

REVIEW

Thylakoid membrane protein kinase activity as a signal transduction pathway in chloroplasts

A.N. MISRA and A.K. BISWAL

Department of Botany, Utkal University, Bhubaneswar-751004, India

Abstract

In plants external stimuli are perceived through a cascade of signals and signal transduction pathways. Protein phosphorylation and de-phosphorylation is one of the most important transduction paths for the perception of signals in plants. The highest concentrations of plant phospho-proteins are located in chloroplasts. This facilitates the protection of thylakoid membranes from stress-induced damage and augments adaptive strategies in plants. In this review, the protein kinases associated with phosphorylation of thylakoid membrane protein, and the adaptive changes in thylakoid membrane architecture and developmental cues are given. The presence of membrane bound kinases in thylakoid membranes have evolutionary implications for the signal transduction pathways and the photosynthetic gene expression for thylakoid membrane protein dynamics.

Additional key words: D1 protein; evolution; gene expression; light-harvesting complex 2; phosphorylation; photosystems.

Introduction

Sensing a stimulus and communication to plant cells through inter- and intra-cellular chemical messenger systems are known as signal transduction. Living systems, especially plants and animals, share many common signal pathways. Cell signalling in plants involves G-proteins, protein kinases and phosphatases, secondary messengers such as calcium or phospholipid derived molecules (Redhed and Palme 1996) and plant hormones (Palme 1994). Some of the chemical messengers can pass through the plasma membrane and bind to the inter-cellular receptors, which either activate or inactivate

specific genes. However, some chemical messengers do not pass through the plasma membrane but communicate through the chemicals called secondary messengers. The chemical messenger network in plants that perceive, amplify, and transmit the message in plant cells is a network of proteins. The signal transduction takes place through the phosphorylation and dephosphorylation of these proteins mediated by kinases and phosphatases (Blum *et al.* 1988, Dorbak *et al.* 1988, Halper *et al.* 1991).

Protein kinases in plants

More than 70 plant protein kinase genes have been identified. Protein kinases are classified by the amino acids, which are phosphorylated, into the following groups: (1) histidine kinases, (2) tyrosine kinases, and (3) serine and/or threonine kinases. Phospho-proteins were found in plant nuclei, plastids, mitochondria, and membranes (Trewavas and Blowers 1990).

Protein phosphorylation is one of the important signal

transduction pathways affecting many aspects of prokaryotic and eukaryotic metabolism, gene expression, response to environmental stimuli, and plant growth and development (Bennett 1991). The highest concentration of plant phospho-proteins is found in the chloroplast (Bhalla and Bennett 1987). Phospho-proteins, first detected in thylakoid membranes (Bennett 1977) have also been located in other chloroplast compartments; namely

Received 1 June 2000, accepted 18 September 2000.

Fax: +91 (674) 581850; e-mail: misraan@yahoo.co.uk

Abbreviations: Chl – chlorophyll; CP – chlorophyll-protein; Cyt – cytochrome; G-protein – GTP binding protein; LHC – light-harvesting chlorophyll-protein complex; PAR – photosynthetically active radiation; PQ – plastoquinone; PS – photosystem; Q_A – primary electron acceptor in PS2 reaction centre; Q_B – secondary electron acceptor in PS2 reaction centre.

the soluble phase or stroma (Foyer 1985), chloroplast ribosomes (Guitton *et al.* 1984), the outer (Soll and

Discovery of protein kinase in chloroplasts

Phosphorylation of thylakoid proteins was first observed in isolated irradiated pea chloroplasts supplied with ^{32}P -orthophosphate (Bennett 1977). In the dark-to-light adaptation of thylakoid membranes, some proteins are phosphorylated by a steadily active kinase, some proteins are phosphorylated only in darkness, and few in both light

Buchanan 1983) and inner envelope membranes, and the inter-envelope space (Soll and Bennett 1988).

LHC phosphorylation and state transitions

The adaptation of thylakoid membranes by protein phosphorylation to changes in radiation is a complex process, but changes in irradiance and quality of radiation is accompanied by phosphorylation or dephosphorylation of several thylakoid proteins (Allen 1992, Gal *et al.* 1997). These proteins belong to photosystem 2 (PS2). Most of the thylakoid protein kinase reactions are redox dependent (Alfonso *et al.* 1999, 2000, Silverstein *et al.* 1993a,b, Vener *et al.* 1998). Green algae and higher plants can acclimate to changes in the spectral quality of radiation through a phenomenon known as the state I-to-state II transitions (Myers 1971, Barber 1982, Telfer *et al.* 1983, Fork and Satoh 1986). The irradiation conditions and kinetics of state transitions are comparable to those

and darkness. Various classes of protein kinases are isolated from thylakoid membranes. Two kinases with molecular masses of 28 and 38 kDa (Lin *et al.* 1982, Lucero *et al.* 1982) and a third protein kinase (M_r 64 kDa) were identified in thylakoids (Coughlan and Hind 1986).

Signal transduction pathway(s) in LHC phosphorylation

Reversible changes in LHC2 phosphorylation in response to successive exposure to PS1 radiation and PS2 radiation were observed both *in vivo* and *in vitro* (Horton and Black 1980, Owens and Ohad 1982, Bennett 1983, Delepelaire and Wollman 1985, Bhalla and Bennett 1987, Bennett *et al.* 1988). But in *Chlamydomonas reinhardtii* the *in vivo* changes in LHC2 phosphorylation are more dramatic if the redox state of the pool is manipulated through changes in chlororespiration (Delepelaire and Wollman 1985, Vener *et al.* 1995, 1997, Alfonso *et al.* 2000). The energy transducing membrane systems in cyanobacteria contain both aerobic respiration and oxygenic photosynthesis components such as PQ pool, Cyt b_{6f} complex, and PC (or Cyt c_{553}) (Hirano *et al.* 1980,

of reversible LHC2 phosphorylation (Telfer *et al.* 1983). When PS2 is overexcited relative to PS1 (under 645 nm radiation), chloroplasts are driven into state II. Then the PQ pool and the cytochrome complex(es) become reduced and the LHC2 kinase is activated. As a result the detachment of LHC2 units from PS2 α -centres and migration of some of these LHC2 units to PS1 occur. Thus state II corresponds to phosphorylation of LHC2. Reversibly, over-excitation of PS1 by 710 nm radiation drives chloroplast into state I. It leads to oxidation of PQ and cytochrome complex, inactivation of the kinase, and restoration of a large antenna to PS2 through de-phosphorylation of LHC2; thus state I correspond to de-phosphorylation of LHC2.

Peschek 1987). The redox states of both the respiratory and photosynthetic electron transport could be altered by changing irradiation and nutrient regimes of the microalga or by the addition of electron acceptors and inhibitors (Alfonso *et al.* 2000). These treatments also affect the phosphorylation state of LHC2. The occupancy of Q_0 site in the Cyt b_{6f} by a plastoquinol molecule is the signal for activation of light-dependent LHC2 kinase (Vener *et al.* 1995, 1997, Zito *et al.* 1999). The signal transduction pathway connecting light-driven electron flow with thylakoid protein kinase(s) activation involves the interaction of PQ oxidation of Cyt b_{6f} complex by the reduction of Rieske Fe-S centre and Cyt f (Vener *et al.* 1997, 1998, Zer *et al.* 1999).

Light-induced changes in LHC conformation lead to the phosphorylation

About 75-80 % of the LHC2 is found in stacked membranes, functioning as the peripheral antenna for PS2. A part of the LHC2 pool is mobile and able to migrate laterally from the stacked to the unstacked regions (Kyle *et al.* 1983, Larsson and Andersson 1985). The mobile action is enriched in phosphorylated LHC2, especially the 25-kDa form. The phosphorylated 25 and 27 kDa LHC2 units are detached from PS2 units and

migrate from the stacked membranes to the unstacked membranes (Fig. 1). They then act as antennae for PS1 and decrease the energy transfer to PS2. So the distribution of LHC2 between the two membrane regions of the thylakoid would be determined by a combination of brownian motion and purely local protein-protein interactions that were modulated by phosphorylation of the N-terminus of LHC2. Using a partially purified

thylakoid membrane protein kinase and isolated native LHC2 as well as a recombinant LHC2, Zer *et al.* (1999) demonstrated that irradiation of Chl-protein substrate exposes the phosphorylation site to the kinase. PAR does not activate the phosphorylation of the LHC2 apoprotein nor the recombinant pigment-reconstituted complex lacking the N-terminal domain that contains the phosphothreonine site Thr-6 and/or Thr-7. The exposure of N-terminal domain of LHC2 due to PAR activation was conformed by the increased accessibility of this pigment-protein complex to tryptic cleavage after irradiation (Zer *et al.* 1999). Preferentially, the trimeric form of LHC2 is activated by PAR and is deactivated in darkness. PAR-activated exposure of the LHC2 N-terminal domain to endogenous protein kinase(s) and tryptic cleavage also occurs in thylakoid membranes. These results demonstrated that PAR might regulate thylakoid protein phosphorylation not only *via* the signal transduction loop connecting redox reactions to the

protein kinase activation, but also by affecting the conformational changes in LHC2 (Fig. 2).

The mechanism of phosphorylation-induced dissociation of LHC2 from PS2 during state transition is still not fully understood. The conformational changes induced by phosphorylation of the N-terminal domain of LHC2 (Allen and Nillson 1997, Zer *et al.* 1999) and/or the charge repulsion between the phosphorylated LHC2 and PS2 cores (Barber 1982, Gal *et al.* 1997) may be involved in this process. The non-phosphorylated trimeric form of LHC2 is associated with PS2 (Zer *et al.* 1999). The PAR-induced conformational changes of the non-phosphorylated LHC2 may alter the interaction between PS2 and LHC2 trimers, concomitantly exposing the LHC2 N-terminal domain to the kinase. Subsequently, phosphorylation may stabilise the new conformation of the LHC2 and destabilise the PS2-LHC2 trimer interaction, leading to their dissociation (Zer *et al.* 1999).

Fig. 1. Localisation of the non-phosphorylated LHC2 in the stacked (appressed or grana lamellae) regions of thylakoid membranes. Phosphorylation and migration of LHC2 to unstacked (stroma exposed) lamellae leading to state changes in photosystems (PS1 and PS2).

Phosphorylation of PS2 core polypeptides

Several polypeptides of the PS2 core complex can be phosphorylated in higher plants. They include the D1 and

D2 proteins encoded by the *psbA* and *psbD* genes, as well as the products of the *psbC* and *psbH* genes. In

spinach the phosphorylated residue of all four proteins has been identified as an *o*-phospho-threonine near the N-terminus, which is exposed to the stromal face of the thylakoid membranes (Michel and Bennett 1987, Michel *et al.* 1988). In higher plants the PS2 complex may be assembled in the non-appressed region of the thylakoid membranes before it migrates to the grana region, where it accumulates (Schuster *et al.* 1988, de Vitry *et al.* 1989). The independence of phosphorylation of PS2 proteins from a functional Cyt *b*₆*f* complex was reported also in maize (Bennett *et al.* 1988). This feature distinguishes PS2 phosphorylation from the state transition, which relies on Cyt *b*₆*f* dependent LHC2 protein phosphorylation (Wollman and Lemaire 1988, Allen 1992). LHC2 and PS2 protein phosphorylations are dependent on the reduction of plastoquinone pool (Allen 1992, Ebbert and Godde 1996, Rintamaki *et al.* 1996). Many different roles have been suggested for PS2 phosphorylation, including spatial separation of PS2 complex between grana and stroma lamellae (Mattoo *et al.* 1989, Kruse *et al.* 1997, Summer *et al.* 1997).

Phosphorylated PS2 units are almost entirely restricted to stacked (grana) membranes. Their phosphoryl groups line the 5 nm "partition" gap between the stacked membranes. This partition forms part of the pathway for protons during photosynthesis (Polle and Junge 1986, Junge and McLaughlin 1987) with two protons entering PS2 for each PQ reduced. Many types of PS2 heterogeneity have been observed at the level of antenna and photochemistry, both at the donor and acceptor sides (Govindjee 1990, Hansson and Wydrzynski 1990, Krause and Weis 1991, Melis 1991). There are two types of heterogeneity in PS2 centres. The fast sigmoidal phase of Q_A reduction was related to PS2 α -centres and the subsequent slow phase to PS2 β -centre. PS2- α is located in grana partitions, whereas PS2- β in the stroma-exposed membrane regions (Melis 1991, Kruse

et al. 1997). Analysis of experiments on stacking migration of PS2 polypeptides and LHC2 by PAR-regulated kinase activity *via* a redox control phenomena shows that the phosphorylated PS2 centres probably move enemas with the phosphorylated LHC2 acting as space shuttle between the stacked and un-stacked regions. The de-phosphorylation or reverse migration might also occur.

Phosphorylation of the PS2 core could be in part responsible for the reversible inactivation of 30 % electron transport under PAR. Under excess irradiance, the phosphorylation is a protective mechanism, the effect on each single PS2 polypeptide being different (Packham 1987, Giardi *et al.* 1994). Phosphorylation detaches the CP47 and CP43 from the PS2 core under strong irradiance (Giardi 1993), whereas under physiological irradiance these inner-antenna proteins were localised only in the appressed regions (Callahan *et al.* 1989). Re-synthesis and degradation of PS2 core proteins (particularly the D1 protein) may take place in the non-appressed stroma-exposed regions of the thylakoid membrane (Adir *et al.* 1990). Thus, the detachment of CP43 and CP47 observed under high irradiance could affect the cycle of degradation and re-synthesis of the PS2 core and movement from the appressed grana regions to the non-appressed stroma lamellae regions.

Under physiological and high PAR, D1 phosphorylation is a PAR-dependent step in the process of its degradation and turnover (Callahan *et al.* 1990, Elich *et al.* 1992, Misra 1993). The best-characterised function of the phosphorylation of D1 and D2 proteins is related to photoinhibition. In higher plants, phosphorylation protects these proteins against proteolytic degradation, and plays a role in the degradation repair cycle of D1 and D2 during photoinhibition (Schuster *et al.* 1988, Aro *et al.* 1993, Koivuniemi *et al.* 1995, Ebbert and Godde 1996).

Protein kinase and D1-protein turnover

D1 polypeptide, the 32 kDa protein of PS2 reaction centre, is characterised by extremely fast turnover under photoinhibitory conditions (Mattoo *et al.* 1984, Gong and Ohad 1995, Tyystjärvi *et al.* 1996). This degradation is believed to be due to proteolysis (Misra *et al.* 1991, Misra 1993) and/or to the radicals generated earlier under high irradiance (Sopory *et al.* 1990, Mishra and Ghanotakis 1994, Miyao 1994). The *in vivo* D1 degradation is efficient also in low irradiance (Sundby *et al.* 1993, Keren *et al.* 1995). In isolated pea thylakoids a stimulation of PS2 core protein degradation was found under conditions of thylakoid protein phosphorylation in low irradiance (Georgakopoulos and Argyroudi-Akoyunoglou 1997). The removal of LHC2 from the PS2 core proceeds *via* introduction of the repulsive negative charges of phosphate group in PS2 proteins, a process

that renders the unprotected core proteins vulnerable to free radical attack (Georgakopoulos and Argyroudi-Akoyunoglou 1997). Extremely fast turn-over of the D1 protein of the PS2 heterodimer, observed in the light, is the result of monitoring the degradation of the D1. This degradation seems to be specific for the PS2 protein, and not for the P-subunits of the ATPase nor the LHC2 (Georgakopoulos and Argyroudi-Akoyunoglou 1997). Thylakoids pre-incubated in high irradiance and then incubated in the dark in the presence of ATP do not degrade D1 (Spetea *et al.* 1999), but in the presence of GTP this occurs, with accumulation of the 23-kDa degradation product. The GTP-activated Fts H protease may be involved in this process (Spetea *et al.* 1999). But protein phosphorylation seems to trigger the degradation, and this takes place in the light and not in the dark, unless the

kinase is activated. The ATP stimulation of PS2 core protein degradation may be in some way correlated with protein phosphorylation. D1 degradation is under redox control (Zer *et al.* 1994, Keren *et al.* 1995). On the other hand, kinase activity depends on the redox condition of PQ (Allen *et al.* 1981, Gal *et al.* 1997).

A close correlation observed between PS2 core protein degradation and kinase activity suggests that the two processes are under common control but not directly depend on each other. The kinase activation may lead to phosphorylation of PS2 proteins, which in turn result in disassembly of the PS2 unit and degradation of the heterodimer. Secondly, the PS2 core protein degradation may depend directly on kinase activation. The kinase activation may lead to phosphorylation of a degrading proteolytic system, active in its phosphorylated state

(Georgakopoulos and Argyroudi-Akoyunoglou 1998). As to the first possibility, phosphorylation of PS2 proteins may introduce negative repulsive forces (phosphate groups) in PS2 units, leading to their disassembly; the unprotected core may then be attacked and replenished by newly synthesised proteins *via* activated transcription/translation (Tyystjarvi *et al.* 1996, Georgakopoulos and Argyroudi-Akoyunoglou 1997). As to the second possibility, a mechanism that depends on the phosphorylation states of a degrading protease may be plausible. Whenever the thylakoid kinase activity is high, one might expect the protease to be also phosphorylated and to attack D1/D2. In the presence of kinase inhibitors, irrespective of their mode of action, the protease may be de-phosphorylated and inactive.

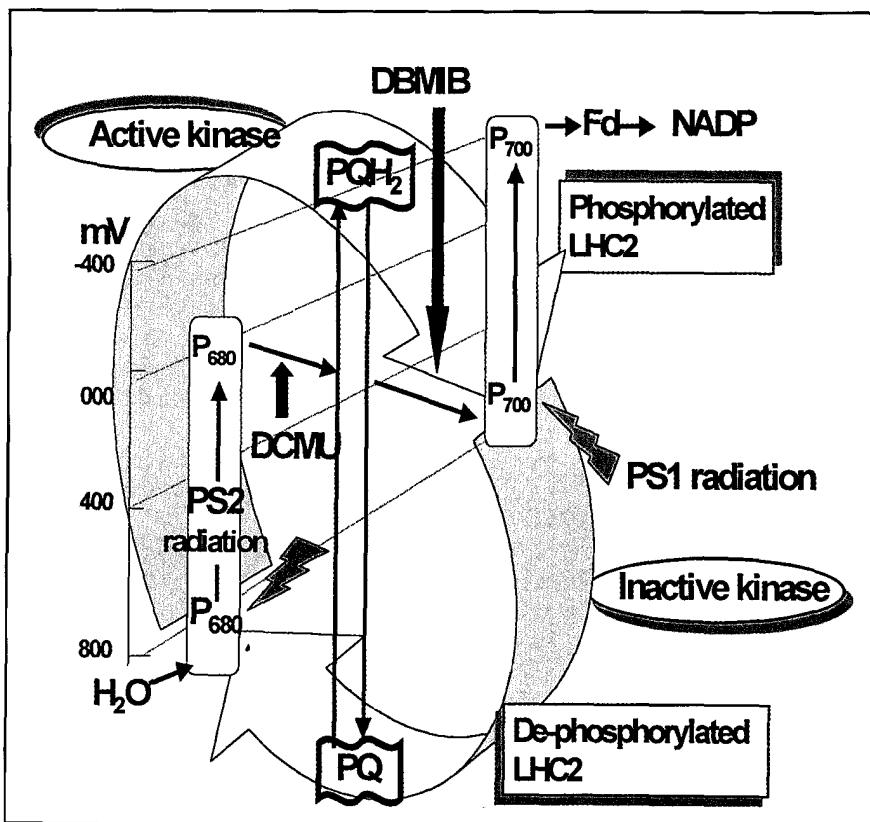


Fig. 2. Regulation of plastoquinone (PQ) redox reactions through photosystem (PS) 2 and PS1 electron transport in thylakoid membranes. The redox states of PQ regulate the active state of kinase and LHC2 phosphorylation. The LHC2 phosphorylation regulates the state transitions in thylakoid membranes.

Implications of D1 protein phosphorylation in chloroplasts

Under stress (water, irradiance) both the level of phosphorylation and the turnover rate of the D1 protein change. The phosphorylation and D1 turnover are strongly correlated so that phosphorylation could be responsible for the regulations of gene expression in higher plants (Allen 1993). The *psbH* protein participates

in regulating and stabilising secondary electron transfer at the level of two PQ acceptors, Q_A and Q_B (Hodges *et al.* 1985, Packham 1987). Phosphorylation of PS2 core proteins reduces the ability of quinones and other artificial electron acceptors (as well as herbicides) to bind to the Q_B sites and as a result these PS2 centres become

artificial electron acceptors (as well as herbicides) to bind to the Q_B sites and as a result these PS2 centres become less efficient in electron transfer (Giardi *et al.* 1988, 1992). The decrease in quinone binding affinity in phosphorylated membranes also suggests that PAR energy causes the reduction in the PQ pool and activates the kinase, and the bound PQ may leave its site as a consequence of its reduction (Bennett 1991) and/or as a consequence of Q_B pocket phosphorylation. In this way phosphorylation of PS2 core proteins might be a mechanism of electron transfer regulation (Giardi *et al.* 1992). Some other effects of protein phosphorylation on PS2 core proteins are:

(a) increased stability (Jursinic and Kyle 1983) or

reduced stability (Hodges *et al.* 1987) of Q_B^- , the anionic semi-quinone form of the secondary electron acceptor of PS2;

- (b) increased negative surface charge density near the primary acceptor, Q_A ;
- (c) stimulation of a hydroxylamine sensitive cyclic flows of electrons around PS2 (Horton and Lee 1983);
- (d) protection against photoinhibition (Horton and Lee 1985);
- (e) decreased connectivity of PS2 units (Kyle *et al.* 1983); and
- (f) inhibition of PAR-saturated electron transfer in PS2 (Horton and Lee 1984, Hodges *et al.* 1985, Packham 1987).

Evolutionary significance of signal transduction pathways in chloroplasts

The chloroplast genes *psbA* and *psbD* encode D1 and D2, the Chl binding proteins that comprise the reaction centre of PS2. Expression of these and other plastid and nuclear genes involved in photosynthesis increases co-ordinately with leaf and chloroplast development (Mullet 1988, 1993). PAR also regulates the initial accumulation of D1, P700, and CP43 during development in higher plants through the PAR-dependent accumulation of Chl, which is needed to stabilise Chl-binding proteins (Mullet *et al.* 1990, Kim *et al.* 1994). Once leaf and chloroplast biogenesis is complete, expression of most plastid genes decreases to levels needed for maintenance of the photosynthetic apparatus (Gamble *et al.* 1988). Synthesis of D1 and D2 is maintained at relatively high levels in mature chloroplasts of developed leaves (Gamble *et al.* 1988). Maintenance of high rates of synthesis of these proteins is needed to replace D1 and D2 sub-units that are damaged and turned over in irradiated plants (Mattoo *et al.* 1984, 1989, Ohad *et al.* 1985, Schuster *et al.* 1988).

Elevated D1 synthesis in mature chloroplasts is paralleled by high levels of *psbA* RNA (Mullet and Klein 1987, Gamble *et al.* 1988, Baumgartner *et al.* 1993). The relatively high abundance of *psbA* mRNA is due primarily to the unusual stability of these transcripts (Kim *et al.* 1993) and to a smaller extent to PAR-induced transcription (Klein and Mullet 1990). Even though *psbA* mRNA levels are relatively constant in dark and light in mature chloroplasts, D1 synthesis is light dependent and regulated at the levels of translation (Fromm *et al.* 1985, Malone *et al.* 1988). Irradiation regulates D1 polypeptide synthesis by ATP-dependent phosphorylation (Danon and Mayfield 1994a) and redox regulated association of an RNA-binding protein complex with the *psbA* RNA 5'-untranslated region (Danon and Mayfield 1994a,b, Constant *et al.* 1997). The stability of *psbA* mRNA is controlled directly or indirectly, more by the redox state of the inter-system electron carriers of the electron transport chain than by PAR (Mohamed and Jansson 1989, Alfonso *et al.* 2000). The decrease in the steady-

state levels of *psaE*, *cpcBA* (Alfonso *et al.* 2000), *psbD*, and *rbcL-S* (Mohamed and Jansson 1989) mRNAs was faster than that of the *psbA* mRNA in darkness. This suggests that *psbA* transcript is more stable than that of other mRNAs, even when general transcription is not inhibited.

Alfonso *et al.* (2000) postulated the following hypotheses for the stability of *psbA* mRNA:

- (a) binding of the factor that influences the stabilisation of mRNA depends directly on the redox state of the thylakoid electron transport chain;
- (b) active degradation of the mRNA depends on D1 translation which progressively decreases in the dark. The *psbA* transcriptional stability increases if *psbA* mRNA translation is inhibited by PAR in the presence of lincomycin or after prolonged irradiation stress (Constant *et al.* 1997).

The formation of translation complexes could be a mechanism to initiate and/or facilitate the turnover of *psbA* mRNA in cyanobacteria or higher plants (Alfonso *et al.* 2000).

Fig. 3 depicts the redox control of photosynthetic genes that could support a novel mechanism for physiological and developmental adjustment of photosystem stoichiometry (Pfannschmidt *et al.* 1999). There is an evolutionary significance of these control systems and signal transduction pathways in chloroplasts. The ancestor of eukaryotic cells acquired many genes upon its merger with the eubacterial ancestors of chloroplasts. Most of the genes were subsequently transferred to the cell nucleus, but a small and relatively constant sub-set of genes remained *in situ*. The chloroplast genetic system permits a direct redox regulation of these genes within the organelle (Allen and Raven 1996). These are the reminiscence of transcriptional control in prokaryotic systems. Pfannschmidt *et al.* (1999) postulates that a rapid and direct regulatory coupling of redox control of photosynthetic gene expression may depend upon the genes concerned present in the same intracellular compartment

the persistence of the prokaryotically derived genes in the chloroplasts and ultimately the dynamics of photo-

synthetic membrane protein complexes.

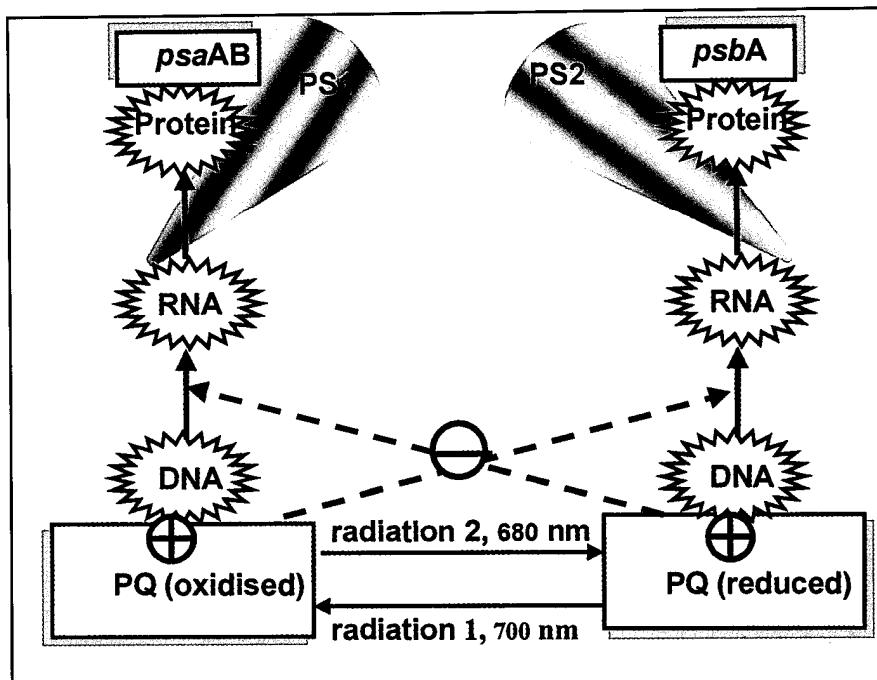


Fig. 3. Redox control of photosynthetic gene expression that regulates the photosystem stoichiometry in chloroplasts. The positive and negative regulation of gene expression is shown in the circles. The *dotted arrows* indicate the signal for negative control and the *continuous arrows* depict the positive regulation of photosynthetic gene expression in photosystem (PS) I and PS2.

References

Adir, N., Schochat, S., Inoue, Y., Ohad, I.: Mechanism of the light-dependent turnover of the D1 protein. - In: Baltscheffsky, M. (ed.): Current Research in Photosynthesis. Vol. II. Pp. 409-413. Kluwer Academic Publ., Dordrecht - Boston - London 1990.

Alfonso, M., Perewoska, I., Constant, S., Kirilovsky, D.: Redox control of *psbA* expression in the cyanobacterium *Synechocystis* strains. - *J. Photochem. Photobiol. B* **48**: 104-113, 1999.

Alfonso, M., Perewoska, I., Kirilovsky, D.: Redox control of *psbA* gene expression in the cyanobacterium *Synechocystis* PCC6803. Involvement of cytochrome *b6/f* complex. - *Plant Physiol.* **122**: 505-515, 2000.

Allen, J.F.: Protein phosphorylation in regulation of photosynthesis. - *Biochim. biophys. Acta* **1098**: 275-335, 1992.

Allen, J.F.: Redox control of gene expression and the function of the chloroplast genomes - an hypothesis. - *Photosynth. Res.* **36**: 95-102, 1993.

Allen, J.F., Bennett, J., Steinback, K.E., Arntzen, C.J.: Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. - *Nature* **291**: 21-25, 1981.

Allen, J.F., Nilsson, A.: Redox signaling and the structural basis of regulation of photosynthesis by protein phosphorylation. - *Physiol. Plant.* **100**: 863-868, 1997.

Allen, J.F., Raven, J.A.: Free-radical induced mutation vs redox regulation: costs and benefits of genes in organelles. - *J. mol. Evol.* **42**: 482-492, 1996.

Aro, E.-M., Virgin, I., Andersson, B.: Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. - *Biochim. biophys. Acta* **1143**: 113-134, 1993.

Barber, J.: Influence of surface charges on thylakoid structure and function. - *Annu. Rev. Plant Physiol.* **33**: 271-295, 1982.

Baumgartner, B.J., Rapp, J.C., Mullet, J.E.: Plastid genes encoding the transcription/translation apparatus are differentially transcribed early in barley (*Hordeum vulgare*) chloroplast development. Evidence for selective stabilization of *psbA* mRNA. - *Plant Physiol.* **101**: 781-791, 1993.

Bennett, J.: Phosphorylation of chloroplast membrane polypeptides. - *Nature* **269**: 344-346, 1977.

Bennett, J.: Regulation of photosynthesis by reversible phosphorylation of the light-harvesting chlorophyll *a/b* protein. - *Biochem. J.* **212**: 1-13, 1983.

Bennett, J.: Protein phosphorylation in green plant chloroplasts. - *Annu. Rev. Plant Physiol. Plant mol. Biol.* **42**: 281-311, 1991.

Bennett, J., Shaw, E.K., Michel, H.: Cytochrome *b6/f* complex is required for phosphorylation of light-harvesting chlorophyll *a/b* complex II in chloroplast photosynthetic membrane. - *Eur. J. Biochem.* **171**: 95-100, 1988.

Bhalla, P., Bennett, J.: Chloroplast phosphoproteins: phosphorylation of a 12-kDa stromal protein by the redox-controlled kinase of thylakoid membranes. - *Arch. Biochem. Biophys.* **252**: 97-104, 1987.

Blum, W., Hirch, K.D., Schultz, G., Weiler, E.W.: Identification of GTP-binding protein in the plasma membrane of higher plants. - *Biochem. biophys. Res. Commun.* **156**: 954-959, 1988.

Callahan, F.E., Ghirardi, M.L., Sopory, S.K., Mehta, A.M., Edelman, M., Mattoo, A.K.: A novel metabolic form of the 32 kDa-DI protein in the grana-localized reaction center of photosystem II. - *J. biol. Chem.* **265**: 15357-15360, 1990.

Callahan, F.E., Wergin, W.P., Nelson, N., Edelman, M., Mattoo, A.K.: Distribution of thylakoid proteins between stromal and granal lamellae in *Spirodela*. Dual location of photosystem II components. - *Plant Physiol.* **91**: 629-635, 1989.

Constant, S., Perewoska, I., Alfonso, M., Kirillovsky, D.: Expression of the *psbA* gene during photoinhibition and recovery in *Synechocystis* PCC 6714: inhibition and damage of transcriptional and translational machinery prevent the restoration of photosystem II activity. - *Plant mol. Biol.* **34**: 1-13, 1997.

Coughlan, S.J., Hind, G.: Purification and characterization of a membrane-bound protein kinase from spinach thylakoids. - *J. biol. Chem.* **261**: 11378-11385, 1986.

Danon, A., Mayfield, S.P.: ADP-dependent phosphorylation regulates RNA-binding *in vitro*: implication in light-modulated translation. - *EMBO J.* **13**: 2227-2235, 1994a.

Danon, A., Mayfield, S.P.: Light-regulated translation of chloroplast messenger RNAs through redox potential. - *Science* **266**: 1717-1719, 1994b.

Delepelaire, P., Wollman, F.-A.: Correlations between fluorescence and phosphorylation changes in thylakoid membranes of *Chlamydomonas reinhardtii* *in vivo*: a kinetic analysis. - *Biochim. biophys. Acta* **809**: 277-283, 1985.

de Vitry, C., Olive, J., Drapier, D., Recouverur, M., Wollman, F.-A.: Post translational events leading to the assembly of photosystem II protein complex: a study using photosynthetic mutants from *Chlamydomonas reinhardtii*. - *J. Cell Biol.* **109**: 991-1006, 1989.

Dorbak, B.K., Allan, E.F., Comerford, J.G., Robers, K., Dauson, A.P.: Presence of guanine nucleotide binding proteins in a plant hypocotyl microsomal fraction. - *Biochem. biophys. Res. Commun.* **150**: 899-903, 1988.

Ebbert, V., Godde, D.: Phosphorylation of PS II polypeptides inhibits DI protein-degradation and increases PS II stability. - *Photosynth. Res.* **50**: 257-269, 1996.

Elich, T.D., Edelman, M., Mattoo, A.K.: Identification, characterization, and resolution of the *in vivo* phosphorylated form of the DI photosystem II reaction center protein. - *J. biol. Chem.* **267**: 3523-3529, 1992.

Fork, D.C., Satoh, K.: The control by state transitions of the distribution of excitation energy in photosynthesis. - *Annu. Rev. Plant Physiol.* **37**: 335-361, 1986.

Foyer, C.H.: Stromal protein phosphorylation in spinach chloroplasts. - *Biochem. J.* **231**: 97-103, 1985.

Fromm, H., Devic, M., Fluhr, R., Edelman, M.: Control of *psbA* gene expression: in mature *Spirodela* chloroplasts light regulation of 32-kd protein synthesis is independent of transcript level. - *EMBO J.* **4**: 291-295, 1985.

Gal, A., Zer, H., Ohad, I.: Redox-controlled thylakoid protein phosphorylation. News and views. - *Physiol. Plant.* **100**: 869-885, 1997.

Gamble, P.E., Sexton, T.B., Mullet, J.E.: Light-dependent changes in *psbD* and *psbC* transcripts of barley chloroplasts: accumulation of two transcripts maintains *psbD* and *psbC* translation capability in mature chloroplasts. - *EMBO J.* **7**: 1289-1297, 1988.

Georgakopoulos, J.H., Argyroudi-Akoyunoglou, J.H.: Implication of D1 degradation in phosphorylation-induced state transitions. - *Photosynth. Res.* **53**: 185-195, 1997.

Georgakopoulos, J.H., Argyroudi-Akoyunoglou, J.H.: Thylakoid protein phosphorylation is suppressed by 'free radical' scavengers: Correlation between PS II core protein degradation and thylakoid protein phosphorylation. - *Photosynth. Res.* **58**: 269-280, 1998.

Giardi, M.T.: Phosphorylation and disassembly of photosystem II core as an early stage of photoinhibition. - *Planta* **190**: 107-113, 1993.

Giardi, M.T., Komenda, J., Masojidek, J.: Involvement of protein phosphorylation in the sensitivity of photosystem II to strong light. - *Physiol. Plant.* **92**: 181-187, 1994.

Giardi, M.T., Marder, J.B., Barber, J.: Herbicide binding to the isolated Photosystem II reaction centre. - *Biochim. biophys. Acta* **934**: 64-71, 1988.

Giardi, M.T., Rigoni, F., Barbato, R.: Photosystem II core phosphorylation heterogeneity, differential herbicide binding and regulation of electron transfer in photosystem II preparations from spinach. - *Plant Physiol.* **100**: 1948-1954, 1992.

Gong, G., Ohad, L.: Rapid turnover of the RCII-DI protein in the dark induced by photoinactivation of photosystem II in *Scenedesmus* wild type and the PSII-donor defective LF-1 mutant cells. - *Biochim. biophys. Acta* **1228**: 181-188, 1995.

Govindjee: Photosystem II heterogeneity: the acceptor side. - *Photosynth. Res.* **25**: 151-160, 1990.

Guitton, C., Dorne, A.-M., Mache, R.: *In organello* and *in vitro* phosphorylation of chloroplast ribosomal proteins. - *Biochem. biophys. Res. Commun.* **121**: 297-303, 1984.

Halper, J.F., Sussman, M.R., Schaller, G.E., Evans, C.P., Charbonneau, H., Harmon, A.C.: Calcium-dependant protein kinase with a regulatory domain similar to calmodulin. - *Science* **252**: 951-954, 1991.

Hansson, O., Wydrzynski, T.: Current perceptions of photosystem II. - *Photosynth. Res.* **23**: 131-162, 1990.

Hirano, M., Satoh, K., Katoh, S.: Plastoquinone as a common link between photosynthesis and respiration in a blue-green alga. - *Photosynth. Res.* **1**: 149-162, 1980.

Hodges, M., Boussac, A., Briantais, J.M.: Thylakoid membrane protein phosphorylation modifies the equilibrium between Photosystem II quinone electron acceptors. - *Biochim. biophys. Acta* **894**: 138-145, 1987.

Hodges, M., Packham, N.K., Barber, J.: Modification of photosystem II activity by protein phosphorylation. - *FEBS Lett.* **181**: 83-87, 1985.

Horton, P., Black, M.T.: Activation of adenosine 5' triphosphate-induced quenching of chlorophyll fluorescence by reduced plastoquinone. The basis of state I-state II transitions in chloroplasts. - *FEBS Lett.* **119**: 141-144, 1980.

Horton, P., Lee, P.: Stimulation of a cyclic electron transfer pathway around photosystem II by phosphorylation of chloroplast thylakoid proteins. - *FEBS Lett.* **162**: 81-84, 1983.

Horton, P., Lee, P.: Phosphorylation of chloroplast thylakoids decreases the maximum capacity of photosystem-II electron transfer. - *Biochim. biophys. Acta* **767**: 563-567, 1984.

Horton, P., Lee, P.: Phosphorylation of chloroplast membrane proteins partially protects against photoinhibition. - *Planta* **165**: 37-42, 1985.

Junge, W., McLaughlin, S.: The role of fixed and mobile buffers in the kinetics of proton movement. - *Biochim. biophys. Acta* **890**: 1-5, 1987.

Jursinic, P.A., Kyle, D.J.: Changes in the redox state of the secondary acceptor of photosystem II associated with light-induced thylakoid protein phosphorylation. - *Biochim. biophys. Acta* **723**: 37-44, 1983.

Keren, N., Gong, H., Ohad, T.: Oscillations of reaction center II-1 protein degradation *in vivo* induced by respective light flashes. - *J. biol. Chem.* **270**: 806-814, 1995.

Kim, J., Eichacker, L.A., Rudiger, W., Mullet, J.E.: Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing apoprotein stability. - *Plant Physiol.* **104**: 907-916, 1994.

Kim, M., Christopher, D.A., Mullet, J.E.: Direct evidence for selective modulation of *psbA*, *rpcA*, *rbcL*, and 16S RNA stability during barley chloroplast development. - *Plant mol. Biol.* **22**: 447-463, 1993.

Klein, R.R., Mullet, J.E.: Light-induced transcription of chloroplast genes. *psbA* transcription is differentially enhanced in illuminated barley. - *J. biol. Chem.* **265**: 1895-1902, 1990.

Koivuniemi, A., Aro, E.M., Andersson, B.: Degradation of D1 and D2 proteins of PSII in higher plants is regulated by reversible phosphorylation. - *Biochemistry* **34**: 16022-16029, 1995.

Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics. - *Annu. Rev. Plant Physiol. Plant mol. Biol.* **42**: 313-349, 1991.

Kruse, O., Zheleva, D., Barber, J.: Stabilization of photosystem two dimers by phosphorylation: implication for the regulation of the turnover of D1 protein. - *FEBS Lett.* **408**: 276-280, 1997.

Kyle, D.J., Staehelin, L.A., Arntzen, C.J.: Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. - *Arch. Biochem. Biophys.* **222**: 527-541, 1983.

Larsson, U.K., Andersson, B.: Different degrees of phosphorylation and lateral mobility of two polypeptides belonging to the light-harvesting complex of Photosystem II. - *Biochim. biophys. Acta* **809**: 396-402, 1985.

Lin, Z.-F., Lucero, H.A., Racker, E.: Protein kinases from spinach chloroplasts. I. Purification and identification of two distinct protein kinases. - *J. biol. Chem.* **257**: 12153-12156, 1982.

Lucero, H.A., Lin, Z.-F., Racker, E.: Protein kinases from spinach chloroplasts. II. Protein substrate specificity and kinetic properties. - *J. biol. Chem.* **257**: 12157-12160, 1982.

Malone, P., Mayfield, S.P., Rochaix, J.-D.: Comparative analysis of biogenesis of photosystem II in the wild type and Y-1 mutant of *Chlamydomonas reinhardtii*. - *J. Cell Biol.* **106**: 609-616, 1988.

Mattoo, A.K., Hoffman-Falk, H., Marder, J.B., Edelman, M.: Regulation of protein metabolism: coupling of photosynthetic electron transport to *in vivo* degradation of the rapidly metabolized 32-kilodalton protein of the chloroplast membranes. - *Proc. nat. Acad. Sci. USA* **81**: 1380-1384, 1984.

Mattoo, A.K., Marder, J.B., Edelman, M.: Dynamics of the photosystem II reaction center. - *Cell* **56**: 241-246, 1989.

Melis, A.: Dynamics of photosynthetic membrane composition and function. - *Biochim. biophys. Acta* **1058**: 87-106, 1991.

Michel, H., Hunt, D.F., Shabanowitz, J., Bennett, J.: Tandem mass spectrometry reveals that three photosystem II proteins of spinach chloroplasts contain *N*-acetyl-*O*-phosphothreonine at their NH₂ termini. - *J. biol. Chem.* **263**: 1123-1130, 1988.

Michel, H.P., Bennett, J.: Identification of the phosphorylation site of an 8.3 kDa protein from photosystem II of spinach. - *FEBS Lett.* **212**: 103-108, 1987.

Mishra, N.P., Ghanotakis, D.F.: Exposure of a Photosystem II complex to chemically generated singlet oxygen results in D1 fragments similar to the ones observed during aerobic photoinhibition. - *Biochim. biophys. Acta* **1187**: 296-300, 1994.

Misra, A.N.: Molecular mechanism of turn-over of 32 kDa herbicide binding protein of photosystem II reaction center. - In: Lodha, M.L., Ramgopal, S., Srivastava, G.P. (ed.): *Advances in Biotechnology and Biochemistry*. Pp. 73-78. IARI, New Delhi 1993.

Misra, A.N., Hall, S.G., Barber, J.: The isolated D1/D2/Cyt b-559 reaction centre complex of photosystem II possesses a serine-type endopeptidase activity. - *Biochim. biophys. Acta* **1059**: 239-242, 1991.

Miyao, M.: Involvement of active oxygen species in degradation of the D1 protein under strong illumination in isolated subcomplexes of photosystem II. - *Biochemistry* **33**: 9722-9730, 1994.

Mohamed, A., Jansson, C.: Influence of light on accumulation of photosynthetic-specific transcripts in the cyanobacterium *Synechocystis* 6803. - *Plant mol. Biol.* **13**: 693-700, 1989.

Mullet, J.E.: Chloroplast development and gene expression. - *Annu. Rev. Plant Physiol. Plant mol. Biol.* **39**: 475-502, 1988.

Mullet, J.E.: The aminoacid sequence of the polypeptide segments, which regulates membrane adhesion (grana stacking) in chloroplasts. - *J. biol. Chem.* **258**: 9941-9948, 1993.

Mullet, J.E., Klein, R.R.: Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels. - *EMBO J.* **6**: 1571-1579, 1987.

Mullet, J.E., Klein, P.G., Klein, R.R.: Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and D1 by increasing apoprotein stability. - *Proc. nat. Acad. Sci. USA* **87**: 4038-4042, 1990.

Myers, J.: Enhancement studies in photosynthesis. - *Annu. Rev. Plant Physiol.* **22**: 289-312, 1971.

Ohad, I., Kyle, D.J., Hirschberg, J.: Light dependent degradation of the Q_B-protein in isolated pea thylakoids. - *EMBO J.* **4**: 1655-1659, 1985.

Owens, G.C., Ohad, I.: Phosphorylation of *Chlamydomonas reinhardtii* chloroplast membrane proteins *in vivo* and *in vitro*. - *J. Cell Biol.* **93**: 712-718, 1982.

Packham, N.K.: Phosphorylation of the 9 kDa photosystem II associated protein and the inhibition of photosynthetic electron transport. - *Biochim. biophys. Acta* **893**: 259-266, 1987.

Palme, K. (ed.): Signals and signal transduction pathways. - *Plant. mol. Biol.* **26** (Spec. Vol.): 1237, 1994.

Peschek, G.A.: Respiratory electron transport. - In: Fay, P., van Baalen, C. (ed.): *The Cyanobacteria*. Pp. 119-161. Elsevier, Amsterdam 1987.

Pfannschmidt, T., Nilsson, A., Allen, J.F.: Photosynthetic control of chloroplast gene expression. - *Nature* **397**: 625-628, 1999.

Polle, A., Junge, W.: The slow rise of the flash light induced alkalinization by photosystem II of the suspending medium of thylakoids is reversibly related to thylakoid stacking. - *Biochim. biophys. Acta* **848**: 257-264, 1986.

Redhed, C.R., Palme, K.: The genes of plant signal transduction. - *CRC crit. Rev. Plant Sci.* **15**: 425-454, 1996.

Rintamaki, E., Kettunen, R., Aro, E.M.: Differential D1 protein dephosphorylation in functional and photodamaged PSII centers. - *Trends biol. Chem.* **21**: 14870-14875, 1996.

Schuster, G., Timberg, R., Ohad, I.: Turnover of thylakoid photosystem II proteins during photoinhibition of *Chlamydomonas reinhardtii*. - *Eur. J. Biochem.* **177**: 403-410, 1988.

Silverstein, T., Cheng, L., Allen, J.F.: Chloroplast thylakoid protein phosphatase reactions are redox-dependent and kinetically heterogeneous. - *FEBS Lett.* **334**: 101-105, 1993a.

Silverstein, T., Cheng, L., Allen, J.F.: Redox titration of multiple protein phosphorylations in pea chloroplast thylakoids. - *Biochim. biophys. Acta* **1183**: 215-220, 1993b.

Soll, J., Bennett, J.: Localization of a 64-kDa phosphoprotein in the lumen between the outer and inner envelopes of pea chloroplasts. - *Eur. J. Biochem.* **175**: 301-307, 1988.

Soll, J., Buchanan, B.B.: Phosphorylation of chloroplast ribulose bisphosphate carboxylase/oxygenase small subunit by an envelope-bound protein kinase *in situ*. - *J. biol. Chem.* **258**: 6686-6689, 1983.

Sopory, S., Greenberg, B.M., Mehta, R.A., Edelman, N., Mattoo, A.K.: Free radical scavengers inhibit light dependant degradation of the 32kDa photosystem II reaction center protein. - *Z. Naturforsch.* **45c**: 412-417, 1990.

Spetea, C., Hundal, T., Lohmann, F., Andersson, B.: Light induced degradation of photosystem II D1-protein is a multi-enzyme catalysed event required for GTP. - *Proc. nat. Acad. Sci. USA* **96**: 6547-6552, 1999.

Summer, E.J., Schmid, V.H.R., Bruns, B.U., Schmidt, G.W.: Requirement for the phosphoprotein H in photosystem II of *Chlamydomonas reinhardtii*. - *Plant Physiol.* **113**: 1359-1368, 1997.

Sundby, C., McCaffery, S., Anderson, J.M.: Turnover of the photosystem II D1 protein in higher plants under photo-inhibitory and nonphotoinhibitory irradiance. - *J. biol. Chem.* **268**: 25476-25482, 1993.

Telfer, A., Allen, J.F., Barber, J., Bennett, J.: Thylakoid protein phosphorylation during State 1-State 2 transitions in osmotically shocked pea chloroplasts. - *Biochim. biophys. Acta* **722**: 176-181, 1983.

Trewavas, A.J., Blowers, D.P.: Protein kinase in plant plasma membrane. - In: *Current Topics in Plant Biochemistry and Physiology*. Vol. 9. Pp. 175-208. Univ. Missouri, Columbia 1990.

Tyystjärvi, T., Mule, P., Maenpää, P., Aro, E.-M.: The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. - *Proc. nat. Acad. Sci. USA* **93**: 2213-2218, 1996.

Vener, A.V., Ohad, I., Andersson, B.: Protein phosphorylation and redox sensing in chloroplast thylakoids. - *Curr. Opin. Plant Biol.* **1**: 217-223, 1998.

Vener, A.V., van Kan, P.J.M., Gal, A., Ohad, I., Andersson, B.: Activation/deactivation cycle of redox-controlled thylakoid protein phosphorylation. - *J. biol. Chem.* **270**: 25225-25232, 1995.

Vener, A.V., van Kan, P.J.M., Rich, P.R., Andersson, B., Ohad, I.: Plastoquinol at the quinol oxidation site of reduced cytochrome *b*_f mediated signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single turn-over flash. - *Proc. nat. Acad. Sci. USA* **94**: 1585-1590, 1997.

Wollman, F.-A., Lemaire, C.: Studies on kinase-controlled state transitions in photosystem II and *b*_f mutants from *Chlamydomonas reinhardtii* which lack quinone-binding proteins. - *Biochim. biophys. Acta* **933**: 85-94, 1988.

Zer, H., Prasil, O., Ohad, I.: Role of plastoquinol oxidoreduction in regulation of photochemical reaction center II D1-protein turnover *in vivo*. - *J. biol. Chem.* **269**: 17670-17676, 1994.

Zer, H., Vink, M., Karen, N., Dilly-Hartwig, H.G., Paulsen, H., Herrmann, R.G., Andersson, B., Ohad, I.: Regulation of thylakoid protein phosphorylation at the substrate level: Reversible light-induced conformational changes expose the phosphorylation site of the light harvesting complex II. - *Proc. nat. Acad. Sci. USA* **96**: 8277-8282, 1999.

Zito, F., Finazzi, G., Delosme, R., Netschke, W., Picot, D., Wollman, F.A.: The Q₀ site of cytochrome *b*_f/complexes controls the activation of the LHC II kinase. - *EMBO J.* **18**: 2961-2969, 1999.