density decreased. Plants cultured with Se had improved PSII and PSI electron transport. This led to higher values of the total performance index. Thus, Se-induced plants showed a higher electron transport dynamics and energy conservation from water to PSI and developed anatomical traits that can favor tolerance to water deficit.

Keywords: bromeliad; chlorophyll *a* fluorescence; electron transport; plant anatomy; plant tissue culture.

Introduction

*In vitro* techniques are often used for large-scale propagation of plants with high economic value or endangered status (Manokari *et al.* 2020, Priyadharshini *et al.* 2020, Kaur *et al.* 2021, Shekhawat *et al.* 2021). These techniques are particularly applied to ornamental species, including members of the Bromeliaceae family (Martins *et al.* 2015, Shekhawat *et al.* 2020, Priyadharshini *et al.* 2015).

Highlights

- Plants grown with Se showed an improvement in PSII electron transport
- Se can induce plants with higher PI<sub>total</sub> values during *in vitro* growth
- Se induced changes in the leaf anatomy benefiting the acclimatization stage

Abbreviations: Chl – chlorophyll; F<sub>0</sub> – minimal fluorescence yield of the dark-adapted state; F<sub>i</sub> – fluorescence intensity at 30 ms; F<sub>k</sub> – fluorescence intensity at 2 ms; F<sub>K</sub>/F<sub>J</sub> – ratio of fluorescence at K and J step of the induction curves; F<sub>0</sub> – fluorescence intensity at 0.15 ms; F<sub>m</sub> – maximal fluorescence yield of the dark-adapted state; F<sub>P</sub> – fluorescence peak; F<sub>R</sub> – fluorescence at time t after the beginning of actinic illumination; F<sub>V</sub>/F<sub>0</sub> – ratio of the de-excitation rate constants for photochemical and nonphotochemical events; OEC – oxygen-evolving complex; PI<sub>total</sub> – total performance index, which measures the performance up until the final electron acceptors of PSI; RC/CS<sub>a</sub> – total number of PSII active reaction centers; S<sub>0</sub>/S<sub>max</sub> – average fraction of open RC in the period of 0 to t<sub>max</sub> (time of maximum fluorescence production); V<sub>k</sub> – relative variable fluorescence at 30 ms (step I); V<sub>R</sub> – relative variable fluorescence at 2 ms (step J); V<sub>K</sub> – relative variable fluorescence at 0.3 ms (step K); W<sub>OE</sub> – the damage to OEC; W<sub>L</sub> – indicates disturbance in the thylakoid membranes, reducing the energetic connectivity between the PSI units; δR<sub>E</sub> – efficiency/probability with which an electron from the intersystem electron carriers moves to reduce end electron acceptors at the PSI acceptor side (RE); δD<sub>E</sub> – quantum yield of energy dissipation (at t = 0); φE<sub>0</sub> – quantum yield of electron transport (at t = 0); φP<sub>E</sub> = F<sub>P</sub>/F<sub>m</sub> – maximum quantum yield of primary photochemistry of PSII reaction center (at t = 0); φR<sub>E</sub> – quantum yield of reduction of end electron acceptors at the PSI acceptor side (RE); δD<sub>E</sub> – efficiency/probability by which electrons move from PSII to the PSI acceptor side.

Acknowledgments: The authors would like to acknowledge the scholarship awarded by the CAPES (Coordination for the Improvement of Higher Education Personnel) and the FAPES (Espírito Santo State Research Foundation). The authors are also grateful to Luiz Carlos de Almeida Rodrigues for his technical assistance.

Conflict of interest: The authors declare that they have no conflict of interest.
2018; Lando et al. 2016, Martínez-Estrada et al. 2019, Pakum et al. 2021). *Alcantarea imperialis* (Carrière) Harms is among the bromeliad species with ornamental interest. This species is widely employed in landscape projects (Andrade-Santos et al. 2021). *A. imperialis* is conventionally propagated by seeds, a method that is not efficient due to low seedling production and the need to conserve seeds. Besides these drawbacks, the plants require several decades to reach adulthood (flowering stage) (Versieux and Wanderley 2015, Tamaki et al. 2020). Thus, *in vitro* culture can be an alternative for this species’ propagation, as already reported by Mollo et al. (2011), Kurita and Tamaki (2014), and Martins et al. (2020a). These authors verified the effect of temperature, macronutrients, and plant growth regulators as modulation factors of *in vitro* responses.

The modulation factors can have a negative impact on plant growth while still inside the *in vitro* containers, by inducing physiological disorders. Plants cultured *in vitro* can suffer from nonfunctional stomata, reduced water-use efficiency, and deficiencies in photosynthetic performance (Martins et al. 2018, Fortini et al. 2021, Shekhwat et al. 2021). These morphophysiological characteristics can compromise the final micropropagation step, known as acclimatization. The low capacity of *in vitro* plants to conserve water after transfer to *ex vitro* conditions can lead to desiccation and low survival rates (Asayesh et al. 2021). Therefore, the induction of *in vitro* plants with more efficient water use and uncompromised photosynthetic capacity is desirable.

In recent years, the application of elements not usually included in culture medium formulations, such as silicon (Si) and selenium (Se), have been shown to have beneficial effects on plants grown *in vitro* (Martins et al. 2019, Souza et al. 2019, Selim et al. 2020, Silva et al. 2020a). These elements can influence *in vitro* morphogenesis as well as morphophysiology of micropropagated plants (e.g., improve the growth rate and photosynthetic pigment content of *in vitro* plants). The role of Se in the life cycle of plants is still controversial, but several lines of evidence indicate its potential as a biofortification agent when low concentrations are applied (Souza et al. 2019, Szarka et al. 2020, Sabatino et al. 2021). In contrast, Se excess can induce physiological disturbances or even plant death (Sotoodehnia-Korani et al. 2020, Szarka et al. 2020). Souza et al. (2019) and Martins et al. (2020b) already have reported the positive effects of Se on the physiological status of a bromeliad species (*Billbergia zebrina*) during *in vitro* culture.

The impacts of *in vitro* conditions can be verified by histological techniques. The characterization of anatomy via cross- and paradermal sections has proven to be an important tool to check the effects of culture medium components on *in vitro* plants (Rezende et al. 2018, Martins et al. 2019, 2020b). Likewise, the photosynthetic performance of *in vitro* plants can be monitored by measurement of chlorophyll (Chl) a fluorescence (Martins et al. 2018, Rosa et al. 2018, Souza et al. 2019). This analysis also provides an overview of the stress status of plants through investigation of PSII and PSI performance (Rosa et al. 2018, Martins et al. 2020b).

Given the above, the study aimed to assess the physiological and anatomical responses of *A. imperialis* in the function of the Se concentrations during *in vitro* culture.

**Materials and methods**

**Culture conditions and Se supplementation:** Plants of *Alcantarea imperialis* previously multiplied in an *in vitro* culture medium with no plant growth regulators (Martins et al. 2020a) were used as explants. The explants were transferred to 500-ml glass containers holding 50 ml of MS culture medium (Murashige and Skoog 1962) solidified with 5 g L$^{-1}$ agar, supplemented with 30 g L$^{-1}$ sucrose and 0, 4, 8, 16, or 32 μM Se (Na$_2$SeO$_3$). Five explants were placed in each glass container. The pH of all media was adjusted to 5.8 before autoclaving at 120°C, for 20 min. After inoculation in a laminar flow cabinet, the plant material was kept in a growth room for 56 d at 25 ± 2°C and 16/8 h light/dark photoperiod, under slim LED lamps (*Blumenau®* 36 W 6/500 K) emitting 70 μmol (photon) m$^{-2}$ s$^{-1}$ of PAR.

**Growth characteristics:** After 56 d, the plants were harvested and washed with distilled water to remove the culture medium adhering to the root surfaces. To determine their growth, 25 plants from each treatment were collected randomly, mixed, and divided into five pooled samples, and weighed on a precision scale. The fresh mass of the shoots (aerial part) and roots (n = 5) was determined separately [g per plant]. The number of roots per plant was also quantified.

**Anatomical analysis:** To characterize the anatomical changes of the leaves and roots of the plants grown under the *in vitro* conditions in response to the Se treatments, four *A. imperialis* plants from each treatment were used. All the samples were randomly collected after growth for 56 d and were fixed/stored in 50% ethanol. The anatomical characterization was performed by examination of para-dermal and cross-sections of leaves. For the roots, we performed cross-sections at 0.5 cm from the root base. All procedures were performed according to Martins et al. (2019). All the sections were viewed using a light microscope (L-2000AFluor, Biowal), and images were captured with a Leica EC3 camera (Wetzlar, Germany). The software UTHSCSA-Imagetool® was used to measure the anatomical characteristics shown in the photomicrographs. Two cross-sections per slide were photographed and analyzed per sample. For the characterization of the roots, we measured the thickness of the endoderms and the number of metaxylem vessels. For the leaves, the density of stomata [mm$^{-2}$] and trichomes [mm$^{-2}$], stomatal size [mm$^{2}$], the thickness of the chlorenchyma [μm], and hydrenchyma [μm] (abaxial and adaxial sides), as well as the number and diameter of vessel elements, were determined (n = 4).
EFFECTS OF SELENIUM ON ALCANTAREA IMPERIALIS GROWN IN VITRO

**Chl a fluorescence measurement**: The Chl a fluorescence transients (the OJIP curves) were analyzed in 16 randomly selected plants. The measurements were performed after 56 d of Se treatment during in vitro culture, between 07:00 and 09:00 h, using a portable Handy PEA fluorimeter (Hansatech, King’s Lynn, Norfolk, UK). The measurements were accomplished on the second completely expanded leaf in the central rosette after being dark-adapted for 30 min using a leaf clip (Hansatech). Double normalizations were performed for the O–P and O–I intervals \[ V_{OP} = (F_{i} - F_{0})/(F_{m} - F_{0}) \] and \[ V_{OI} = (F_{i} - F_{0})/(F_{1} - F_{0}) \], respectively, as well as the kinetic differences between steps O and I \[ AV_{O/I} = V_{OI(treatment)} - V_{OI(control)} \]. Treatment without Se (0 μM Se) was used as the control. All OJIP curves, as well as the JIP test parameters, were analyzed according to the method proposed by Srivastava and Strasser (1996) and Strasser et al. (2004). The \[ W_{L} = (F_{i} - F_{0})/(F_{K} - F_{0}) \] and \[ W_{K} = (F_{K} - F_{0})/(F_{1} - F_{0}) \] were calculated according to Wang et al. (2016) and Zhang et al. (2018).

**Statistical analysis**: The experimental design was completely randomized, and the resulting data were submitted to analysis of variance (ANOVA), while the means (standard error – SE) were compared using Tukey’s test at 5% significance. All analyses were performed using the SISVAR software.

**Results**

**Growth traits**: The Se treatments did not induce any visible physiological disturbances such as chlorosis and necrosis. However, plants grown in the presence of Se were slightly shorter on average, mainly at 32 μM Se. The fresh mass of both aerial parts and roots declined under the highest Se concentration (Fig. 1A). The number of roots also decreased under high Se concentrations, although the decreases were only significant when the plants were exposed to 16 and 32 μM Se (Fig. 1B).

**Analysis of root and leaf anatomy**: The treatments did not influence the analyzed traits of root anatomy (Fig. 2A–E). The roots had a similar thickness of the endodermis (8.7 ± 0.09 μm) as well as a number of metaxylem vessels (5.7 ± 0.3). However, Se concentrations had a significant impact on the leaf anatomy. The characteristics of stomata showed antagonistic responses. Higher Se concentrations induced bigger stomata, while the number of stomata per area decreased. *A. imperialis* leaves showed closed stomata, irrespective of the treatment. The density of trichomes did not differ between the treatments (Fig. 2F–J, Table 1).

The thickness of adaxial hydrenchyma was statistically similar for all treatments. In contrast, Se supplementation increased the abaxial hydrenchyma thickness. The chlorenchyma was thinner under Se exposure. Finally, xylem vessel traits were similar in all Se treatments (Fig. 2K–T, Table 1).

**Chl a fluorescence**: The Se concentrations also affected the performance of the photosynthetic apparatus. The values of \[ V_{K} \] did not show any differences. On the other hand, the values of \[ V_{I} \] and \[ V_{L} \] were lower with Se exposure (Fig. 3).

The kinetic differences between the O (20 μs) and I (30 ms) phases were evaluated. All the Se treatments produced negative bands (\[ V_{OI} \leq 1.0 \]). The lowest values were observed in the plants cultured with 8 and 16 μM Se (Fig. 4A). In addition, the curves of the highest amplitude observed for the relative fluorescence at \[ V_{OI} \geq 1.0 \] were obtained in the interval from 30 to 800 ms for all plants grown with Se (Fig. 4B).

Regarding the JIP test parameters, the values of \[ W_{L} \], \[ W_{K} \], \[ F_{K}/F_{0} \], \[ F_{V}/F_{0} \], \[ \phi_{P} \], \[ \phi_{D} \], \[ \phi_{E} \], and RC/CS \[ m \] were similar among the treatments. The values of \[ \phi_{E} \] were higher in plants under 8 and 16 μM in comparison with the control plants (0 μM Se). Likewise, plants cultured with 4, 8, and 16 μM Se had higher \[ S_{m}/V_{m} \] values. The parameters related to PSI activity (\[ \phi_{PSI} \], \[ \psi_{PSI} \], \[ \phi_{PSII} \], \[ \psi_{PSII} \], \[ \delta R \]) showed increased values in comparison with the plants grown without Se (Fig. 5).

The \[ \Delta V_{IP} = (F_{P} - F_{I})/(F_{P} - F_{0}) \] increased with Se presence (Fig. 6A). Likewise, \[ P_{I} \] increased gradually with rising Se concentrations, and the highest was in those cultured with 8 and 16 μM Se (Fig. 6B).

**Discussion**

In this study, we report how Se can influence the growth, anatomical and physiological traits of *A. imperialis*. 531
Plants exposed to concentrations above 16 μM Se showed changes in growth characteristics (fresh mass of aerial part and roots) that could be misinterpreted as a symptom of toxicity induced by excessive Se. In most cases, a reduction of biomass accumulation is the first sign that plants have experienced stressful conditions, and this response normally is correlated with stunted growth and/or physiological disturbances (Kolbert et al. 2019, Shafiq et al. 2019, Souza et al. 2019). The number of roots of A. imperialis plants also decreased under high Se concentrations. The root system is highly affected by Se because it usually is the first point of contact with this element in the environment (Kolbert et al. 2016). Se can affect root architecture (number and length of lateral roots) since it modulates the expression of genes associated with the biosynthesis of plant hormones (Jia et al. 2018, Malheiros et al. 2019). Since A. imperialis plants did not show clear signs of physiological stress after 56 d of culture, the modulations of the growth traits could be related to another factor. Malheiros et al. (2019) observed that Se can interfere with auxin and ethylene balance and also is negatively related to the expression of genes associated with auxin transport. Since auxins are responsible not only for rooting but also for cell enlargement of all plant organs (Tian et al. 2018, Tourngos 2018, Ma and Li 2019), a decrease in size and mass of A. imperialis may be a hormonal response instead of a reflection of stress.

In this work, the leaf and root anatomy of the plants were in accordance with previous reports of A. imperialis as well as other species of the Bromeliaceae family (Zorger et al. 2019, Martins et al. 2020a, Silva et al. 2020b, Faria et al. 2021). Even though Se modulated the root architecture of A. imperialis plants, this metalloid did not interfere with the roots’ anatomical traits. Plants under stress promoted by an element (e.g., cadmium, zinc, lead, and sodium) in contact with the roots may show alterations in thickness of the endodermis and/or a number of xylem vessels (Rodrigues et al. 2017, Al-Aradi et al. 2020, Baroni et al. 2020). The endodermis has a protective function because it acts as an apoplastic barrier controlling the radial transport of water and ions, to reduce the entry of contaminants from the surroundings to the vascular cylinder (Rodrigues et al. 2017). A smaller number of metaxylem vessels of roots can also act to control element translocation (Martins et al. 2016, 2019). Since the plants did not have root anatomical changes associated with Se uptake, the results suggest that stunted growth was not a stress response. The absence of stress was confirmed by the Chl a fluorescence analysis. In addition, no changes were found in the xylem traits in the leaves, confirming the plants did not have anatomical mechanisms to regulate Se absorption and translocation.

The Se exposure induced changes in the leaf anatomy that can benefit the acclimatization stage. On the leaf surface, the stomata had characteristics indicating better

Table 1. Anatomical structures of Alcantarea imperialis plants grown in vitro in function of concentrations of Se [μM] in the medium. For each anatomical trait, means ± SE (n = 4) followed by the same letter do not differ significantly according to the Tukey’s test (p<0.05).

<table>
<thead>
<tr>
<th>Anatomical traits</th>
<th>0 μM Se</th>
<th>4 μM Se</th>
<th>8 μM Se</th>
<th>16 μM Se</th>
<th>32 μM Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomatal size [μm²]</td>
<td>1,316.5 ± 34.3a</td>
<td>1,450.6 ± 42.3ab</td>
<td>1,567.0 ± 35.3b</td>
<td>1,583.8 ± 64.4b</td>
<td>1,671.9 ± 80.1b</td>
</tr>
<tr>
<td>Stomatal density [mm⁻²]</td>
<td>66.4 ± 2.9a</td>
<td>68.2 ± 3.3a</td>
<td>58.8 ± 5.0ab</td>
<td>35.0 ± 8.7b</td>
<td>38.7 ± 5.5b</td>
</tr>
<tr>
<td>Density of trichomes [mm⁻²]</td>
<td>12.1 ± 1.6a</td>
<td>13.5 ± 1.1a</td>
<td>12.4 ± 0.7a</td>
<td>13.7 ± 1.6a</td>
<td>18.2 ± 2.9a</td>
</tr>
<tr>
<td>Adaxial hydrenchyma [μm]</td>
<td>331.8 ± 34.7a</td>
<td>313.2 ± 20.0ab</td>
<td>261.3 ± 13.8b</td>
<td>313.2 ± 17.8b</td>
<td>301.8 ± 15.4b</td>
</tr>
<tr>
<td>Chlorenchyma [μm]</td>
<td>100.1 ± 2.4a</td>
<td>85.2 ± 1.8b</td>
<td>94.8 ± 4.8ab</td>
<td>84.4 ± 3.5b</td>
<td>81.7 ± 3.0b</td>
</tr>
<tr>
<td>Abaxial hydrenchyma [μm]</td>
<td>73.7 ± 5.2a</td>
<td>83.9 ± 4.7a</td>
<td>99.2 ± 2.8b</td>
<td>97.3 ± 7.7ab</td>
<td>87.2 ± 6.5ab</td>
</tr>
<tr>
<td>Diameter of xylem vessels [μm]</td>
<td>8.9 ± 0.1a</td>
<td>10.5 ± 0.2a</td>
<td>9.5 ± 0.3a</td>
<td>9.3 ± 0.5a</td>
<td>9.7 ± 0.4a</td>
</tr>
<tr>
<td>Number of xylem vessels</td>
<td>3.4 ± 0.8a</td>
<td>3.7 ± 0.6a</td>
<td>3.7 ± 0.3a</td>
<td>3.9 ± 0.4a</td>
<td>3.4 ± 0.6a</td>
</tr>
</tbody>
</table>

Fig. 2. Paradermal and cross-sections of Alcantarea imperialis leaves and roots at 56 d of growth in medium containing 0, 4, 8, 16 or 32 μM Se during in vitro culture. ab-hy – abaxial hydrenchyma; ad-hy – adaxial hydrenchyma; chlor – chlorenchyma; en – endodermis; mx – metaxylem vessel; phl – phloem; sc – sclerenchyma; st – stoma; tr – trichome; vb – vascular bundle; ve – vessel element. Bars = 100 μm.
water-use efficiency. The stomatal dynamics is the key for water-use efficiency under adverse conditions (Asayesh et al. 2017, Kiani-Pouya et al. 2019). Regardless of the treatments, all plants showed closed stomata. It can mean the stomata remained functional even under in vitro conditions. Nonfunctional stomata (widely open) have often been reported concerning in vitro propagated plants, and this anatomical disorder can compromise the acclimatization stage due to faster dehydration of the plants (Manokari et al. 2020, Priyadharshini et al. 2020, Shekhawat et al. 2021). In our work, the stomatal density was negatively correlated with a stomatal size. A reduction in the stomatal density may represent a primary mechanism by which plants can optimize water-use efficiency because
this characteristic can decrease the stomatal conductance (Kiani-Pouya et al. 2019). Concerning the stomatal size, it has been reported that bigger stomata have lower water-use efficiency as a function of a slower closing rate (Drake et al. 2013, Raven 2014). However, Elliott-Kingston et al. (2016) reported that small stomata do not always close faster than large ones. Moreover, smaller stomata do not always favor photosynthesis (Zhang et al. 2019). We suggest that an increment in the size of the stomata is a compensation strategy (tradeoff) for reduced assimilation and water loss. Therefore, the stomatal characteristics presented in A. imperialis plants cultured with Se seem to be promising for plants grown under adverse conditions, such as during the initial acclimatization steps.

Still, concerning the water status, bromeliads have a specialized tissue for water storage called hydrenchyma. This tissue can be crucial for ex vitro growth after transfer to new conditions by supporting water maintenance (Martins et al. 2015, 2018). In this work, the exposure of plants to Se induced leaves with slightly thicker hydrenchyma (abaxial side), which can act to maintain the proper water status. In contrast, plants cultured with Se tended to have thinner chlorenchyma. Although we did not measure the size of the chlorenchyma cells, the number of layers did not vary among the treatments (6–7 cell layers). Thus, the reduction in thickness of this tissue was due to the formation of smaller cells. Smaller Chl parenchyma cells can resist turgor pressure better than large ones. This may offer an advantage under water-deficit conditions by contributing more effectively to turgor maintenance, which can be interpreted as a tolerance mechanism of the leaves to maintain tissue turgor (Boughalleb et al. 2015). Therefore, the leaves of A. imperialis plants with larger water-storage cells and smaller chlorenchyma cells can be helpful during the stress period that can occur just after transfer to ex vitro conditions.

The morphological changes verified after 56 d of culture did not cause physiological disturbances at that time interval. This was demonstrated by the Chl a fluorescence transient and parameters of the JIP test. Plants under stress may show lower φP values as well as higher values of φD, indicating energy dissipation (Umur et al. 2019, Santos et al. 2020, Sousaerae et al. 2021). According to Bolhar-Nordenkampf et al. (1989), plants grown under nonstress conditions usually show values of φP ≥ 0.75. In this study, the A. imperialis plants had φP values greater than 0.78, meaning there was no sign of photoinhibition at 56 d of growth, irrespective of Se treatments. Besides no changes in these parameters, the plants also had similar values of Wt, Vm, Fv/Fm, and Fv/Fo, and Wt, together denoting no damage to the functional and structural integrity of the thylakoid membranes and in the oxygen-evolving complex (OEC) (Oukarroum et al. 2009, Zhang et al. 2018, Faseela et al. 2020, Martins et al. 2020b).

Plants cultured with Se showed an improvement of PSII electron transport, as indicated by the reduced values of Vt and increased values of φE. A decline of the J-step level (Vj) can be attributed to a lower accumulation of reduced plastoquinone A (Qa) electron acceptor of PSII RC. This is interpreted as a higher rate of electron flow from Qa to the plastoquinone B (Qb) electron acceptor of PSII RC and expressed as increased values of φE (Martins et al. 2019, Guo et al. 2020a). This lower accumulation of Qa was reflected in higher values of Sm/Smmax. Thus, the higher values of Sm/Smmax verified in plants grown with Se, can indicate an accelerated electron transport beyond Qa and a bigger pool of oxidized electron acceptors between PSII and PSI.

The double normalization method allowed us to verify the changes from the I step. The kinetic changes between O and I steps (VoI ≤ 1.0) can indicate the process of exciton trapping and reduction of plastoquinone pool (Yusuf et al. 2010, Khalid et al. 2015, Ayyat et al. 2020). The negative amplitudes (displayed as kinetic differences − ΔVj) verified in plants grown with Se (Fig. 4.4) indicated that this element affected the process involving the trapping of the exciton to the reduction of PQ and those plants could maintain the maximum PQ reduction rate (Adamski et al. 2011). Voi ≥ 1 is related to the I–P phase and reveals the changes in the electron flux from the plastoquinol (PQH2) to the end electron acceptors on the PSI acceptor side (Yusuf et al. 2010, Braga et al. 2020, Naciri et al. 2021). The higher amplitudes observed through the normalization between the O–I steps (VoI ≥ 1.0) in

![Fig. 6. Relative variable fluorescence between the I–P points (ΔVj) (A) and total performance index (PImax) (B) of Alcantarea imperialis plants grown in vitro in function of concentrations of Se in the medium. Means ± SE (n = 16) followed by the same letter do not differ significantly according to the Tukey’s test (p<0.05).](image-url)
Se-treated plants (Fig. 4B) are also an indication of the dynamic modulations of the electron transport from the intersystem to the PSI and can be interpreted as an increase in the pool size of the final electron acceptors from the acceptor side of the PSI (Souza et al. 2019).

Further regarding step I, decreased values of $V_L$ were observed in *A. imperialis* plants cultured with Se. An increase of $V_L$ may indicate partial inhibition on the acceptor side of PSII due to a relative change in the $Q_a$-nonreducing PSII RCs (Jiang et al. 2008). It can result in a lower efficiency/probability of electron movement from PSII to the PSI acceptor side (Martins et al. 2020b). Therefore, the decreased values of $V_L$ verified in this work, corresponded to a relative improvement of electron transport to PSI, which was reflected in increased values of $\psi_R^0$ and $\varphi_R^0$. These results may also reflect the increased electrons flux toward the cyclic flow to improve metabolic energy (ATP) to plants (Fang et al. 2020). Lower values of $\psi_R^0$ are associated with reduced PSI activity (Rastogi et al. 2019, Fasceia et al. 2020). In our study, *A. imperialis* plants had higher $\psi_R^0$ values, which can denote a higher efficiency or probability of trapped electron transfer from PSII to PSI.

The subsequent significant alterations were found in the parameters explaining the state of end electron acceptors on the PSI acceptor side ($\Delta V_{\text{psn}}$, $\varphi_R^0$, and $\delta R_e$), indicating that Se has potential sites of action in the intersystem and PSI, as suggested by Souza et al. (2019). $\Delta V_{\text{psn}}$ is an indicator of the relative contribution of the I–P phase to the Chl a fluorescence emission curve and abundance of PSI with respect to PSII (Ceppi et al. 2012, Souza et al. 2019). In this study, plants cultured with Se had higher values of $\Delta V_{\text{psn}}$, which may have reflected increments in PSI units. These plants also showed higher values of $\varphi_R^0$ and $\delta R_e$. These parameters are associated with PSI performance (Lotli et al. 2018, Souza et al. 2019, Guo et al. 2020b) and have a direct impact on $P_{\text{vpsn}}$ values. Higher values of $P_{\text{vpsn}}$ can indicate an improvement in the potential energy conservation ability of the photons absorbed by PSII for the reduction of the electron acceptors in the intersystem and reduction of the final acceptors in PSI (Yusuf et al. 2010). Thus, our results obtained from the J step to P step suggested a greater reduction of the electron transport chain and an enhancement in the transport dynamics and energy conservation of the photosynthetic apparatus, mainly in plants cultured with the concentration range of 8–16 $\mu$M Se.

**Conclusion**: Se can modulate the physiological and anatomical responses of *A. imperialis*. The plants grown without Se exhibited poorer overall performance of photosynthetic apparatus than those cultured with this element. The positive effects of Se exposure during *in vitro* culture were reflected in better transport dynamics and energy conservation from the PSII to PSI, mainly in plants cultured with the concentration range of 8–16 $\mu$M Se. In addition, plants cultured with Se exposure showed anatomical traits that can favor the tolerance of water deficit.

**References**


Guo Y., Zhang Y., Lu Y. et al.: Effect of AtLFR1 deficiency on...


Effects of selenium on Alcantarea imperialis grown in vitro.


© The authors. This is an open access article distributed under the terms of the Creative Commons BY-NC-ND Licence.