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Oxygenic photosynthesis—a photon driven hydrogen
generator—the energetic/entropic basis of life
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Abstract

Photosynthesis, as a fundamental element in the life process, is integrated in the
cvolution of living systems on the basis of hydrogen cycles on various hierarchic
tevels. Conversion of radiant energy enables the oxidation of water, whereby free
oxygen accumulates in the atmosphere. Hydrogen 18 (reversibly) stored in organic
materials formed under reductive CO,-fixation and by the incorporation of the other
clements, which are necessary for living systems. All endergonic processes in living
cells are tinally driven by the encrgy released through the clean recombination of
protons and ¢lectrons with oxygen to water. Duration of the stored energy and the
complexity of the systems thus produced is correlated negatively with the conversion
clliciency of the radiation energy. Entropy is a unifving principle in the evolution of
living systems, inclusive human societies.

Additional key words: evolution; hydrogen; life: photosynthesis; radiant energy.
Basic forces and laws in nature

The current physical state of our galaxy in the universe is determined by the
"cvolution” of hydrogen. Calculations tell us that roughly 73-84 % of atoms in the
cosmos are hydrogen. Only about 16-25 % arc converted to helium and about 1 %
amounts to heavier elements (Ditfurth 1972, Ebeling and Feistel 1994, Vaas 1994,
Holzmiiller 1995). In our galaxy, these nuclear fusions take place in the sun where
(according to the Einstein law, E — m ¢2) 4.3x10° kg hydrogen per s are transformed
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to helium while the mass difference is radiated in the form of 3 800 K photons. This
radiation reaches our planet with an encrgy of 1353 kW m~# (290-4000 nm; solar
constant). In comparison with the other cosmic forces (Iig. 1) this electromagneric
radiation is characterized by what may be called a dialectical unity of energy and
information (Rompe and Treder 1988). This has led to attempts to construct a unified
field theory on the basis of electromagnetic radiation. The dual aspects of light, that
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Fig. 1. Scheme of cosmic forces and their interrelations (according to Mainzer 1994 ),

is, energy and information (the complementary principle, Behr 1933, Ebeling and
Feistel 1994)—which is valid under the condition that there are receptors capable of
recognizing this information and of transmitting it to the whole system so that the
system may respond adequately—provides a basis for the evolution of living systems
on the Earth (Stahl 1993). Given, however, that life 15 4 potential of matter
throughout the universe, it may he that in other galaxies living systems had
developed on the basis of other elementary particles or may do so in the future
{Stéltzner and Thirring 1994, Holzmiller 1995), The transformation of this cosmic
radiation flow to drive matter cycles enabling the [ormation of structurcs with
increasing complexity and negentropy is primarily realized through processes
organized in the photosynthetic apparatus. This machinery, hierarchically and
symbiogenetically integrated (in both time and structure; Schwemmler 1991, Tiezzi
and Marchettini 1991) in the bioenergetics of the whole biosphere, realizes the
following principles:

Harvest and accumulation of sufficient energy amount for conversion into
biologically meaningful forms of different lifetimes.
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Ensurance of cooperation between reversible and highly irreversible reactions (like
photosynthetic water oxidation and reductive CO, fixation), and thus supplying
evolution with a directional component.

Dissipative mechanisms of hicrarchic levels {among others, from fluorescence
quenching mechanisms in the chloroplast thylakoids to substance excretion vig leaves
or roots and different apoptotic phenomena) to avoid overreductions of the primary
electron acceptors by the high natural photon pressure (thus underlining the general
sink limitation of physiological processes due to the huge solar photon source).
Development  of  adaptive  and  defence  systemns w0 maintain the
homeostasis/homeorhesis of the wholc system as long as possible (bioencrgetic
coupling of biogenesis, development, senescence, and death with reproduction
ensuring (he contnuity of life; ontogeny and phylogeny), including mechanisms for
evolutionary progress.

Last but not least, life acts in two directions: it develops different strategies adapting
to the changing exogenous conditions (like C,; and CAM, symbiotic relations,
morphological changes of hygro-, meso-, and xcrophytes, efc.), but it also changes
the environment (producing soil, mineral content in the ocean, oxygen containing
atmosphere, efc.: ¢f. also Lovelock 1992, Holzmiller 1995).

This concept is supported, against the background of hydrogen priority, by the fact
that the proton-clectron system enables the stability of matter (Lieb 1991, Stdltzner
and Thirring 1994). The structure of all beings obey the fundamental natural law of
harmony, realized in the galaxy as well as in organisms or parts of them (Francé
1926, Ebeling and Feistel 1994).

Photosynthesis—a photaen driven hydrogen generator

The primary reactions of photosynthetic energy absorption occur in the light-
harvesting antenna systems {(Kithlbrandt e a/ 1994) including cooperalive, non-
linear mechanisms, as is the case with all fundamental processes (Ebeling and Feistel
1986, 1994, Hoffmann and Leupold 1991, Hess 1994, Mainzer 1994, Kelso and
Haken 1993). Already on this level, multiple paths are possible for adapting the
incoming photon amount to the nced determined by the endergonic and cxergonic
conditions. So besides the channeling towards rcaction centres (Deisenhofer and
Norris 1993) leading to charge separation, more and more possibilities are discovered
for dissipating the photon excess (different fluorcscence quenching processes,
including xanthophyll cycle, and induction of defense systems that eliminate the
resulting reactive oxygen species - Fayer and Mullineaux 1994, Angerhofer and Rittl
1996, Horton er al. 1996). After charge separation in the reaction centres, water
oxidation occurs and photosynthetic electron transport over the thylakoid membrane
creates an electrical potential, combined with a proton gradient (Witt 1087, 1996, van
Voorthuysen 1997). The encrgy stored on this level is consumed in manyfold ways,
predominantly, however, used for ATP production, directly by photophosphorylation.
The protons and electrons resulting from the photosynthetic water oxidation arc
bound by the universal hydrogen carrier NADP*. In contrast to these anabolic
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sequences, in catabolic metabolism unphosphorylated pyridine nucleotides are used,
thus reaching a high independence of energy accumulation from RNA turnover
{(Kanfman 1993). Duc to conversion reactions and shuttle mechanisms, the reduced
pyridine nucleotides reach into the nonplastidic part of the cell, and are available
there for many purposes. Predominantly they are used in mitochondria for respiratory
ATP production (for references see Hoffimann 1987, Kitzmann 1996). In any case,
the "universal fuel", hydrogen, is cleanly recombined with the photosynthetically
evolved oxygen to the "molccule of life", to water Jhydrogen cycle between
chloroplasts and mitochondria; (1) in Fig. 3].
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Fig. 2. The complex network of bicenergetics in living cells, unified by the membrane bound proton
gradient. [he scheme underlines the basic role of radiant energy in creating this gradient. All other
sources depend on substrates produced by photosynthesis (modified according to Skulachev 1977,
Froster 1992, Kitzmann 1996),

The replacement of the early archebacteria photosynthesis (due to conformation
changes of rhodopsin: Danon and Caplan 1977, Caplan and Ginzburg 1978, Mohr
and Schopter 1992) by light driven redox processes in the more complex (two
photosystems) oxygenic photosynthesis (Goldworthy 1987) made the unlimited
amounts of hydrogen in the water accessible by making use of the redox-couple
[1,(/0y. The onsctting oxygen accumulation in the atmosphere—noteworthy
stabilizing at about 21 %——created the oxidant for extensive supply of free energy
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from metabolizable substances as another precondition for the evolution of highly
organized complex biological systems (Riedl 1973, Kuhn and Waser 1982, Renger
19¥7, Grassmann 1988, Haken 1988, Rensch 1988, Holzmiiller 1995),

The central function of proton pumps in both ATP-producing systems
(photosynthesis and respiration, Fig. 2) is a convincing example for unity in the
diversity of phenomena in nature (Hotfmann 1978, 1990, 1991, Stryer 1995).

Hydrogen not immediately nceded to maintain cell homeostasis (Langley 1973,
Atkinson and Bourke 1995) is reversible, and for a longer time-period stored on
carbon dioxide via the Calvin cycle. The unique property of carbon (something
similar is valid also for nitrogen) to form long branched chains (which provides,
besides the reversible hydrogen/energy storage, also the means for storing
information} explains the employment of these elements as material basis of living
systems (Laskowski and Pohlit 1974, Holzmiller 1995). Continuing
compartmentations of the hydrogen cvcle in cormophytes are via assimilates
[distributed morphologically between shoot and root, and temporally between day
and night; (2) in Fig. 3]. Besides the fairly high reversibility of enzymatic reactions,
the key enzymes of this hydrogen generator (water oxidizing enzyme. ribulose 1,5-
bisphosphate carboxylase/oxygenase, cytochrome ¢ oxidase)} are characterized by a
high irreversibility. So a trend-setting in the evolutionary dimension is favoured also
by this behaviour.

EARTH

§

a

3
Negentropy «—Time

1

1)

3
gs,:?
—
N
DY 4> Efﬁclency/SfabllifY\ \n\\M

A,
o / Entro

5800 k/10" W m 260 k/10" W

Fig. 3. Integration of photosynthesis as photon driven hydrogen generator on increasing system
levels in ontogeny as well as phylogeny of living systems. Explanation in the text.
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The spectrum of dissipative mechanisms on the cellular level includes ways of
wasteful ATP- and NADPH,-degradation (Ilcldt 1996), Mehler reaction (Polle
1996), and photorcapiration (Heber ez af. 1996). In the complex system of whole
plant, there exist, in addition to the mechanisms noted already, various further
regulatory principles (like root-shoot ratio, root excudates, Reining et al 1995;
secondary metabolisimn and isopren or allclopatica emissions, Ilansen and Seufert
1997, Hanscn ef al. 1997; apoptotic mechanisms, Havel and Durzan 1996).

The following hierarchic level of the hydrogen cyele is realized with respect to
bjomass of plants and animals, and to their decomposition [(3/4) in Fig. 3]. While the
time constants of absorption of radiant energy in the photosynthetic antenna are
around ps, the stepwise charge separation needs ps to ns, and the electron transfer
occurs in the ns 10 ms range (Dau 1994, Ebeling er af 1994, van Grondelle er al.
1994). Enzymatic reactions last up to a tew seconds. the biomass production requires
minutes, and growth lasts (depending on species) up to years. This underlines, among
other things, the importance of time constants in the regulation of hierarchic
struclures (Schuster and Heinrich 1987, Tiezzi and Marchettini 1991, 1992, Heinrich
and Schuster 1996).

With increasing duration of storage of the radiation energy fixed by photosynthetic
charge separation on different hierarchic levels in the photosynthetic system (Fig. 3),
the efficicncy of energy conversion decreases. The complexity and negentropy,
however, increase. While the conversion yield in the reaction centre is nearly 100 %7,
we find in saccharides only 3-10 % of the energy absorbed. The efficiency of
biomass production in cultural plants is around 3 %, and calculated on the planetary
basis, the annually formed plant biomass contains only about (.11 % of the incoming
radiation energy (for references see Wiedenroth 1981, Hoffmann 1987),
Nevertheless, the energetic potential annually captured in biomass is 10-40 times
higher than the primary energy used in human society per year (Hoffmann 1977,
Ebeling and Feistel 1994). In this basic process, high efficiency in sensitive structures
(like reaction centres) corrcelates with a decreasing yield in more stable systems
{saccharides, biomass, organisms, populations). In living nature, mechanisms were
evolved to reduce this decrease of cfficiency (loss terms). Converscly, these loss
terms compete in a sophisticated way with the processes enabling loss terms as
"pricc" for the system maintenance under varying exogenous and endogenous
conditions.

The elimination of [nes terma (for example hy hreeding) increages the sensitivity
of a cultivar, which requires special assistance (irrigation, fertilizers, pesticides, efc.;
e.g., comparc growth of Triticum aestivim 1., with that of Agropyron repens 1.} and
1g, in a long time scale, ecologically as well as economieally mistaken. In other
words: the accumulation of endogenous reserves according to the overflow concept
(Lambers 1983) or the redundance hypothesis (Lawton and Brown 1993) or to
apoptotic capacity (from cells to tissues and organs, like leaf or early fruitfall, Iavel
and Durzan 1996) is an important factor for the system maintainance.

*Radiation energy is always accompanied by entropy, thus it cannot be completely converted into
other forms of energy (Kabelac and Drake 1992).
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Light and life

The summarizing scheme (Fig. 3) shows the integration of photosynthesis in the
cosmic energy/entropy flow. Entropy is also a measure of complexity (Chapman
1988, Peliti and Vulpani 1988, Ebeling and Feistel 1986, 1994, Leuschner 1989,
Prigogine 1989, Stahl 1993, Schneider and Kay 1995), and the continuous decrease
of entropy (accumulation of negentropy) by the irreversible conversion of free energy
provides the thermodynamic basis of life (Harold 1986, Leuschner 1989, Tiezzi and
Marchentini 1992, Ebeling and Feistel 1994). Contrary, Klippel and Miiller (1997)
and Klippel (1997) argue that photosynthesis and transpiration must proceed in the
presence of excess air, more than is needed for bringing the necessary CO, to the
plant. In this manner the transpired water finds enough air to create a sufficiently big
entropy of mixing to offset the entropy decrease of the reaction [CO; + HO =
1/g CsH 206 + O,]. According to this idea, light ensures only the energetic part. In
this hypothesis, however, photosynthesis is exclusively identified with glucose
synthesis, and all other energetically important cumulative and dissipative basic
mechanisms are neglected.

As Fig. 3 also makes clear, the CO, and O,-cycles are in the final analysis

attributes of the "hydrogen evolution”. Over a long-time scale, however, these cycles
were not always closed. So the retardation of degradation of organic carbon
compounds gave rise to coal, oil, and gas accumulation in the earth as well as to the
oxygen enrichment in the atmosphere (Lovelock 1992, Holzmiiller 1995). More or
less the same is valid for the nitrogen cycle. The energy loss terms on the different
system levels as well as the combustion heat leave the earth in form of 360 K
radiation {photons). Because of the expansion of the universe in the present phase,
the entropy dust is diluted (Ebeling and Feistel 1986, 1994, Stahl 1993). So by the
photon driven photosynthetic hydrogen generator (confined to the carth) the
evolution of living structures (increase of negentropy) at the expense of increasing
entropy in the earth’s surrounding is thermodynamically in balance —according to
Schrodinger's premise of order from disorder (Schneider and Kay 1993). The causal
connection between photosynthetic radiation conversion and [ife-enabeling
negentropy-accumulation was characterized already by Boltzmann 1905 (p. 40) Ly
the following (translated):
"The general struggle for existence among living beings is therefore not a struggle
for elementaly resources—these clementary resources are supcrabundantly present in
the atmosphere, water, and soil-—neither for energy which is abundantly present,
though unfortunately inconvertible, in every body, but is a struggle for entropy which
becomes available as a result of the transference of energy from the hot sun to cold
earth. To make best use of this transference, the plants unfold their immense wealth
of leaves and enforce the sun's energy in as yet unknown ways, before deteriorating
1o the earth's temperature level, to carry out chemical syntheses, of which our
laboratories are as yet ignorant. The products of this chemical brewery form the
object of struggle for the animal world."

Under the aspect of the unity of the world, also the evolution of mind and even of
humanities (animal-man-brain-thinking-efc.} may be integrated in the course of
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hydrogen evolution, in our connection basically mediated by the apparatus enabling
oxygenic photosynthesis [(4) in Fig. 3; Riedl 1973, Broda 1975, Bresch 1977, Unsold
1983, Gierer 1986, Mlikovsky and Novak 1087, Grassmann 1988, Haken 1988,
Hoffmann 1990, 1991, Stahl 1993, Fbeling and Feistel 1994, Mainzer 1994, Kelso
and [Haken 1995). These devclopments take place non-linearly, and are in possession
of the capacity for oscillatoric and chaotic behaviour, including all the consequences
connected with it (Pool 1989, Hastings ef ¢/ 1993, Hess 1994, Ilcinrich and Schuster
1996).

From the cnergetic point of vicw, oxygenic photosynthesis cffeets a decrcase of
the velocity in cosmic energy flow thus producing stable structures at the expense of
efficiency. The photosynthetic apparatus, spread over our planet, is to be understood
like a "water mill", scooping hydrogen from the water by means of radiation cnergy,
lifting it on increasing levels of complexity, driven by the solar photon flow in ways
in which the atmosphere and biosphere begin representing a self-regulating system
which finally comprises the wholc carth (acting like a superorganism: Gaia-
Hypothesis, Lovelock 1992},

Human society during the industrial revolution, starting with the invention of the
steam engine, has practically connected an electric motor with this "water mill”,
thereby increasing the velocity of energy flow in order to enlarge efficiency, with the
consequences of increasing destabilization of the biosphere in all its parts. By the
development of worldwide gigabyte multimedia networks whole mankind acts nearly
synchronously like a "superman', thus increasing the velocity of the so-called
progress in orders of magnitude (Markl 1996). But the discussion of these
antagonisms hetween the evolution in nature and the development of societies (Ried!
1973, Hoffmann 1990, 1991, Stahl 1993, Ebeling and Feistel 1994, Markl 1996)
cannot be the topic of this review.
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