

Interactive effects of sulphur dioxide and mineral nutrient supply on photosynthetic characteristics and yield in four wheat cultivars

M. VERMA*, M. AGRAWAL***, and S.S. DEEPAK**

Department of Botany, Govt. P.G. College, Shivpuri - 473551, M.P., India*

Ecology Research Laboratory, Botany Department, Banaras Hindu University, Varanasi - 221 005, U.P., India**

Abstract

Field experiments were conducted on four cultivars of wheat (*Triticum aestivum* L.) to examine the variability in cultivar response to sulphur dioxide (SO_2) under different concentrations of mineral nutrients. Thirty-days-old plants were exposed for 8 weeks to $390 \pm 20 \text{ } \mu\text{g m}^{-3}$ (0.15 ppm) SO_2 for 4 h per day, 5 d per week. Decline in net photosynthetic rate, contents of pigments and nitrogen, biomass and grain yield of each cultivars were due to SO_2 at all the nutrient concentrations studied. However, the magnitude of reduction was higher in plants grown without nutrient application. On the basis of the reductions in photosynthesis and yield, the susceptibility of wheat cultivars to SO_2 was in the order of Malviya 213 > Malviya 37 > Malviya 206 > Malviya 234 at recommended dose of NPK, whereas the same without the nutrients was Malviya 206 > Malviya 234 > Malviya 213 > Malviya 37.

Additional key words: biomass; carotenoids; chlorophyll; nutrients; sulphur dioxide; wheat.

Introduction

Adverse effects of SO_2 on various plants are well known (Wilson and Murray 1990, Verma and Agrawal 1996, Kooij *et al.* 1997). SO_2 commonly reduces growth and yield either with or without foliar injury (Rao and DeKok 1994, Khan and Khan 1994). Reductions in the contents of photosynthetic pigments (Verma and Agrawal 1996), inhibition of physiological processes (Darrall 1986, Saxe 1991) and alteration in metabolic functions and enzyme activities (Okpodu *et al.* 1996) and nutrient uptake (Agrawal and Verma 1997) have often been reported effects of SO_2 . SO_2 is harmful even at low concentrations (Rao and DeKok 1994), however, Tausz *et al.* (1996) reported no significant adverse effect on growth at low concentration of SO_2 . Interspecific and intraspecific variations in the susceptibility of plants to SO_2 were also observed (Alscher *et al.* 1987, Agrawal and Verma 1997).

The phytotoxicity of SO_2 strongly depends on environmental factors - both climatic and edaphic, their concentrations, and duration of exposure. Mineral nutrient supply may increase pollutant injury to crops (Ormrod *et al.* 1973, Pell *et al.* 1990), but some studies have indicated that plants grown at low nutrient supply are more sensitive to SO_2 injury (Van Haut and Stratmann 1970, Ayazloo *et al.* 1980, Rajput and Agrawal 1994).

There is a dearth of information on physiological variation among tropical wheat cultivars to SO_2 and their interaction with the supply of mineral nutrients in the field. The present investigation was, therefore, conducted to quantify the physiological and yield responses of four wheat cultivars grown under SO_2 stress in the field at different mineral nutrient concentrations.

Received 9 December 1998, accepted 22 January 1999.

Abbreviations: C = control; Chl = chlorophyll; E = transpiration rate; F_0 = plants without addition of NPK; F_1 = plants with recommended dose of NPK; F_2 = plants with doubled dose of NPK; P_N = net photosynthetic rate; T = SO_2 treated.

Acknowledgments: Authors thank Farm In-charge, Institute of Agricultural Science, B.H.U. for providing field facilities. MV thanks the Council of Scientific and Industrial Research, New Delhi for Research Associateship. SSD is thankful to University Grants Commission, New Delhi for Senior Research Fellowship.

Materials and methods

Our experiments were done at the Agricultural Research Farm, Banaras Hindu University, Varanasi ($25^{\circ}18'N$ latitude and $83^{\circ}1'W$ longitude, at an elevation of about 76 m a.s.l.) situated in the eastern part of Ganges plains in India. The experimental design was a randomised split plot design with three factors (1) wheat cultivars, (2) mineral nutrient concentrations, and (3) SO_2 treatment.

The seeds of wheat (*Triticum aestivum* L.) cultivars Malviya 206 (M 206), Malviya 234 (M 234), Malviya 213 (M 213), and Malviya 37 (M 37) were obtained from the Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, B.H.U. Seeds were sown 15 cm apart from each other in 72 plots each of 1.5×1.5 m size for all cultivars at 3 different nutrient concentrations, *i.e.*, without NPK supplemented (F_0), with recommended NPK dose (120, 80, 40 kg ha^{-1} , respectively) (F_1), and with double recommended NPK dose (F_2). A half dose of N and full doses of P and K were given as basal dressings and another half dose of N was given as a top dressing. N, P, and K were applied as urea, single superphosphate, and muriate of potash. In total for each cultivars, 18 plots were maintained. For each cultivar a set of three plots of each nutrient levels were randomly selected and plants were exposed for 8 weeks to $390 \pm 20 \mu g m^{-3}$ (0.15 ppm) SO_2 concentration in $1.5 m^3$ open top chambers, starting from 30-d age for 4 h daily, 5 d per week (Verma and Agrawal 1996). Chambers were supplied with charcoal filtered air. SO_2 gas was provided by SO_2 cylinders, its amount released into the chamber was regulated and maintained with a valve and

calibrated flow meter. The desired concentration within the chambers was achieved by dilution with carrier air ($56\,000\,cm^3\,s^{-1}$). The control plants were also placed in identical chambers, but without SO_2 .

For analyses, the plants were randomly sampled from each plot in triplicate in 30-d intervals up to 75 d. The values presented in this paper are those for 75-d-old plants.

The portable photosynthesis system (*LI-6200, LI-COR*, Lincoln, U.S.A) under ambient conditions was used for measurement of net photosynthetic (P_N) and transpiration (E) rates on the third leaf below the apex of the stem. For total biomass determination, monoliths of $10 \times 10 \times 20\,cm^3$ with intact roots were carefully dug out randomly for each control and treated plants. The monoliths were thoroughly washed after placing them on sieves of 1 mm mesh size under the running tap water to remove the soil particles adhering to the root system. The plants were then oven-dried at $80^{\circ}C$ until constant mass. The amounts of total chlorophyll (Chl) and carotenoids were measured according to Maclachlan and Zalik (1963), and Duxbury and Yentsch (1956), respectively.

Total nitrogen content was determined using the micro-Kjeldahl technique (Misra 1968). Sulphate sulphur content [$g\,kg^{-1}$ (d.m.)] was determined by using the turbidimetric method (Rossum and Villarruz 1961). Grain yield was determined [$g\,m^{-2}$] after final harvest.

The significance of differences between treatments was calculated by Student *t*-test.

Results

SO_2 fumigation severely hampered plant growth in comparison to control plants. P_N was reduced significantly due to SO_2 exposure as compared to the control one in all cultivars. Reduction varied with cultivars and nutrient concentrations (Fig. 1). E was reduced in all the cultivars at F_0T and F_1T as compared to their respective controls (Fig. 2). In F_2T plants, E either increased or remained unchanged in comparison to control plants of all the cultivars.

Total Chl content decreased in all the cultivars at all nutrient concentrations as compared to their respective controls (Table 1). Carotenoid content also decreased

significantly in SO_2 -treated leaves as compared to control at each nutrient level but the reduction was larger in F_0T plants of all the cultivars (Table 1). In all the cultivars of wheat, N content decreased significantly due to SO_2 treatment at each nutrient level, whereas sulphate sulphur content increased in SO_2 -treated plants (Table 2).

Total plant biomass decreased significantly in all SO_2 treated plants (Fig. 3). At the time of harvest, yield m^{-2} was lower in all the SO_2 treated plants as compared to their respective controls. The highest decrease was always observed in F_0T plants of all the cultivars (Fig. 4).

Discussion

The decrease in Chl content due to SO₂ treatment may be ascribed either to inhibition of Chl synthesis (Malhotra 1977) or its destruction (Shimzaki *et al.* 1980). However, Bytnarowicz *et al.* (1987) did not find any significant change in Chl concentration of wheat plants exposed to 393 µg(SO₂) m⁻³. Nutrient amendment lowered the magnitude of reduction in Chl content as compared to unamended plants. Nitrogen supply increases leaf photosynthesis *via* the amounts of N-containing component such as ribulose-1,5-bisphosphate carboxylase/oxygenase activity (Sivasankar *et al.* 1993) and also by increasing Chl formation (Agrawal and Verma 1997). However, N and P deficiency reduces the Chl concentration (Lawlor *et al.* 1989, Rousseau 1990).

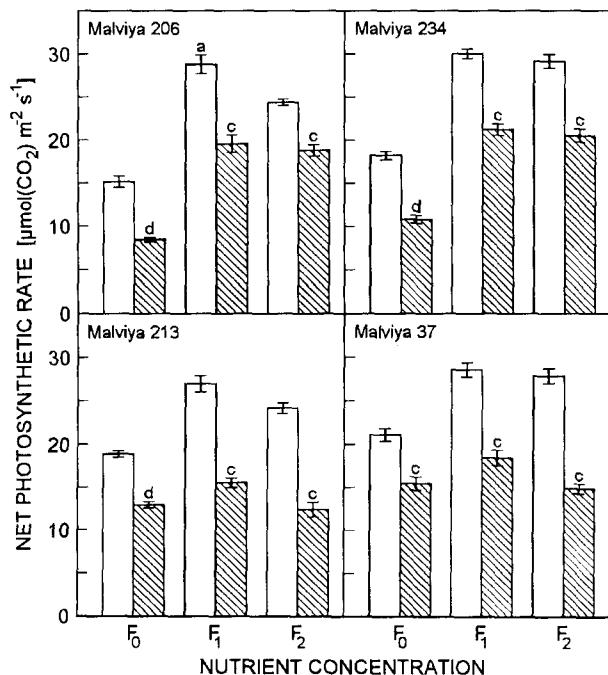


Fig. 1. Net photosynthetic rate (P_N) of control (empty columns) and SO₂-treated (shaded columns) wheat cultivars grown at different nutrient concentrations. Significant differences between control and treated plants: a - $p < 0.05$; b - $p < 0.01$; c - $p < 0.005$; d - $p < 0.001$.

In all cultivars, P_N decreased significantly in SO₂-treated plants. Decline in P_N due to SO₂ was also found in other studies (Führer *et al.* 1993, Niewiadomska and Miszalski 1995, Strand 1995). Continuous exposure to SO₂ even at low concentration inhibits P_N in wheat (Darrall 1989, Verma and Agrawal 1996). Lower P_N was ascribed mainly to the effects on the mesophyll tissue. Both inactivation of ribulose-1,5-bisphosphate carbo-

xylase and lower levels of the substrate, ribulose biphosphate, have been reported (Caemmerer and Farquhar 1981, Darrall 1989). Varietal differences considered above may be attributable not only to differences in the

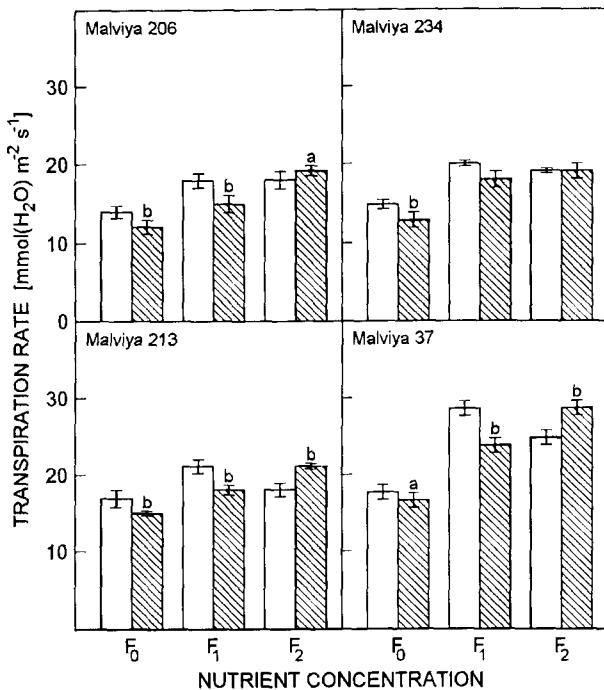


Fig. 2. Transpiration rate (E) of control (empty columns) and SO₂-treated (shaded columns) wheat cultivars grown at different nutrient concentrations. Significant differences between control and treated plants: a - $p < 0.05$; b - $p < 0.01$; c - $p < 0.005$.

sensitivity of plant tissues, but also in the proportion of the exposure concentration penetrating to the tissues. P_N was directly correlated with sulphate content in leaves. SO₂ exposure reduced E in F₀T and F₁T plants compared to the respective controls, whereas the same generally increased in F₂T plants which also showed greater decline in P_N compared to F₁T plants (Fig. 2). This suggests that at double recommended dose of NPK more SO₂ entered in plant tissue and, consequently, P_N remained lower in these plants compared to those at recommended dose.

The SO₂ treatment resulted in significant reduction in biomass accumulation in all the cultivars. Accumulation of dry matter was higher in fertilizer-amended plants as compared to the unamended ones. As biomass accumulation and productivity are an integrated result of all biochemical, physiological, and metabolic activities in plants, their reduction confirms that SO₂ directly

interferes with various fundamental functional processes of plants resulting in lower biomass.

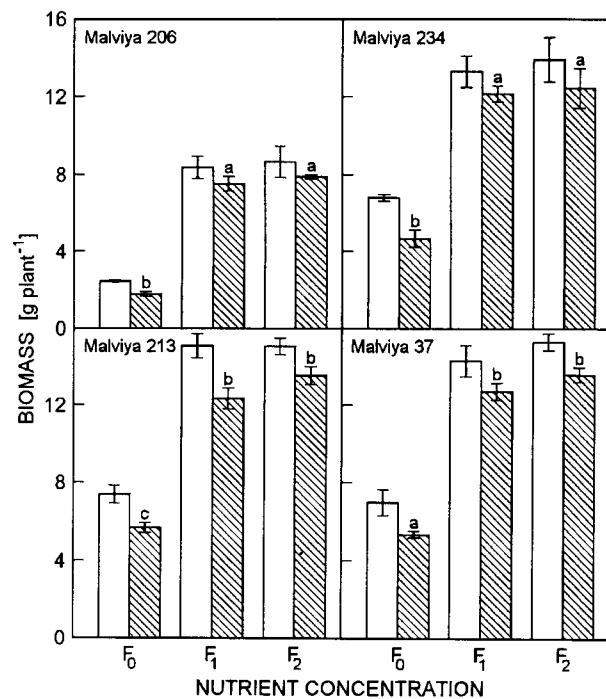


Fig. 3. Total biomass of control (empty columns) and SO₂-treated (shaded columns) wheat cultivars grown at different nutrient concentrations. Significant differences between control and treated plants: a - $p < 0.05$; b - $p < 0.01$; c - $p < 0.005$; d - $p < 0.001$.

In all the cultivars, N content of leaves was lower in all treated plants compared to the control. SO₂ exposure often lowers foliar nutrient concentrations (Garsed *et al.* 1981, Nandi *et al.* 1985, Agrawal and Verma 1997). Foliar N content was almost similar in F₁C and F₂C plants in all cultivars, which suggests that mineral uptake from soil not only depends upon soil nutrient status but also on demand of nutrient during particular growth period. Wilson and Murray (1990) reported higher sulphate sulphur content in plant parts exposed to SO₂. In this experiment, increase in sulphate-S was observed in all the cultivars and maximum accumulation of it was observed in F₀T plants. Response variations between cultivars have also been observed. The lower content of sulphate-S and better growth in SO₂-treated plants grown on nutrient amended soil compared to unamended ones suggest that nutrient application has stimulated plant growth and a large proportion of absorbed sulphur due to SO₂ exposure is being utilised in metabolic processes rather than accumulated as SO₄²⁻. Mass *et al.* (1987) reported that sulphate-S accumulation

represents the accumulation of sulphur in excess of assimilation.

The significant decrease in grain yield due to SO₂ may be attributed to the lowering of P_N. This finding supports the report of Darrall (1989). Increase in yield of fertiliser supplemented plants exposed to ambient air pollutants has also been reported (Anbazhagan *et al.* 1987, Ayer and Bedi 1993, Verma and Agrawal 1996). The supply of macronutrients N, P, and K has increased the yield of all cultivars of wheat by increasing P_N, concentrations of pigments and nutrients, and biomass of fertilized SO₂-exposed plants compared to the unfertilised treated ones. Coleman *et al.* (1989) have also suggested that plants growing in nutrient poor condition may be more sensitive to air pollution with respect to change in carbon gain.

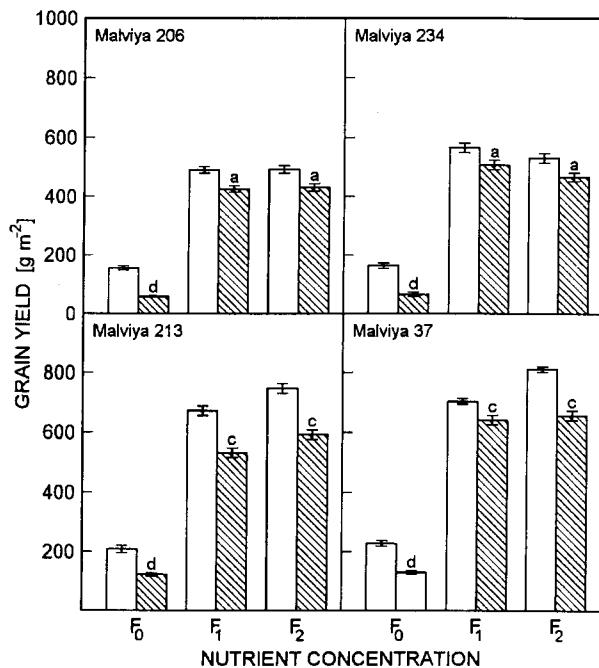


Fig. 4. Grain yield of control (empty columns) and SO₂-treated (shaded columns) wheat cultivars grown at different nutrient concentrations. Significant differences between control and treated plants: a - $p < 0.05$; b - $p < 0.01$; c - $p < 0.005$; d - $p < 0.001$.

Among the different nutrient concentrations, NPK at recommended dose was the best in alleviating the grain yield reduction due to SO₂ exposure in all cultivars. On the basis of photosynthesis and grain yield reductions, the susceptibility level to SO₂ was in Malviya 213 > Malviya 37 > Malviya 206 > Malviya 234 at recommended dose of NPK, whereas the same without the fertiliser application was M 206 > M 234 > M 213 > M 37. This results support that susceptibility of wheat to SO₂ not

only varied with cultivars but also due to fertiliser application. Our experiments suggest that nutrient status modifies the response of wheat cultivars to SO₂.

Cultivars also differed in their ability to compensate for SO₂-induced loss in yield when supplemented with nutrients.

Table 1: Chlorophyll and carotenoid [g kg⁻¹(f.m.)] and nitrogen and sulphate-sulphur [g kg⁻¹(d.m.)] contents of control (C) and SO₂ treated (T) wheat cultivars grown at different nutrient concentrations. Levels of significant difference between control and treated plants: a - $p<0.05$; b - $p<0.01$; c - $p<0.005$; d - $p<0.001$. Values in parentheses represent the percentage increase (+) or decrease (-) relative to controls.

Cultivar	Nutrient concentrations	Chlorophyll		Carotenoids		Nitrogen		Sulphate-sulphur	
		C	T	C	T	C	T	C	T
M 206	F ₀	6.65	4.48 ^d (-32.0)	1.45	1.10 ^d (-24.1)	20.0	16.0 ^a (-20.0)	8.0	20.0 ^d (+150.0)
	F ₁	8.20	6.56 ^d (-20.0)	1.55	1.28 ^c (-17.4)	32.0	30.0 (-6.25)	18.0	26.0 ^c (+44.4)
	F ₂	8.34	6.68 ^d (-19.9)	1.57	1.28 ^d (-18.5)	34.0	32.0 ^a (-5.9)	18.0	26.0 ^c (+44.4)
M 234	F ₀	6.64	4.42 ^d (-33.4)	1.44	1.14 ^d (-20.8)	23.0	18.0 ^a (-21.7)	11.0	20.0 ^d (+81.8)
	F ₁	8.22	6.68 ^c (-18.7)	1.56	1.30 ^b (-16.7)	35.0	32.0 (-8.6)	20.0	24.0 ^b (+20.0)
	F ₂	8.36	6.74 ^c (-19.4)	1.58	1.31 ^b (-17.1)	35.0	31.0 ^a (-11.4)	22.0	24.2 ^b (+10.0)
M 213	F ₀	5.60	3.88 ^d (-23.2)	1.32	1.12 ^c (-15.2)	24.2	18.8 ^a (-22.3)	10.6	20.8 ^d (+96.23)
	F ₁	7.32	6.30 ^b (-13.9)	1.49	1.28 ^a (-14.1)	31.0	25.8 ^a (-16.8)	14.2	23.4 ^b (+64.8)
	F ₂	7.35	6.36 ^a (-13.5)	1.50	1.32 ^a (-12.0)	30.2	24.6 ^b (-18.5)	16.2	24.8 ^d (+53.1)
M 37	F ₀	5.65	4.89 ^d (-22.3)	1.41	1.16 ^c (-17.7)	24.0	19.5 ^a (-18.8)	12.4	20.8 ^d (+67.8)
	F ₁	7.48	6.74 ^b (-9.8)	1.54	1.30 ^b (-15.6)	32.8	28.6 ^a (-12.8)	18.2	22.8 ^b (+25.3)
	F ₂	7.63	6.76 ^b (-11.6)	1.53	1.29 ^b (-15.7)	32.4	26.5 ^b (-18.2)	18.0	22.4 ^c (+24.4)

References

Agrawal, M., Verma, M.: Amelioration of sulphur dioxide phytotoxicity in wheat cultivars by modifying NPK nutrients. - J. Environ. Manage. **49**: 231-244, 1997.

Alischer, R., Bower, J.L., Zipfel, W.: The basis for different sensitivities of photosynthesis to SO₂ in two cultivars of pea. - J. exp. Bot. **38**: 99-108, 1987.

Anbazhagan, M., Krishnamurti, R., Bhagwat, K.A.: Yield of rice under chronic air pollution stress, as influenced by nitrogen. - Ind. Rice Res. Newslett. **12**: 16, 1987.

Ayazloo, M., Bell, J.N.B., Garsed, S.G.: Modification of chronic sulphur dioxide injury to *Lolium perenne* L. by different sulphur and nitrogen nutrient treatments. - Environ. Pollut. **22**: 295-307, 1980.

Ayer, S.K., Redi, S.J.: Mitigation of air pollution effects on wheat by urea spray. - Int. J. Ecol. environ. Sci. **19**: 35-41, 1993.

Bytnarowicz, A., Olszyk, D.M., Kats, G., Dawson, P.J., Wolf, J., Thompson, R.: Effects of SO₂ on physiology, elemental content and injury development of winter wheat. - Agr. Ecosyst. Environ. **20**: 37-47, 1987.

Caemmerer, S. von, Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. - Planta **153**: 376-387, 1981.

Coleman, J.S., Mooney, H.A., Gorham, J.N.: Effects of multiple stresses on radish growth and resource allocation I. Responses of wild radish plants to a combination of SO₂

exposure and decreasing nitrate availability. - *Oecologia* **81**: 124-131, 1989.

Darrall, N.M.: The effect of air pollutants on physiological processes in plants. - *Plant Cell Environ.* **12**: 1-30, 1989.

Darrall, N.M.: The sensitivity of net photosynthesis in several plant species to short term fumigation with sulphur dioxide. - *J. exp. Bot.* **37**: 1313-1322, 1986.

Duxbury, A.C., Yentsch, C.S.: Plankton pigment monographs. - *J. mar. Res.* **15**: 91-101, 1956.

Führer, G., Payer, H.D., Pfanz, H.: Effects of air pollutant on the photosynthetic capacity of young Norway spruce trees. Responses of single needle age classes during and after different treatments with O_3 , SO_2 or NO_2 . - *Trees* **8**: 85-92, 1993.

Garsed, S.G., Rutter, A.J., Relton, J.: The effects of sulphur dioxide on the growth of *Pinus sylvestris* on two soils. - *Environ. Pollut.* **24**: 219-232, 1981.

Khan, M.R., Khan, M.W.: Single and interactive effects of O_3 and SO_2 on tomato. - *Environ. exp. Bot.* **34**: 461-469, 1994.

Kooij, T.A.W.V., DeKok, L.J., Haneklaus, S., Schung, E.: Uptake and metabolism of sulphur dioxide by *Arabidopsis thaliana*. - *New Phytol.* **135**: 101-107, 1997.

Lawlor, D.W., Kontturi, M., Young, A.T.: Photosynthesis by flag leaves of wheat in relation to protein, ribulose bisphosphate carboxylase activity and nitrogen supply. - *J. exp. Bot.* **40**: 43-52, 1989.

MacLachlan, S., Zalik, S.: Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley. - *Can. J. Bot.* **4**: 1053-1063, 1963.

Malhotra, S.S.: Effects of aqueous sulphur dioxide on chlorophyll destruction in *Pinus contorta*. - *New Phytol.* **78**: 101-109, 1977.

Mass, F.M., DeKok, L.J., Strik-Timmer, W., Kuiper, P.J.C.: Plant responses to H_2S and SO_2 fumigation. II. Differences in metabolism of H_2S and SO_2 in spinach. - *Physiol. Plant.* **70**: 722-728, 1987.

Misra, R.: *Ecology Work Book*. - Oxford and IBH Publisher, Calcutta 1968.

Nandi, P.K., Agarwal, M., Rao, D.N.: Effects of fumigation of rice plants with sulphur dioxide on photosynthetic pigments and non-structural carbohydrates. - *Agr. Ecosys. Environ.* **18**: 53-62, 1985.

Niewiadomska, E., Miszalski, Z.: Does CO_2 modify the effect of SO_2 on varigated leaves of *Chlorophytum comosum* (Thunb) Bak? - *New Phytol.* **130**: 461-466, 1995.

Okpudu, C.M., Alscher, R.G., Grabay, E.A., Cramer, C.L.: Physiological, biochemical and molecular effects of sulfur dioxide. - *J. Plant Physiol.* **148**: 309-316, 1996.

Ormrod, D.P., Adedipe, N.O., Hofstra, G.: Ozone effects on growth of radish plants as influenced by nitrogen and phosphorus nutrition by temperature. - *Plant Soil* **39**: 437-439, 1973.

Pell, E.J., Winner, W.E., Vinent-Johansen, C., Mooney, H.A.: Response of radish to multiple stresses. I. Physiological and growth responses to changes in ozone and nitrogen. - *New Phytol.* **115**: 439-446, 1990.

Rajput, M., Agrawal, M.: Responses of soybean plants to sulphur dioxide at varying soil fertility regimes. - *Biotronics* **23**: 81-92, 1994.

Rao, M.V., DeKok, L.J.: Interactive effects of high CO_2 and SO_2 on growth and antioxidant level in wheat. - *Phytion (Austria)* **34**: 279-290, 1994.

Rossum, J.R., Villarruz, P.: Suggested methods for turbidimetric determination of sulfate in water. - *J. amer. Water Works Assoc.* **53**: 873, 1961.

Rousseau, J.V.D., Reid, C.P.P.: Effect of phosphorus and ecomycorrhizas on the carbon balance of lobolly pine seedlings. - *Forest Sci.* **36**: 101-112, 1990.

Saxe, M.: Photosynthesis and stomatal response to polluted air and the use of physiological and biochemical responses for easy detection and diagnostic tools. - In: Callow, J.A. (ed.): *Advances in Botanical Research*. Vol. 18. Pp. 1-128. Academic Press, Toronto 1991.

Shimazaki, K., Sakaki, T., Kondo, N., Sugahara, K.: Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO_2 -fumigated leaves of spinach. - *Plant Cell Physiol.* **21**: 1193-1204, 1980.

Sivasankar, A., Bansal, K.C., Abrol, Y.P.: Nitrogen in relation to leaf area development and photosynthesis. - *Proc. ind. nat. Sci. Acad. B* **59**: 235-244, 1993.

Strand, M.: Persistent effects of low concentrations of SO_2 and NO_2 on photosynthesis in Scots pine (*Pinus sylvestris*) needles. - *Physiol. Plant.* **95**: 581-590, 1995.

Tausz, M., DeKok, L.J., Stolen, I., Grill, D.: Physiological responses of Norway spruce trees to elevated CO_2 and SO_2 . - *J. Plant Physiol.* **148**: 362-367, 1996.

Van Haut, H., Stratmann, H.: *Farbtafelant über Schwefeldioxide Wirkungen an Pflanzen*. - Verlag W. Girardet, Essen 1970.

Verma, M., Agrawal, M.: Alleviation of injurious effects of sulphur dioxide on soybean by modifying NPK nutrients. - *Agr. Ecosys. Environ.* **57**: 49-55, 1996.

Wilson, S.A., Murray, F.: SO_2 -induced growth reductions and sulphur accumulation in wheat. - *Environ. Pollut.* **66**: 179-191, 1990.