Properties of photosynthetic bacteria in anisotropic rigid matrix and in suspension

A. PLANNER††, M. HARA*, Z. STACHOWIAK***, and J. MIYAKE*

National Institute for Advanced Interdisciplinary Research, AIST/MITI, 1-1-4 Higashi, Tsukuba, Ibaraki 305-8562, Japan*
Institute of Physics, Poznań University of Technology, Piotrowo 3, 60-963 Poznań, Poland**
Central Laboratory of Batteries and Cells, Forciecna 12/14, 61-362 Poznań, Poland***

Abstract

The photosynthetic bacteria (Rhodospirillum rubrum, Synechococcus and Anabaena variabilis) as well as their fragments embedded in isotropic and anisotropic polymer film were investigated. The orientation of photosynthetic pigments inside these organisms was compared, on the basis of the polarised absorption and fluorescence spectra, with the macroscopic orientation of investigated objects seen under microscope. The anisotropy of fluorescence was much higher than anisotropy of absorption. It showed strong influence of the photoselection by polarised radiation on the various bacterial chromophores exhibiting different orientations in the cells and various yields of fluorescence. The dimensions of cells were investigated on the basis of their photographs and by the scattering of the monochromatic radiation.

Additional key words: Anabaena variabilis; cyanobacteria; fluorescence microscope photographs; orientation; polarized spectra; polyvinyl alcohol film; purple bacteria; radiation scattering; Rhodospirillum rubrum; Synechococcus.

Introduction

Spectra and photographs of biological objects taken in polarised radiation deliver several information about the structure and function of the investigated samples (Breton and Vermeglio 1982, Frąckowiak et al. 1986, Michl and Thulstrup 1986, Martyńśki et al. 1998). The anisotropy obtained on the ground of polarized absorption and fluorescence spectrum is a function not only of the orientation of transition moments (TM) of absorption and emission of absorbing and emitting molecules located in such objects, but it also depends on the angular distribution of whole objects around the orientation axis (Frąckowiak et al. 1986, Martyńśki et al. 1998). In order to separate the contributions related to macroscopic objects orientation from the effects due to ordering of chromophores in the cell frame besides the polarised spectra, the photographs of samples with fluorescence and transmission microscope equipped with polarisers should be taken (Martyńśki et al. 1998).

In this paper photographs were taken of the following organisms: Rhodospirillum rubrum (purple bacterium), Synechococcus and Anabaena variabilis (cyanobacteria) embedded in isotropic and stretched polyvinyl alcohol polymer film and located on a glass plate. The orientation of the investigated bacteria in polymer film was established and compared with anisotropies of absorption and fluorescence as calculated from polarised spectra. The fluorescence spectra were measured in the region 400-900 nm. The results received from the photographs are discussed together with polarised absorption and fluorescence spectra as measured previously for similar samples (Erokhina et al. 1980, Frąckowiak et al. 1990, Cegielski et al. 1992, Planner et al. 2000).

Martyńśki et al. (1998) showed for green bacteria that in a polymer matrix the clusters of bacteria and

Received 23 March 2000, accepted 25 May 2000.

†† Author for correspondence; fax: (48), (61) 6652324; e-mail: planner@phys.put.poznan.pl.

Abbreviations: BCHl a = bacteriochlorophyll a; BPhe a = bacteriopheophytin a; DHP = dihydrorhodoporphyrin; PVA = polyvinyl alcohol; TM = transition moment.

Acknowledgements: We thank Prof. D. Frąckowiak for the discussions of the results. A. Planner acknowledges financial support from the National Institute for Advanced Interdisciplinary Research, AIST/MITI, Japan (Japanese-Polish Cooperation Joint Project No 3, RJ-3) and from the Polish Committee for Scientific Research (KBN Grant 6 P04A 010 17, 1999/2001).
bacteria fragments occur. Therefore, now the dimensions of the investigated objects were established not only from photographs of polymer samples and samples adsorbed on glass plates but also from scattering of radiation on bacteria and bacteria fragments suspended in culture medium. It was done in order to proof if clusters were formed only after embedding the sample in PVA or already in the culture medium. The fragments of bacteria were investigated because in some cases (Frańkowski et al. 1990) they exhibit higher degree of orientation in stretched polymer than whole cells.

Materials and methods

The cyanobacteria (Anabaena variabilis and Synechococcus) and purple bacteria (Rhodospirillum rubrum) were from the collection of the Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, Pushchino (Russia) (Frańkowski et al. 1990, 1995). Methods of culturing bacteria were those used previously (Erokhina et al. 1980, Erokhina 1991, Frańkowski et al. 1995). For the exact description of growing medium for cyanobacteria see Watanabe (1960). Purple bacteria were cultured using the Hunter medium and irradiation by incandescent lamp.

Whole bacteria and their fragments (obtained by sonication for 15 min at 4 °C and centrifugation at 36 000×g) were introduced into an aqueous solution of polyvinyl alcohol (PVA). Films were prepared from PVA solution mixed with resin in order to obtain non-acidic solvent (pH from 7.0 to 7.4). The PVA films were prepared and stretched as previously described (Fiksiński and Frańkowski 1980). Fragments of bacteria for scattering experiments were obtained by sonication at room temperature at a frequency of 40 kHz and power of ultrasonic 50 W. The observation of the sonicated suspension shows that only a part of bacteria was disrupted.

The sample photographs were taken by means of a fluorescence microscope (Olympus, AX80TR, Japan) equipped with a 4CCD Colour Camera (Olympus) with image improve and HCl amplifier (Olympus Flower). Most pictures were taken at 100×, 200×, or 500× magnifications. The fluorescence was excited by polarised using the 420–480 nm band for excitation. Additionally, polariser was also located in the fluorescence beam. The average lengths of objects measured from 15 objects in the same picture were established (Table 1). The averaged angles between the long axis of cells or cell fragments and film axis were also established (Table 2). The pictures of the samples in transmitted radiation were also taken and used for measurements of lengths and angles (Tables 1 and 2).

The absorption spectra were collected using a Shimadzu UV-V-1601 spectrophotometer, whilst the fluorescence spectra were obtained with a Hitachi F4500. From the polarized absorption the orientation factor \(S_{abs} = (\mathbf{A} \cdot \mathbf{a})(\mathbf{A} \cdot \mathbf{a} + 2\mathbf{a}_s) \) was calculated (Table 2). For stretched samples the four following polarised components of fluorescence were measured: VVV, VVH, VHV, and VHH (V - vertical, H - horizontal). The first and last letters refer to the direction of electric vector of exciting and emitted radiation, respectively, and the middle to the orientation of the axis of PVA film. In a case of non-stretched samples two components (VOV and VOH) were measured (middle O means non-stretched sample). For stretched samples, anisotropy of emission coefficients \(r_e = \frac{VVV - VVV}{VVV + 2VHV} \) for various bands were calculated.

The radiation scattering measurements were performed by means of a Master Sizer S instrument (Malvern Instruments, Malvern, U.K.). As a parameter describing the object dimensions the so-called equivalent sphere diameter (Rawle 1994) was determined. Of course, it is a crude approximation because most of the investigated bacteria are elongated, but from monochromatic radiation scattering some information for the object dimensions can be reached.

The scattering method was applied only in order to evaluate the dimensions of investigated objects, therefore for scattering experiments the wavelength of radiation (632.8 nm) only slightly absorbed by photosynthetic pigments was applied. In such condition, it is predominantly observed the scattering on whole cells or their fragments treated as non-pigmented objects having different refractive index than the culture medium.

Results

Photographs: Fig. 1 shows the photographs of investigated cells and cell fragments taken with the transmission and fluorescence microscope. Fig. 1.A-C presents Synechococcus cells under fluorescence microscope: A on glass plate, B and C in stretched film. In green radiation observation at 500× magnification (Fig. 1.B) dark parts due to glycogen granules are seen, the fluorescent chromophores are distributed rather uniformly in cell volume. The separated chromophores are not visible. Similar pictures for A. variabilis whole bacteria are shown in Fig. 1D-F: in D on glass plate in transmitted radiation, magnification M = 500×; in E in green
Fig. 1. Photographs of the investigated bacteria taken in the fluorescent microscope (A, B, C, E, F, H) and in transmitted radiation (D, G). The wavelengths of fluorescence excitation were from 330 to 385 nm. A, B, and C show whole cells of *Synechococcus*: A on the glass plate, magnification M = 500×, observation at wavelengths longer than 590 nm; B in stretched PVA film, M = 500×, observation in green radiation; C the same sample as in B, M = 100×, observation in red radiation. D, E, and F whole cells of *Anabaena variabilis*: D on the glass plate, M = 500×; E in isotropic PVA film, M = 100×, observation in red radiation; F in stretched PVA, M = 100×. G and H whole cells of *Rhodospirillum rubrum*: G in isotropic PVA film, M = 200×; H in stretched PVA film, observation in green radiation, M = 200×.
radiation, isotropic PVA film, M = 100×; in F stretched PVA film, M = 100×. Fig. 1G-H shows whole bacteria of \textit{R. rubrum}: G in transmitted radiation, in isotropic PVA film; H in fluorescence radiation in stretched film, M = 200×. All three organisms are in stretched films oriented in high degree. The photographs were taken using different combinations of filters in exciting and fluorescence beams, with and without polariser in fluorescence beam. In most cases the pictures observed in radiation polarised parallel to the stretched axis of the film need shorter time of exposition than the picture taken perpendicular to this axis direction of the electric vector of fluorescence radiation to reach optimal exposition established automatically by microscope arrangement. It suggests that more fluorescence TM of BChl \(a\) is located along long axis of bacteria than under large angle with this direction.

![Image](image.png)

Fig. 2. Absorption spectra of the purple bacteria \textit{Rhodospirillum rubrum} in isotropic PVA film. Curves: 1 - whole bacteria, 2 - fragments of bacteria, 3 - pure PVA film.

The lengths of bacteria cells and cell fragments obtained by different methods were comparable (Table 1). The photographs show that fragments are formed predominantly by the division of cells along their long axis. The orientation factor for bacteria cells calculated from photographs of oriented sample was very high (Table 2). The average angle of cell longer axis with film axis was low (Table 2).

Absorption and fluorescence spectra: Both stretched and unstretched samples exhibited some anisotropies of absorption (Fig. 2) and emission (Fig. 3 and Table 2). For

![Image](image.png)

Fig. 3. Examples of polarised fluorescence spectra of \textit{Rhodospirillum rubrum} cells (A, B) and fragments (C, D) in unstretched (A, C) and stretched (B, D) films. Polarised components are marked. The four following polarised components of fluorescence were measured: VVV, VVH, VHV, and VH (V - vertical, H - horizontal). The first and last letters refer to the direction of electric vector of exciting and emitted radiation, respectively, and the middle to the orientation of the axis of PVA film. In non-stretched samples, two components (VOV and VOH) were measured (middle O means non-stretched sample).
purple bacteria some polarised spectra are presented in this paper and some values were taken from literature (Cegielski et al. 1991, 1992). For cyanobacteria the polarised absorption and fluorescence spectra, measured for the same sets of sample, and reported previously (Planer et al. 2000) were used for discussion of the photographs. Anisotropy of absorption of R. rubrum in PVA film and the values S_{max} of others samples were very low (Fig. 2 and Table 2). Anisotropy of fluorescence coefficient r_c (Table 2) was calculated for Bphe a maximum at 799 nm and for dihydrophyrrin (DHP) at 632 and 666 nm.

Similar results as from photographs followed from polarised fluorescence spectra (Fig. 3 and Table 2). Polarised fluorescence spectra were measured only in the region from 400 to 900 nm, i.e., for the emission of degraded BChl a only. It was because of the properties of used spectral arrangement. As follows from fluorescence spectra presented in Fig. 3, part of BChl a was in the investigated sample in a form of Bphe a or DHP but in native R. rubrum cells (Cegielski et al. 1991) Bphe a absorption is located in a similar region (about 800 nm).

Strongest contributions to emission were seen for Bphe a absorbing at 780 nm and fluorescenting (Fig. 3) at 799 nm. The film stretching causes the increase of this emission what can be due to better orientation of DHP transition moment in film plain or to higher degree of degradation of BChl a in stretched than in non-stretched film. Primary donor emission was not observed because of low sensitivity of the used apparatus in long wavelength region and may be also because of photochemical reaction competing with fluorescence emission. Maximum at about 467 nm was due to fluorescence of the PVA film.

Radiation scattering experiments: The scattering of radiation on a sample with Synechococcus (Anacystis nidulans) is shown in culture medium, measured after various time of sonication in Fig. 4. The disintegration of some clusters was followed by the increase of maximum of diameter distribution belonging to whole cells and probably also to cell fragments. For Anabaena cells, the used sonication did not change the dimension distribution (Table 2), and it is known from photographs and literature (Martytyski et al. 1998) that some fragments are formed.

The supposition that cells and cell fragments are spherical, taken for results presented in Fig. 4, is a crude approximation, but it can be used for comparison of dimensions of investigated objects. The diameters of such sphere are comparable with dimensions of cells taken from literature (Trüper and Pfennig 1978) and obtained from photographs (Fig. 1 and Table 1). The diameter of equivalent sphere (Rawle 1994) is located usually between long and short axes of real cells and it is not changed dramatically with cell fragmentation. According to Frackowiak and Januszczcyk (1974, 1975) and Januszczcyk et al. (1969), not the prolonged sonication, using the power and frequency of ultrasound similar to used in this paper, causes the fragmentation only of a part of the cells. The same conclusion follows from Fig. 4 showing the distribution of cell dimensions before sonication and after it. The ultrasound caused predominantly the disruption of cell clusters (for R. rubrum with diameter from about 1.3 till 400 μm). After sonication, the maximum connected with separated cells (which is about 1.3 μm) increased. Last maximum was shifted towards smaller diameters as a result of sonication because of partial fragmentation of whole cells. Prolonged sonication caused the creation of fragments forming big clusters (Fig. 4). The small clusters of cells were also formed. The big clusters could be easily recognised and were not used for the calculation of object length and orientation from the photographs (Table 1).

The present results show that the used scattering measurements are not an effective method for observation of the fragmentation of cells. The diameter of equivalent
Table 1. Average lengths [µm] of bacteria obtained from fluorescence (F) and transmission (T) pictures in microscopic photographs, from radiation scattering experiments (S) and from the \(L = \text{width/length} \) given in the literature. \(S_A \) and \(S_B \) mean diameter obtained from bacteria volume distribution before and after the 15 min sonication of the bacteria in culture medium. The samples were sonicated in Malvern Automated Sample Dispersion Unit (ultrasonic power = 50 W, frequency = 40 kHz, stirrer speed = 16.67 rps). The standard deviation of F and T is 0.4 µm.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dimension F</th>
<th>T</th>
<th>(S_A)</th>
<th>(S_B)</th>
<th>(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anabaena variabilis</td>
<td>3.1</td>
<td>3.3</td>
<td>6.8</td>
<td>3.7</td>
<td>0.5-0.6 (Wolk et al. 1994)</td>
</tr>
<tr>
<td>Synechococcus</td>
<td>7.0</td>
<td>7.5</td>
<td>15.1</td>
<td>5.5</td>
<td>0.6-0.8/2.4 (Simon 1987)</td>
</tr>
<tr>
<td>Rhodospirillum rubrum</td>
<td>7.0</td>
<td>8.0</td>
<td>63.0</td>
<td>3.4</td>
<td>0.8-1.0/7-10 (Pfennig 1978)</td>
</tr>
</tbody>
</table>

Table 2. Orientation degree of the cells and cell fragments in PVA stretched film. \(\Theta \) [degree] - average angle of inclination of the long axis of cell from the film axis, \(S_{abs} \) - pigment orientation coefficient calculated from polarised absorption spectra \(S_{abs} = (A_\perp - A_\parallel)/(A_\perp + 2 A_\parallel) \), where \(A_\perp \), \(A_\parallel \) are the absorption value measured for horizontally and vertically polarised radiation, respectively; \(r_c \) - emission anisotropy coefficient \(r_c = (VVV - VHV)/(VHV + 2 VHV) \), notation of compound in text; \(S_{phot} \) - the orientation coefficient obtained from photographs in fluorescence radiation \(S_{phot} = (L_\perp - L_\parallel)/(L_\perp + 2 L_\parallel) \), where \(L_\perp \), \(L_\parallel \) are the projections of long axis of bacteria on film axis and on perpendicular direction to film axis, respectively; \(\lambda_{abs} \) [nm] - wavelengths of absorption maxima, \(\lambda_{ph} \) [nm] - wavelengths of fluorescence maxima. From Cegielski et al. (1992).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Stretching</th>
<th>(\lambda_{abs})</th>
<th>(S_{abs})</th>
<th>(\lambda_{ph})</th>
<th>(r_c)</th>
<th>(S_{phot})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anabaena variabilis</td>
<td>0 %</td>
<td>436</td>
<td>-0.020</td>
<td>684</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>in PVA film</td>
<td>200 %</td>
<td>671</td>
<td>0.130</td>
<td>738</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2.5 ± 0.5</td>
<td>436</td>
<td>-0.012</td>
<td>684</td>
<td>-0.25</td>
<td>0.69 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>671</td>
<td>0.160</td>
<td>738</td>
<td>-0.26</td>
<td></td>
</tr>
<tr>
<td>Synechococcus</td>
<td>0 %</td>
<td>436</td>
<td>0.009</td>
<td>684</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>in PVA film</td>
<td>200 %</td>
<td>671</td>
<td>0.140</td>
<td>738</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5.5 ± 0.5</td>
<td>436</td>
<td>0.011</td>
<td>684</td>
<td>-0.24</td>
<td>0.62 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>671</td>
<td>0.290</td>
<td>738</td>
<td>-0.24</td>
<td></td>
</tr>
<tr>
<td>Rhodospirillum rubrum</td>
<td>0 %</td>
<td>377</td>
<td>0.000</td>
<td>632</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>in PVA film</td>
<td>200 %</td>
<td>867</td>
<td>0.000</td>
<td>666</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4.5 ± 0.5</td>
<td>377</td>
<td>-0.008</td>
<td>632</td>
<td>0.05</td>
<td>0.45 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>867</td>
<td>0.002</td>
<td>666</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>799</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>880</td>
<td>-0.08*</td>
<td></td>
</tr>
<tr>
<td>Fragments of</td>
<td>0 %</td>
<td>377</td>
<td>0.000</td>
<td>632</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rhodospirillum rubrum</td>
<td></td>
<td>867</td>
<td>0.000</td>
<td>666</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>in PVA film</td>
<td>200 %</td>
<td>867</td>
<td>0.000</td>
<td>666</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>377</td>
<td>0.000</td>
<td>632</td>
<td>0.12</td>
<td>0.15</td>
<td>0.45 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>867</td>
<td>0.006</td>
<td>666</td>
<td>0.15</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>880</td>
<td></td>
<td>666</td>
<td>0.10*</td>
<td>0.10*</td>
<td></td>
</tr>
</tbody>
</table>

sphere for cells of \(A. \) variabilis was larger than that obtained from photographs in transmitted radiation which is an unexpected result (Table 2). Even worse is the result for Synechococcus cells because in this case the diameter of sphere was twice as large than found from photographs. Thus the cells, which are only partially transparent because of absorption of radiation by pigments, can not be investigated by the used apparatus at approximation applied for the evaluation of their dimensions.

As shown by Frąckowiak and Januszczyk (1974, 1975), from radiation scattering using wavelengths absorbed by pigments of organisms and under compensation of the scattering on other membrane (by proper choice of medium) it is possible to observe the dimensions of pigmented elements located inside of

256
organisms. On such a way it was found that sonication changed the inner structure of photosynthetic apparatus (Frańczkowiak and Januszczak 1975) and caused the desegregation of pigments (Januszczak et al. 1969). The last effect can be responsible for the large difference between results obtained by radiation scattering of sonicated cells and photographed cells embedded in PVA film.

Discussion

The dimensions obtained from fluorescence pictures were in most cases smaller than those calculated from photographs taken in transmitted radiation. It is logical because intensively fluorescent are only antennae located inside cells (Fig. 14). These differences depend on the distribution of fluorescent elements in cells. In all cases the anisotropy of fluorescence was higher than that of absorption and it increased as a result of stretching (Table 2). The observed effects agree with other results obtained for oriented cyanobacteria (Frańczkowiak et al. 1996).

The coefficient \(r_c \) (Table 2) shows if there is an orientation of pigment emission transition moments in the cells. In case of only photoselection effect, this coefficient is zero. As shown in Table 2, the DHP exhibited very low degree of orientations whereas BPhe \(a \) (at 799 nm) showed much higher \(r_c \) value. Hence DHP molecules were almost randomly distributed, whereas BPhe molecules were still located in oriented matrix. For fragments, the \(r_c \) values were higher for both spectral regions, which shows that also the DHP at higher degree of macroscopic orientation exhibits the anisotropy \(r_c \). Previous results (Frańczkowiak et al. 1990, 1992, 1995, 1996, Cegielski et al. 1991), obtained for various purple bacteria or their parts located in anisotropic media, show that also the DHP at higher degree of macroscopic orientation exhibits the anisotropy of \(r_c \) and that the anisotropy of emission is much higher than that of absorption. It is due to higher degree of orientation of pigment molecules responsible for fluorescence than average degree of orientation of all absorbing molecules. In fluorescence spectrum, the largest peak in a region 600-700 nm is due to DHP, in region of about 800 nm to BPhe \(a \) (Frańczkowiak et al. 1995). The shorter wavelength emission maxima in a region of 500-600 nm should be due to other BCHl or BPhe \(a \) degraded forms. Such forms are usually created during embedding of organisms in stretched films. These forms exhibit much higher emission intensity in a case of stretched film. The maximum at about 820 nm can be due to BCHl monomeric form (Frańczkowiak et al. 1995).

It may be concluded that:

1. In all investigated organisms the anisotropy of emission radiation was higher than that of absorption. This shows that in bacteria there occur several pools of chromophores exhibiting different orientations and various yields of fluorescence.
2. Bacteria and bacteria fragments were in a high degree ordered in stretched polymer, but anisotropy of emission was observed even in isotropic films.
3. The dimensions of bacteria and bacteria fragments obtained from radiation scattering and from photographs were different. It shows that approximation applied in scattering experiments is not exactly applicable for investigated samples.
4. In investigated bacteria the fragments form clusters, therefore the fragmentation can not improve strongly the orientation. The anisotropy of fragments and whole cells is similar.

References

Erokhina, L.G.: [Composition and content of phycobiliproteins in the cells of symbiotic nitrogen fixing cyanobacteria Anabaena azollae from various species of Azolla.] – Fiziol. Rast. 38: 748-753, 1991. [In Russ.]

