DETAILED INSTRUCTIONS for preparation and modification of papers

The following instructions should help authors to prepare their papers in a proper style. Complying with these rules limits the amount of correspondence between an author and the editorial office and can speed up the publication of a paper. A list of *most often neglected formal matters* is placed at the end of these instructions.

IMPORTANT: All original files [text and tables in Word, figures in a graphic format (not Word, not PDF) as described in Detailed instructions] have to be combined in one PDF file. Submit, please, both original files and the PDF file! Without adding all the files the manuscript cannot be reviewed.

Follow also basic *Instructions for authors* and/or any recent issue of the journal. Papers already published or those elsewhere under consideration are not published. If the paper is published on any preprint server, the author is obliged to announce that fact to the editorial office and **assign it on the title page** below the title of the paper. The author is responsible for the correct assignment of a paper state on the preprint server (e.g. the paper must not be under review in any other journal, book, etc.)

Papers suspicious of plagiarism may be checked by the plagiarism checker software.

CONTENT

- **Language**
- **Title**
- **Authors' names**
- **Addresses**
- **Abstract**
- **Additional keywords**
- **Abbreviations**
- **Recommended symbols and most frequently used abbreviations**
- **Acknowledgements**
- **Highlights**
- **Introduction**
- **Quotations**
- **Materials and methods**
- **Equations**
- **Units**
- **SI units and symbols. Basic SI units**
- **Text table**
- **Results and discussion**
- **Tables**
- **Statistical evaluation**
- **References**
- **In bold**
- **In italics**
Dashes
Spaces
Fonts
Figures with examples
Most often neglected formal matters

LANGUAGE

The authors who are not native English speakers are strongly advised to get their manuscript checked by a native English-speaking colleague before submission. Editorial language corrections may be a reason for a delay in the publication of the paper. For professional language editing services, see http://www.enago.com/ or http://www.editage.com/get-quote.

Rephrase the sentences such as:

„The value of XXX at different groundwater depths showed an increase when the temperature increased to XX°C, moreover, its increase trend increased with the increase of groundwater depth.“

Check spelling carefully throughout the whole text.

Keep the British (expected but not obligatory in the papers of European authors) or American English in the whole paper.

TITLE

The title should describe the content of the paper accurately but briefly. The title is one of the sources of terms used by indexing journals. Its length should not exceed 140 characters.

AUTHORS' NAMES

Use capital letters, first name(s) abbreviated. In case of different addresses of the authors, use *, **, ***, #, and + for the corresponding author (all in superscript).

Example:

R.L. SMITH*, J. WANG**, and V. NOWAK*,+

Authors may provide their ORCID numbers (https://orcid.org/). The ORCID profile has to be completed before.

ADDRESSES

In italics, assigned with *, **, ***, and # in superscript correspondingly to the authors (see NAMES OF AUTHORS).

Example:

Stress Physiology Laboratory, Water Technology Centre, Indian Agricultural Research Institute, New Delhi – 110 012, India
Department of Plant Physiology, Agriculture University, 160 00 Praha 6, Czech Republic
ABSTRACT

Example:

Abstract

Do not use abbreviations without their explanation. If a term is explained in the Abstract, use only its abbreviation in the whole following text (except for tables and figures which should be self-explanatory). In the Abstract, use only inevitable abbreviations, which are used further in this section. The whole name of a plant is mentioned only for the first time and then the genera name is abbreviated in the text. Since the Abstract is often the only text, which a reader considers before citing the paper in her/his research, make sure that it contains all necessary information and data of your paper. Abstract, together with the title of the paper, is also a source of data for indexing journals and thus important for a quotation of your paper by other authors.

Benzoxazolin-2-(3H)-one (BOA) has been tested in many plant species, but not in soybean (Glycine max). Thus, a hydroponic experiment was conducted to assess the effects of BOA on soybean photosynthesis. BOA reduced net photosynthetic rate, stomatal conductance, and effective quantum yield of PSII photochemistry without affecting intercellular CO₂ concentration or maximal quantum yield of PSII photochemistry. Results revealed that the reduced stomatal conductance restricted entry of CO₂ into substomatal spaces, thus limiting CO₂ assimilation. No change found in intercellular CO₂ concentration and reduced effective quantum yield of PSII photochemistry revealed that CO₂ was not efficiently consumed by the plants. Our data indicated that the effects of BOA on soybean photosynthesis occurred due to the reduced stomatal conductance and decreased efficiency of carbon assimilation. The accumulation of BOA in soybean leaves reinforced these findings.

KEYWORDS

Example:

Written in alphabetical order, keywords should be divided by semicolons and finished by a full stop. Do not use abbreviations in this section. As the keywords, use other words than in the title and the abstract.

Keywords: chlorophyll fluorescence; gas exchange; growth analysis; productivity; soybean; wheat; zearalenone.

ABBREVIATIONS

Abbreviations have to be included if used in the text, ordered alphabetically, and written in the same form throughout the whole text, figures, tables, and equations (subscripts and superscripts, italic font, uppercase letters). Single terms should be divided by semicolons, n-dash (–) with spaces around is used between the abbreviation and its explanation. Use the abbreviations in a form usual for Photosynthetica (see below). Greek symbols are ordered alphabetically after Latin symbols. Listed abbreviations (see below) can be used without explanation. Abbreviations of elements, ions, and chemical formulas are used without explanation.

Example:

Abbreviations: C_i – intercellular CO₂ concentration; Chl – chlorophyll; F_v/F_m – maximum photochemical efficiency of PSII; g_s – stomatal conductance; MDA – malondialdehyde content; NPQ – nonphotochemical quenching; P_max – light-saturated photosynthetic rate; Φ_{PSII} – actual photochemical efficiency of PSII.

Abbreviations that do not need to be explained in the abbreviations' list:

ATP – adenosine triphosphate
C₃(4) – C₃ or C₄ (plants, mechanisms, etc.)
CAM – crassulacean acid metabolism
LHC – light-harvesting complex
NADP(H) – nicotinamide adenine dinucleotide phosphate
PAR – photosynthetically active radiation
PPFD – photosynthetic photon flux density
PSI – photosystem I
PSII – photosystem II
QA – primary quinone acceptor of PSII
QB – secondary quinone acceptor of PSII
Rubisco – ribulose-1,5-bisphosphate carboxylase/oxygenase

Most frequent radicals:
Superoxide radical: O_2^{-}
hydroxyl radical: $\cdot\mathrm{OH}$, please, do not mismatch with hydroxyl anion OH^{-}
hydrperoxyl radical: HO_2^{-}

Statistical parameters:
SE – standard error
SD – standard deviation

Recommended symbols and most frequently used abbreviations

Car – carotenoids
Chl $a(b)$ – chlorophyll $a(b)$
C_i – intercellular CO_2 concentration
DM – dry mass
E – transpiration rate
ETR – electron transport rate
F_0 – minimal fluorescence yield of the dark-adapted state
F'_0 – minimal fluorescence yield of the light-adapted state
F_m – maximal fluorescence yield of the dark-adapted state
F'_m – maximal fluorescence yield of the light-adapted state
F_s – steady-state fluorescence yield
F_v – variable fluorescence
F_v/F_m – maximal quantum yield of PSII photochemistry
FM – fresh mass
FRET – fluorescence resonance energy transfer
gs – stomatal conductance
LA – leaf area
NPQ – nonphotochemical quenching
OEC – oxygen-evolving complex
P_g – gross photosynthetic rate
P_N – net photosynthetic rate
$P_{g_{\text{max}}}$ – light-saturated gross photosynthetic rate
$P_{N_{\text{max}}}$ – light-saturated net photosynthetic rate
q_N – nonphotochemical quenching coefficient
q_P – photochemical quenching coefficient
RD – respiration rate
RWC – relative water content
VPD – vapour pressure deficit
WUE – water-use efficiency ($= P_N/E$)
WUEi – intrinsic water-use efficiency ($= P_N/g_s$)
Φ_{PSII} – effective quantum yield of PSII photochemistry
ψ_w – water potential

ACKNOWLEDGEMENTS

Acknowledgements of people, grants, etc. should be placed in a separate section after the list of abbreviations.

HIGHLIGHTS

Three bullet points that help increase the discoverability of your article via search engines. These bullet points should be maximum of 85 characters or fewer, including spaces.
Example:

- Elevated CO₂ concentration enhances water-use efficiency under water stress.
- Plants show rapid oxidation of P700 upon dark-to-light transition.
- Monochromatic light negatively affects PSII photochemical efficiency.
- Dichromatic red and blue light improves physiological performance and growth.

INTRODUCTION

Example:

Introduction (a part shown only)

Flooding changes several physical, chemical, and biological properties of the soil, altering drastically the environmental conditions for tree growth (Pezeshki and DeLaune 1998, Parolin et al. 2006, Kramer et al. 2008). For many tree species, flooding may adversely affect plant physiological functioning such as nutrition, water relations, the activity of photosynthetic enzymes, gas exchange, photosynthetic electron transport, and photosystem II activity. However, flood-tolerant tree species possess physiological, metabolic, morphological, and anatomical adaptations to survive the detrimental effects of the anaerobic soil environment created by flooding (Pezeshki et al. 1996, Kozlowski 2002, Stewart et al. 2007, Iwanaga and Yamamoto 2008).

Quotations

Do not use a comma between the name of the author and the year of publication. Do not use semicolons but commas for the separation of single quotations. The surname(s) of the author(s) are followed by a year of publication without a comma. „et al.“ is written in italics.

Example:

MATERIALS AND METHODS

All instruments used should be specified by type, producer, and country of origin. All methods should be described in a way that enables a reader to reproduce the experiment, i.e.: use references only if the full-text is available in English and describe modifications in detail.

Example:

Materials and methods

Plant material and culture condition: The seeds of G. biloba L. were collected in the forest park in Bratislava. The seeds were imbibed in water for 24 h and germinated in perlite for 2–3 months. Seedlings were grown in the dark and in the light under circadian illumination 12 h dark/12 h light (100 μmol m⁻² s⁻¹ PAR). For greening experiments, dark-grown seedlings were exposed to continuous illumination of the same intensity as mentioned above. All manipulations in the dark were performed under a dim green safelight. All samples were taken 2 cm from the shoot apex. Etiolated angiosperm Hordeum vulgare and dark-grown cotyledons from gymnosperm Picea abies were used as negative and positive controls, respectively, in Western-blot analysis.

Pigment extraction and quantification: Chlorophylls were extracted with mortar and pestle in 80% chilled acetone plus MgCO₃ and purified sea sand. After centrifugation at 4°C, in the resultant solution, Chl a and b were determined spectrophotometrically at 663 nm (Chl a) and 646 nm (Chl b) (Jenway 6400, Krackeler Scientific, London, UK). The concentration was calculated according to Lichtenthaler (1987).

Pchlide was extracted with 3 ml of acetone: 0.1 M NH₄OH (9:1, v/v) using a mortar and a pestle. The extracts were washed out three times with an equal volume of hexane. Pchlide remained in the hexane-extracted acetone fraction and was determined by spectrofluorimeter Perkin Elmer LS45 (Norwalk, CT, USA). Slit widths for both monochromators
were set at 10 nm. Fluorescence was excited at 438 nm and emission at 633 nm corresponds to Pchlide. Pchlide standard was prepared from barley growing for a week in darkness on 10 mM ALA (Fluka, Steinheim, Germany). Cuttings were fixed by water vapour (steam) and homogenated in acetone: 0.1M NH₄OH (9:1, v/v). Carotenoids were washed out three times by adding 1 vol of 100 % hexane. To increase the stability of Pchlide, it was transferred to diethyl ether. Pchlide concentrations in extracts were determined photometrically in extracts 623 nm using the molar extinction coefficient in diethyl ether ε = 3.56 10⁴ M⁻¹ cm⁻¹ (Koski and Smith 1948).

Measurement of ALA-synthesizing capacity: 100 μg of fresh mass (FM) of G. biloba epicotyls were incubated in 40 mM levulinic acid in 20 mM phosphate buffer (pH = 7.1) to prevent ALA depletion. Seedlings were incubated for 4 h under the same conditions under which they had been grown. After incubation, the samples were quickly dried and finally frozen in liquid nitrogen. The plant material was ground in liquid nitrogen to a fine powder and resuspended in 20 mM phosphate buffer (pH 7.1). After centrifugation, 100 μl ethyl acetate was added to the 400 μl of supernatant. The samples were boiled at 100°C for 10 min, subsequently cooled for 5 min, mixed with 500 μl of modified Ehrlich reagent, and absorption was measured at 525 and 553 nm (Jenway 6400, Krackeler Scientific, London, UK). The calibration curve for ALA (Fluka, Steinheim, Germany) was measured and ALA-synthesizing capacity was calculated as nmol(ALA) g⁻¹(FM) h⁻¹ (Alawady and Grimm 2005).

Isolation of proteins and Western-blot analysis: Extraction of total proteins from plant samples, SDS-polyacrylamide gel electrophoresis, and immunoblotting were performed as described in Kruse et al. (1995). 20 μg of protein samples were electrophoresed in 12% (v/v) SDS-polyacrylamide gel followed by transfer to the Hybond-C membranes (Amersham, Freiburg, Germany). Antibodies against ChlB, ChlN (both from Plettomnea boryanum), and ChlL (from Marchantia polymorpha) were provided by Y. Fujita. Antibodies against GluTR and LHCIIb were raised in the laboratory of B. Grimm. Antibodies against D1 and LHCI proteins were purchased from Agrisera (Vännäs, Sweden). As a secondary antibody, the Goat Anti-Rabbit IgG (H+L)-HRP conjugate (BioRad, Hercules, CA, USA) was used. Blots were visualized using Immobilon Western chemiluminescent kit (Millipore, Billerica, MA, USA) and medical X-ray film (Foma Biochemia, Hradec Královo, Czech Republic).

Gas exchange and Chl fluorescence measurements: Photosynthetic rate (Pn) was measured using infrared gas analyzer CIRAS-2 (PP-Systems, Hitchin, UK) after 1, 6, 12, 24, 48, and 72 h since transferring dark-grown seedlings to light to monitor the greening process. Simultaneously, the Chl fluorescence was monitored by Fluorcam FC1000-LC (Photon Systems Instruments, Brno, Czech Republic) attached to CIRAS-2. One cm of shoot apex (30 min adapted in the dark) was enclosed in the universal automatic PLC6 leaf cuvette (PP-Systems, Hitchin, UK). After 10 min of stabilization in the dark, minimal fluorescence (F0) was recorded. Then maximal fluorescence (Fm) was measured using a saturation pulse (5,000 μmol m⁻² s⁻¹ PAR, 800 ms duration) and the maximal quantum yield of PSII (Fv/Fm) was calculated as (Fm – Fo)/Fm. Then actinic light was switched on for 15 min (100 μmol m⁻² s⁻¹ PAR) and 10 saturation pulses were triggered to measure maximal Chl fluorescence in the light-adapted state (Fm‘). The effective quantum yield (ΦPSII) was calculated as (Fm’ – Fo)/Fm’ according to Maxwell and Johnson (2000). Simultaneously at the end of the light period (15 min), steady-state Pn was recorded at 360 ppm CO₂, leaf temperature of 23 ± 1°C, and relative air humidity 65–70%.

Low-temperature fluorescence: Fluorescence emission spectra of epicotyls were measured at low temperature (77 K) with the Spec fluorolog spectrofluorometer (Horiba, Jobin Yvon Inc., Edison, NJ, USA) using the spectral bandwidth of emission and excitation monochromator of 2 nm. The epicotyls were immersed in liquid nitrogen in an optical Dewar flask when measured at 77 K. The raw data were corrected on the PMT photocathode sensitivity. The excitation wavelength was 440 nm. The effect of fluorescence reabsorption is very weak due to low pigment concentration.

Electron microscopy: Samples from cotyledons were fixed in a mixture of 5% (v/v) glutaraldehyde and 2% (v/v) paraformaldehyde, postfixed in 2% (v/v) osmium tetroxide at room temperature (Karnovsky 1965). Fixed specimens were dehydrated in acetone series and embedded in Durcupan (Fluka, Neu Ulm, Germany). Ultrathin sections were cut with UltraCut E ultramicrotome (Reichert-Jung, Vienna, Austria), stained with uranyl acetate and lead citrate, and examined in an electron microscope Jeol 2000 FX (Tokyo, Japan).

Statistical analysis: All of the measurements were performed four times, and the means and calculated standard deviations (SD) are reported.

Check the correct writing of the names of the used chemicals.

Statistics

In this section, the statistical procedure and the program used for calculations should be named.
Equations

Use the equation editor for writing complex equations. Single-line equations may be written as a normal text. Use multiplier (×) instead of „x“ in the equations and spaces between factors. The size of normal letters in equations should be 10 pt.

Examples:

\[F_o\prime = \frac{F_o}{(F_v/F_m) + (F_o/F_m')} \]
\[\Delta [\%] = \frac{\delta^{13}C_{air} - \delta^{13}C_{plant}}{1 - \delta^{13}C_{plant} \times \frac{1000}{1000}} \]

Units

Units should be written in square brackets (also in the figures), without dots in the multiple ones (space only), SI units are preferred. Write a space between a value and its unit except for % and °C. Do not use a slash mark for a combination of units. Describe time as 08:00 or 14:00 h instead of 8:00 a.m. and 2:00 p.m. Use n-dash (–) instead of a hyphen in superscripts (see Dashes). It is not necessary to use units in the text if the parameters with their units are a part of a figure or a table.

Use a comma as a thousand separator (e.g. 5,000).

Examples:

10%; 30°C
\[P_N [\mu \text{mol m}^{-2} \text{s}^{-1}] \]
\[\text{PAR} [\mu \text{mol(photon)} \text{ m}^{-2} \text{s}^{-1}] \]
\[E [\text{mmol(H2O)} \text{ m}^{-2} \text{s}^{-1}] \]
\[g_s [\text{mol(H2O)} \text{ m}^{-2} \text{s}^{-1}] \]
\[C_i [\mu \text{mol(CO2)} \text{ mol}^{-1}] \]
\[\text{WUE} [\text{mol(CO2)} \text{ mol(H2O)}^{-1}] \]
\[\text{Chl a} [\text{mg g}^{-1}(\text{DM})] \]
\[\text{kg m}^{-2} \text{ s}^{-1}; \text{ if plant as reference unit: } \mu \text{g per plant} \]

Avoid the following usage:

kg · m· s·1, kg/m²s, or completely incorrect kg/m³/s

SI units and symbols. Basic SI units

<table>
<thead>
<tr>
<th>unit</th>
<th>symbol</th>
<th>base unit</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>metre</td>
<td>m</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>kilogram</td>
<td>kg</td>
<td>candela</td>
<td>cd</td>
</tr>
<tr>
<td>second</td>
<td>s</td>
<td>mole</td>
<td>mol</td>
</tr>
<tr>
<td>ampere</td>
<td>A</td>
<td>katal</td>
<td>kat</td>
</tr>
</tbody>
</table>
Remarks:

<table>
<thead>
<tr>
<th>Unit, dimension</th>
<th>Symbol</th>
<th>Do not use</th>
</tr>
</thead>
<tbody>
<tr>
<td>micrometre</td>
<td>µm</td>
<td>µ</td>
</tr>
<tr>
<td>nanometre</td>
<td>nm</td>
<td>mµ, Å</td>
</tr>
<tr>
<td>gram</td>
<td>g</td>
<td>gr</td>
</tr>
<tr>
<td>microgram</td>
<td>µg</td>
<td></td>
</tr>
<tr>
<td>second</td>
<td>s</td>
<td>sec</td>
</tr>
<tr>
<td>minute</td>
<td>min</td>
<td>min.</td>
</tr>
<tr>
<td>hour</td>
<td>h</td>
<td>hr, hrs</td>
</tr>
<tr>
<td>day</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>kelvin</td>
<td>K</td>
<td>°K</td>
</tr>
<tr>
<td>degree Celsius (centigrade)</td>
<td>°C (e.g. 20°C)</td>
<td>°C (e.g. 20°C)</td>
</tr>
<tr>
<td>pascal</td>
<td>Pa</td>
<td>atm, torr, mm Hg, bar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit, dimension</th>
<th>Symbol</th>
<th>Do not use</th>
</tr>
</thead>
<tbody>
<tr>
<td>joule</td>
<td>J</td>
<td>cal, kWh</td>
</tr>
<tr>
<td>watt per metre square</td>
<td>W m⁻²</td>
<td>cal cm⁻² min⁻¹</td>
</tr>
<tr>
<td>mole, millimole</td>
<td>mol, mmol</td>
<td></td>
</tr>
<tr>
<td>molar, millimolar</td>
<td>M, mM</td>
<td></td>
</tr>
<tr>
<td>becquerel</td>
<td>Bq</td>
<td>Ci, C, c</td>
</tr>
<tr>
<td>counts per second</td>
<td>s⁻¹</td>
<td>cpm</td>
</tr>
<tr>
<td>hertz</td>
<td>Hz</td>
<td>e/sec</td>
</tr>
<tr>
<td>volume per volume</td>
<td>cm³ m⁻³</td>
<td>vpm</td>
</tr>
</tbody>
</table>

Note that mW is milliwatt

m W is metre × watt

The abbreviation kDa is acceptable for characterizing proteins.

*Units h (for an hour; not hr, hrs) and min (for a minute; not min.) can be used only for description (e.g. centrifuged for 50 min), not as dimensions.

Text table

For the presentation of small data sets in the section of Materials and methods, a text table is recommended. (For detailed information, see the corresponding chapter in the EASE guidelines on http://www.ease.org.uk/guidelines/index.shtml.)

Original text:

As previously mentioned, *C. moritziana* grows on rock outcroppings with well-drained and poorly developed soils. Three well-differentiated size classes were selected: juvenile, intermediate, and adult stages. Juveniles grew close to the ground, with a rosette diameter and plant height between 20 and 25 cm and leaves between 15 and 18 cm in length and 0.8 to 1.5 cm in width. Juvenile stages did not show an apparent stem and rosettes appeared sessile. Intermediate plants had an early developing stem, with rosettes between 30 and 35 cm in both diameter and plant height and leaves were between 20 and 25 cm in length and 1.5 to 2.5 cm in width. Adult individuals presented a well-developed stem of approximately 40 cm in length, covered with marcescent leaves. The rosettes had a diameter between 55 and 60 cm and plant height was between 90 and 100 cm. Leaves were between 25 and 30 cm in length and 2.0 to 2.5 cm in width. Adult individuals were the only ones that had any signs of earlier reproductive events.
As previously mentioned, *C. moritziana* grows on rock outcroppings with well-drained and poorly developed soils. Three well-differentiated size classes were selected: juvenile, intermediate, and adult stages.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Rosette diameter; plant height [cm]</th>
<th>Leaf length [cm]</th>
<th>Leaf width [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juvenile</td>
<td>20–25; 20–25</td>
<td>15–18</td>
<td>0.8–1.5</td>
</tr>
<tr>
<td>Intermediate</td>
<td>30–35; 30–35</td>
<td>20–25</td>
<td>1.5–2.5</td>
</tr>
<tr>
<td>Adult</td>
<td>55–60; 90–100</td>
<td>25–30</td>
<td>2.0–2.5</td>
</tr>
</tbody>
</table>

Juveniles grew close to the ground and did not show an apparent stem and rosettes appeared sessile. Intermediate plants had an early developing stem. Adult individuals presented a well-developed stem of approximately 40 cm in length, covered with marcescent leaves. Adult individuals were the only ones that had any signs of earlier reproductive events.

RESULTS AND DISCUSSION

It is not necessary to assign a place where a figure or a table should be situated – it will be placed in the nearest possible place after the quotation in the text. Place tables and figures at the end of the paper.

Tables

Tables should be written by using table function, situated from left, without left-hand margin, simple spaced. The whole legend is placed above the table. The used abbreviations should be explained in the same way as in the Abbreviations section and in the same shape (italics, sub- and superscripts) as in the text and figures (*e.g.* P_N – net photosynthetic rate; ...). The units are in square brackets, directly in a table. The symbols of statistical significance (a, b, *) follow the values as superscripts without space. The desirable font size is 9 pt.

Example:

<table>
<thead>
<tr>
<th></th>
<th>Drought stress</th>
<th>Rewatering</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>July 11</td>
<td>July 20</td>
<td>Aug 10</td>
</tr>
<tr>
<td>Exposed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ψ_w [MPa]</td>
<td>$-0.40 \pm 0.04^{\text{Aa}}$</td>
<td>$-1.51 \pm 0.11^{\text{Bb}}$</td>
<td>$-0.50 \pm 0.10^{\text{Aa}}$</td>
</tr>
<tr>
<td>P_N [µmol(CO$_2$) m$^{-2}$ s$^{-1}$]</td>
<td>$14.10 \pm 1.10^{\text{Aa}}$</td>
<td>$3.63 \pm 0.37^{\text{Bb}}$</td>
<td>$9.10 \pm 0.92^{\text{Bb}}$</td>
</tr>
<tr>
<td>g_r [mmol(H$_2$O) m$^{-2}$ s$^{-1}$]</td>
<td>$223.3 \pm 26.2^{\text{Aa}}$</td>
<td>$56.4 \pm 9.5^{\text{C}}$</td>
<td>$148.0 \pm 15.9^{\text{Bb}}$</td>
</tr>
<tr>
<td>F_v/F_m</td>
<td>$0.79 \pm 0.03^{\text{Aa}}$</td>
<td>$0.56 \pm 0.09^{\text{Bb}}$</td>
<td>$0.60 \pm 0.03^{\text{Bb}}$</td>
</tr>
<tr>
<td>Φ_{PSII}</td>
<td>$0.17 \pm 0.01^{\text{Aa}}$</td>
<td>$0.10 \pm 0.03^{\text{Bb}}$</td>
<td>$0.10 \pm 0.02^{\text{Bb}}$</td>
</tr>
</tbody>
</table>

	Shaded			
Ψ_w [MPa]	$-0.35 \pm 0.04^{\text{Aa}}$	$-1.46 \pm 0.02^{\text{Bb}}$	$-0.30 \pm 0.13^{\text{Aa}}$	$-0.35 \pm 0.05^{\text{Bb}}$
P_N [µmol(CO$_2$) m$^{-2}$ s$^{-1}$]	$13.20 \pm 2.10^{\text{Aa}}$	$5.72 \pm 1.44^{\text{Bb}}$	$11.50 \pm 0.39^{\text{Aa}}$	$12.99 \pm 1.08^{\text{Aa}}$
g_r [mmol(H$_2$O) m$^{-2}$ s$^{-1}$]	$219.6 \pm 17.6^{\text{Aa}}$	$41.0 \pm 3.9^{\text{Bb}}$	$185.7 \pm 8.2^{\text{Aa}}$	$196.1 \pm 11.2^{\text{Aa}}$
F_v/F_m	$0.77 \pm 0.06^{\text{Aa}}$	$0.75 \pm 0.08^{\text{Bb}}$	$0.74 \pm 0.08^{\text{Aa}}$	$0.79 \pm 0.02^{\text{Aa}}$
Φ_{PSII}	$0.19 \pm 0.02^{\text{Aa}}$	$0.14 \pm 0.01^{\text{Bb}}$	$0.15 \pm 0.01^{\text{Bb}}$	$0.19 \pm 0.03^{\text{Aa}}$

Statistical evaluation

The number of repetitions (*e.g.* $n = 5$) is written in italics with spaces around the equal sign. P, R, R^2, or p, r, r^2 (both is acceptable when used consistently through the whole paper) is written in italics without spaces (*e.g.* $p=0.05$, $p<0.1$). SE (SD) without full stops.

When used in the figures and tables legends, do not repeat the statistical data (*e.g.* $p<0.05$) in the text of Results.
REFERENCES

Check carefully if all references are mentioned in the text and vice versa. Use n-dash (—) with spaces around between the name of the article and the journal and hyphen (-) for the range of pages. Use bold numbers for journals’ volumes. Use a paragraph indent after the first line of references. The author is responsible for the accuracy of the references. Check them carefully by using Web of Science, Journal Title Abbreviations. Use full stops after the abbreviations, not after the unabbreviated names.

The EndNote template file is available on the journal website.

For the journals published only in the non-English version, the DOI Name of the cited article must be added. The correctness of DOI can be checked on https://www.doi.org/.

In the case of a great number of authors in a reference, use only 3 first names and et al.

Examples:

In bold

the title of the paper

titles of the chapters (Abstract, Introduction, ...)

subtitles (see RESULTS)

In italics

see, e.g., i.e., via, etc., et al.; p(P) and r(R) in statistics

the panels of the figures (see FIGURES)

some abbreviations or their parts (see ABBREVIATIONS)

type and producer of the measuring equipment (see MATERIALS AND METHODS)

Do not use italics for subscripts and greek symbols.

Dashes and hyphens

Use n-dash (—, Alt0150) by writing a range of values (5–10°C, 48–72 h), minus sign (~30°C), in equations [Fv/Fm = (Fm – F0)/Fm], in superscripts of units (m–2 s–1) and References in front of journal names.
Use a hyphen (-) in References between the numbers of pages. Another use e.g.: 14-h drying, 3-leaf stage, water-stressed plants, etc.
Do not use the hyphen in words with re-, non-, pre-, sub- (e.g. rewatered, nonstressed, predawn, suboptimal).

Spaces

Use space around =, ±, in multiple units, and between chapters. *Do not use* spaces around a slash.

Fonts

Use **Times New Roman** for the text and **Arial** for figures.

Figures

Assign and cite figures as Fig. 1, Fig. 2A, Fig. 3C–E; Figs. 1, 2, 4; Figs. 1B, 3. Use uppercase *italic* letters to assign figure panels. In case of more figures cited together (not for different panels of the same figure), write Figs.

For examples of the figures' style see the following examples or any recent issue of Photosynthetica. Authors are requested to prepare figures ready for printing. The preferred formats are **TIFF** and **JPG**, **do not** send figures as **Word** documents. The figures' files should be assigned with a four-digit editorial number of the paper and a number of the figure (e.g. 1027 Fig. 1, 1027 Fig. 2, etc.).

Lettering for labels and inside legends should be a *consistent (best the same) size* (e.g. do not use 8-pt size on an axis and 15-pt size for the axis label), font Arial, capital letters. Use values as 0, 5, 10, 15,... preferably instead of 0, 14, 28, 42,... if possible. *Do not use* bold letters and numbers in figures.

Print the figures before submission to ensure that all parts are well visible and legible.

All abbreviations and symbols used in figures have to be explained in the legend below even if they were already described in the text and the section of Abbreviations. They should be in the same shape as in the text (italics, sub- and superscripts). Gridmarks should be oriented inward, do not use the minor ones. All lines should be at least 0.2 mm wide.

Avoid shading and other effects. Do not colour lines or symbols, use coarse patterns for columns instead of colour and degrees of gray.

Combine figures' panels if possible. Single panels are assigned A, B, C (uppercase letters in italics, font Arial).

The size of the figures should be at least 1,500 pixels in one dimension.

Use the resolution of **300 dpi** for images and **600 dpi** for bitmaps. Colour photos should be submitted as **CMYK** ones.

Formatting figures

For figures formatting, the authors may also use the services of professional editing companies (e.g. American Journal Experts, etc.). The figures have to be sent in the form which enables their formatting. They must not be blurred and their size and resolution should agree with the journal requests.
Examples:

The following sample figures are published with kind permissions of their authors.
Photosynthetica

<table>
<thead>
<tr>
<th>Accession</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsELIP1</td>
<td>KTHSDEAEI-NRFAHGLV-ALAP-TEFVKGALD-EEGE</td>
</tr>
<tr>
<td>CsELIP2</td>
<td>KTHSDEAEI-NRFAHGLV-ALAPA-TEFVKGALD-EEGE</td>
</tr>
<tr>
<td>ACJ09655</td>
<td>KTHSDEAEI-NRFAHGLV-ALAP-TEFVKGALD-EEGE</td>
</tr>
<tr>
<td>AKR23291</td>
<td>KTHSDEAEI-NRFAHGLV-ALAP-TEFVKGALD-EEGE</td>
</tr>
</tbody>
</table>

Detailed Instructions

<table>
<thead>
<tr>
<th>Accession</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsELIP1</td>
<td>PKPVTSTKFSDVAFS-SGARP-GLAMIGFVAAKESEQKVDVAGIQINGVPWFEFSITLIALIPLFGVIVEY</td>
</tr>
<tr>
<td>CsELIP2</td>
<td>PKPVTSTKFSDVAFS-SGARP-GLAMIGFVAAKESEQKVDVAGIQINGVPWFEFSITLIALIPLFGVIVEY</td>
</tr>
<tr>
<td>ACJ09655</td>
<td>PKPVTSTKFSDVAFS-SGARP-GLAMIGFVAAKESEQKVDVAGIQINGVPWFEFSITLIALIPLFGVIVEY</td>
</tr>
<tr>
<td>AKR23291</td>
<td>PKPVTSTKFSDVAFS-SGARP-GLAMIGFVAAKESEQKVDVAGIQINGVPWFEFSITLIALIPLFGVIVEY</td>
</tr>
<tr>
<td>XP_002233</td>
<td>PKPVTSTKFSDVAFS-SGARP-GLAMIGFVAAKESEQKVDVAGIQINGVPWFEFSITLIALIPLFGVIVEY</td>
</tr>
</tbody>
</table>

Figure

A Plant with green leaves. **B** Close-up of a leaf. **C** Leaf cross-section. **D** Stoma diagram with guard cells (Ch) and pores (P). **E** Nucleus (N) and chloroplast (Ch). **F** Cell membrane. **G** Chloroplast. **H** Vacuole (V). **P** Plasma membrane.

Transit peptide
USE

<table>
<thead>
<tr>
<th>Term</th>
<th>DO NOT USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>dry (fresh) mass, DM, FM</td>
<td>dry (fresh) weight, DW, FW</td>
</tr>
<tr>
<td>5% , 20°C</td>
<td>5 %, 20 °C</td>
</tr>
<tr>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>1,603 m a.s.l.</td>
<td>1603 m a.s.l.</td>
</tr>
<tr>
<td>[mg g⁻¹]</td>
<td>mg/g, (mg g⁻¹)</td>
</tr>
<tr>
<td>(P_n) [µmol(CO₂) m⁻² s⁻¹]</td>
<td>(P_n) [µmol CO₂ m⁻² s⁻¹]</td>
</tr>
<tr>
<td>A, B, C</td>
<td>a,b,c</td>
</tr>
<tr>
<td>Chl – chlorophyll</td>
<td>Chl, chlorophyll</td>
</tr>
<tr>
<td>Wang et al. 2009</td>
<td>(Wang et al., 2009)</td>
</tr>
<tr>
<td>(Smith 2001)</td>
<td>(see Smith 2001)</td>
</tr>
<tr>
<td>14:00 h</td>
<td>2:00 pm</td>
</tr>
<tr>
<td>SD, SE</td>
<td>S.D., S.E.</td>
</tr>
<tr>
<td>Fig. 1, Figs. 2,3</td>
<td>Figure 1, fig. 1, figures 2 and 3</td>
</tr>
</tbody>
</table>
Most often neglected formal matters

Uploading figures in a graphic format.

Form of figures following the instructions and in the style of the journal.

Combine figure panels with common axes.

The same size for all axes labels.

Use of the recommended resolution.

Sufficient size of the figures.

Assignment of figure panels in italics.

Missing abbreviations list.

Form of the abbreviations list.

Use of the recommended abbreviations.

Use of the correct shape of abbreviations (subscripts, italics).

Keywords – use of other words than in the title and the abstract.

Use of comma as the thousand separators.

Form of quotations.

Correct use of dashes and hyphens.

Correct use of italics.

The correct form of references – dashes and hyphens, journal abbreviations, full stops, bold numbers of volumes.

Mass should be used instead of weight.

Tables – units in square brackets, significance letters in superscript.

The correct form of units in tables and figures.

Missing space in multiple units.

Thank you very much for reading the instructions up to the end! 😊

Following them will save a lot of your and our time in the review process.