

BRIEF COMMUNICATION

The effect of abscisic acid and methyl jasmonate on carbonic anhydrase activity in pea

G.N. LAZOVA, M.I. KICHEVA*, L.P. POPOVA

*Institute of Plant Physiology, Bulgarian Academy of Sciences,
Acad. G. Bonchev St., Bldg. 21, BL-1113 Sofia, Bulgaria*

Abstract

Short-term (2 h) treatment with 10 μ M abscisic acid decreased stomatal conductance and net photosynthetic rate, and increased carbonic anhydrase activity in pea seedlings. The treatment with 10 μ M methyl jasmonate did not significantly affect these parameters.

Additional key words: intercellular CO_2 concentration; net photosynthetic rate; plant hormones; stomatal conductance; *Pisum sativum*.

The intensive research on plant response to various environmental stresses during the last years has revealed a role for both abscisic acid (ABA) and jasmonates (jasmonic acid, JA, and its methyl ester, JA-Me) as signalling molecules or stress-modulating compounds. Increased endogenous levels of ABA and/or jasmonates have been found in plants suffering drought, osmotic stress, wounding, etc. Leaf photosynthetic activity is considerably reduced by water stress as well as by long-term treatment of plants with ABA or JA (Popova *et al.* 1987, 1988). Carbon dioxide input to the leaf and its supply to the carboxylation sites within the chloroplast are generally limited in those cases. However, a very recent study on short-term application of both effectors to barley seedlings has revealed marked differences in ABA and JA influence on stomatal conductance for CO_2 and biochemical capacity for photosynthesis (Metodiev *et al.* 1996).

The CO_2 diffusion within leaf mesophyll during C_3 photosynthesis is facilitated by the enzyme carbonic anhydrase (CA, E.C. 4.2.1.1). Although CA activity appears to

Received 2 June 1997, accepted 2 July 1998.

*Corresponding author: fax: ++359 2 73 99 52; e-mail: maya@obzor.bio21.acad.bg.

Abbreviations: C_a - ambient CO_2 concentration; C_i - intercellular CO_2 concentration; g_s - stomatal conductance for CO_2 ; P_N - net photosynthetic rate at ambient CO_2 concentration.

Acknowledgements: This research was supported by a grant from the National Fund for Scientific Investigations (K-511), Bulgaria.

be non-limiting to the net photosynthetic rate (P_N) at ambient CO_2 concentration (Majeau *et al.* 1994, Price *et al.* 1994), its role may become substantial to maintenance of the photosynthetic carbon assimilation when carbon dioxide input through stomata is reduced. Thus, an increased CA activity has been found in salt- and drought-stressed plants, and after long-term treatment with ABA and JA, when stomatal conductance for CO_2 is low (Popova *et al.* 1991, 1996, Kicheva and Lazova 1997). The aim of present study is to determine if the activity of soluble CA changes in response to short-term treatment of pea seedlings with either ABA or JA-Me.

Pea (*Pisum sativum* L. cv. Ran) seedlings were grown for 10 d in a growth chamber at irradiance of $160 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ PAR, 12 h-photoperiod, 24°C , and relative humidity of 50 %. Seedlings were treated with either $10 \text{ } \mu\text{M}$ ABA or $10 \text{ } \mu\text{M}$ JA-Me through the transpiration stream for 2 h. P_N and stomatal conductance for CO_2 (g_s) were measured by the Portable Photosynthesis System *LI-6000* (*Li-Cor*, USA) at irradiance of $170 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ PAR. The activity of soluble CA was determined in leaf extract by measuring the pH decrease at 2°C as described by Popova *et al.* (1996). Enzyme activity was estimated in Wilbur Anderson units [$1 \text{ unit} = 10(t_0-t)/t$, in which t and t_0 represent the time for a pH decrease from 8.3 to 7.8 with and without enzyme, respectively]. Soluble protein was determined according to Bradford (1976).

Short-term treatment of pea seedlings with ABA caused decrease in P_N and g_s similarly as in the long-term experiments (Popova *et al.* 1987, Seemann and Sharkey 1987). In contrast to ABA, JA-Me neither reduced P_N nor g_s when applied to seedlings for 2 h (Table 1). These observations in pea corresponded to the very recent findings of Metodiev *et al.* (1996) in barley seedlings subjected to both exogenous ABA and JA for a period up to 2 h. Under JA-Me treatment, the C_i/C_a ratio did not change while it decreased slightly after ABA treatment (Table 1). Our measurements indicated that short-term treatment with JA-ME has a positive effect on leaf photosynthesis.

Table 1. Leaf gas exchange characteristics of pea seedlings treated with abscisic acid or methyljasmonate for 2 h: P_N - net photosynthetic rate at 650 mg m^{-3} ambient CO_2 concentration; g_s - stomatal conductance for CO_2 ; C_i/C_a - ratio of intercellular to ambient CO_2 concentration. Means \pm SE of four independent experiments.

Treatment	P_N [$\text{mg}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$]	g_s [cm s^{-1}]	C_i/C_a
Control	0.143 ± 0.015	0.55 ± 0.06	0.98
$10 \text{ } \mu\text{M}$ JA-Me	0.167 ± 0.025	0.53 ± 0.03	0.98
$10 \text{ } \mu\text{M}$ ABA	0.068 ± 0.012	0.06 ± 0.01	0.93

The activity of soluble CA increased significantly only in response to ABA treatment, and the increase was 75 % (Table 2). Our results indicated that CA activity was high when g_s was decreased by the treatment applied, *i.e.* exogenous ABA. This observation resembled previously reported effects of both ABA and water stress on CA activity in barley and wheat (Popova *et al.* 1996, Kicheva and Lazova 1997).

Higher CA activity in pea leaves had been also found when plants were transferred to a low C_i (Majeau and Coleman 1996). It seems that CA activity is inversely proportional to C_i . Experiments with transgenic tobacco plants possessing low-CA activity support the speculation that plants possibly compensate for the low chloroplastic CA activity by increasing stomatal conductance, and thereby increasing C_i (Majeau *et al.* 1994). We suggest that increased CA activity detected in response to ABA treatment could compensate for the reduced C_i .

Table 2. Carbonic anhydrase (CA) activity and soluble protein content in leaf extracts from pea seedlings treated with abscisic acid or methyl-jasmonate for 2 h. Means \pm SE of three independent experiments.

Treatment	CA activity [10^6 (unit) kg^{-1} (protein)]	Protein content [g kg^{-1} (fresh mass)]
Control	1837 \pm 139	29.3 \pm 0.3
10 μM JA-Me	1916 \pm 103	28.4 \pm 0.5
10 μM ABA	3229 \pm 148	28.6 \pm 0.2

In conclusion, short-term effects of ABA and JA-Me on pea CA activity were found to differ markedly. They were connected with the changes in stomatal conductance.

References

Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - *Anal. Biochem.* **72**: 248-254, 1976.

Kicheva, M.I., Lazova, G.N.: Response of carbonic anhydrase to polyethylene glycol-mediated water stress in wheat. - *Photosynthetica* **34**: 133-135, 1997.

Majeau, N., Arnaldo, M., Coleman, J.R.: Modification of carbonic anhydrase activity by antisense and over-expression constructs in transgenic tobacco. - *Plant mol. Biol.* **25**: 77-385, 1994.

Majeau, N., Coleman, J.R.: Effect of CO_2 concentration on carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. - *Plant Physiol.* **112**: 569-574, 1996.

Metodiev, M.V., Tsonev, T.D., Popova, L.P.: Effect of jasmonic acid on the stomatal and nonstomatal limitation of leaf photosynthesis in barley leaves. - *J. Plant Growth Regul.* **15**: 75-80, 1996.

Popova, L.P., Lazova, G.N., Miteva, T.S.: Abscisic acid, jasmonic acid and NaCl effect on carbonic anhydrase activity in barley leaves. - *Comp. rend. Acad. bulg. Sci.* **44**: 51-54, 1991.

Popova, L.P., Tsonev, T.D., Lazova, G.N., Stoinova, Z.G.: Drought- and ABA-induced changes in photosynthesis of barley plants. - *Physiol. Plant.* **96**: 623-629, 1996.

Popova, L.P., Tsonev, T.D., Vaklinova, S.G.: A possible role for abscisic acid in regulation of photosynthetic and photorespiratory carbon metabolism in barley leaves. - *Plant Physiol.* **83**: 820-824, 1987.

Popova, L.P., Tsonev, T.D., Vaklinova, S.G.: Changes in some photosynthetic and photorespiratory properties in barley leaves after treatment with jasmonic acid. - *J. Plant Physiol.* **132**: 257-261, 1988.

Price, G.D., Caemmerer, S. von, Evans, J.R., Yu, J.-W., Lloyd, J., Oja, V., Kell, P., Harrison, K., Gallagher, A., Badger, M.R.: Specific reduction of chloroplast carbonic anhydrase activity by

antisense RIVA in transgenic tobacco plants has a minor effect on photosynthetic CO_2 assimilation. - *Planta* **193**: 331-340, 1994.

Seemann, J.R., Sharkey, T.D.: The effect of abscisic acid and other inhibitors on photosynthetic capacity and the biochemistry of CO_2 assimilation. - *Plant Physiol.* **84**: 696-700, 1987.