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Abstract

Changes in various components of photosynthetic apparatus during the 6-d dark incubation at 25 °C of detached control
and DCMU-treated Triticum aestivum L. leaves were examined. The rate of photosystem 2 (PS2) activity was decreased
with increase of the time of dark incubation in control leaves. In contrast to this, DCMU-treated leaves demonstrated
high stability by slowing down the inactivation processes. Diphenyl carbazide and NH,OH restored the PS2 activity
more in control leaves than in DCMU-treated leaves. Mn®* failed to restore the PS2 activity in both control and DCMU-
treated samples. Similar results were obtained when F./F,, was evaluated by chlorophyll fluorescence measurements. The
marked loss of PS2 activity in dark incubated control leaves was primarily due to the loss of D1, 33, and 23 kDa
extrinsic polypeptides and 28-25 kDa LHCP2 polypeptides.
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Introduction

Changes in photosynthetic parameters during ageing have
been studied in great detail in many plant species (Sestak
1977, Thomas and Stoddart 1980). The effects of several
physiological and environmental factors on the changes in
chloroplasts during ageing of both attached and detached
leaves have also been investigated. Leaf senescence may
be induced by shading, mineral deficiency, drought, or
pathogen infection (Thomas and Stoddart 1980). In the
absence of such factors, leaf senescence occurs in age
dependent manner in many species (Batt and Woolhouse
1975, Jiang et al. 1993).

The mechanism of chloroplast degradation in attached
leaves (Choe and Thimann 1975, Biswal and Biswal
1988, Nooden et al. 1996) is different from degradation
that occurs in dark in detached leaves (Biswal and
Mohanty 1978, Nedunchezhian et al. 1996). In attached
leaves, senescence is influenced by hormones and
protein-synthesising capacity of the organelles.
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Loss in the total chlorophyll (Chl) and protein
contents (Nedunchezhian et al. 1995) as well as the
disorganisation of the structure of the chloroplast
membranes (Dodge 1970, Jiang er al. 1993) together with
the reduction in ability of photosynthetic CO, fixation
have been reported (Herndndez-Gil and Schaedle 1973).
The structural changes in chloroplast during senescence
begin with a gradual disintegration of the stroma lamellae
followed by the disruption of grana stackings (Dodge
1970). The effects of ageing on the functional
characteristics of isolated chloroplasts have also been
reported (Harnischfeger 1973). Recently, the loss of PS2
activity during ageing of Vigna leaves has been observed
(Nedunchezhian et al. 1996). Although the general
phenomenology of senescence-induced alterations of
some of the photosynthetic activities is known, very little
is known about the specific sites of their alterations or the
sequence of events that occur during these phenomena.
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A number of environmental conditions elicit photo-
system stoichiometry adjustments and changes of the Chl
antenna size of the photosystems in the thylakoid
membrane chloroplasts (Riethman and Sherman 1988).
The ability of photosynthetic organisms to respond to
sub-lethal doses of herbicide is of great practical as well
as fundamental importance. Triazine and urea-type
herbicides block photosynthetic electron transport by
occupying the plastoquinone-binding site of D1. The
response of chloroplasts to sub-lethal concentration of
herbicides has often been studied (Mannan and Bose
1985, Bose ef al 1992, Zer and Ohad 1995, Nedun-
chezhian er al. 1997, Komenda and Masojidek 1998,
Kowalczyk et al. 1998). Invariably, herbicides cause
changes in the structure and composition of thylakoids,
including greater grana size and increased content of un-
saturated lipids (Bose et al. 1992). Concomitantly,

Materials and methods

Plants and DCMU treatment: Wheat (Triticum
aestivum L.) seedlings were grown on three layers of
coarse filter paper in a glass Petri plate at 25 °C under
“white fluorescent light” (1 600 umol m? s) provided by
a bank of cool day fluorescent lamps and 14/10 h
light/dark regime. 20 cm’® of 100 uM DCMU was added
initially. Thereafter, only water was added periodically.

Detached leaves incubated in the dark: About 10-cm-
long segments of fully expanded primary leaves from 10-
d control and DCMU-treated seedlings were cut and
floated on 25 cm’ of double distilled water (15 segments
per plate). The plates were covered and kept in darkness
at 25 °C for 10 d. Samples were removed at every 2-d
interval and used for assays.

Total Chl and protein contents were estimated
spectrophotometrically according to the methods of
Arnon (1949) and Lowry er al. (1951), respectively.

Isolation of thylakoids and PS2 membranes from
control and DCMU-treated seedlings was made according
to Mannan and Bose (1985) and Berthold er al. (1981),
respectively.

Measurement of PS2 activity: Oxygen evolution (PS2
activity) was measured following the method of
Noorudeen and Kulandaivelu (1982) with a Clark-type
electrode (Hansatech) fitted with a circulating water
Jjacket at 27 °C. Actinic radiation from a slide projector
placed on the side of the electrode chamber was filtered
through 9.5 cm of water. The irradiance was 1 100 umol
m? 57 at the surface of the water bath cell. Thylakoids
and PS2 membranes were suspended at 10 g(Chl) m™ in
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a lower Chl a/b ratio and lower B-carotene/xanthophyll
ratio has been reported (Nau¥ and Melis 1992). Plants
grown under 100 uM DCMU had a minimum altered
pigment composition but significant changes in the
photosynthetic electron transport reactions (Kulandaivelu
and Annamalainathan 1991, Komenda et al. 2000).

In this report, we characterised the changes of
photosynthetic ability of wheat thylakoids caused by
stress-induced senescence. The effect of DCMU on
photosynthetic activities of thylakoids was also studied.
We report some specific sequential alteration in the site(s)
for entry of electrons between water and PS2 reaction
centres of photosynthetic apparatus during the dark stress
period. The effect of DCMU, which seems to protect the
donor side of PS2 from dark induced senescence, is also
described.

the assay medium containing 20 mM Tris-HCI, pH 7.5,
10 mM NaCl, 5 mM MgCl,, 5 mM NH,CI, and 100 mM
sucrose supplemented with 500 pM DCBQ, 200 pM
SiMo, and 2 mM K;Fe(CN)g.

DCPIP photoreduction was determined as the decrease
in absorbance at 590 nm wusing a Hitachi 557
spectrophotometer. The reaction mixture (3 cm®) con-
tained 20 mM Tris-HCI, pH 7.5, 5 mm MgCl,, 10 mM
NaCl, 100 mM sucrose, 100 pm DCPIP, and PS2
membranes equivalent to 20 ug of Chl. Where mentioned,
the concentrations of MnCl,, DPC, and NH,OH were 5.0,
0.5, and 5.0 mM, respectively.

Modulated Chl fluorescence in leaves and PS2
membranes was measured on leaf discs using a PAM
2 000 fluorometer (H. Walz, Effeltrich, Germany). F, was
measured by switching on the light modulated at 0.6 kHz;
PPFD was less than 0.1 umol m™ s at the leaf surface. Fi,
was measured at 20 kHz with a 1-s pulse of 6 000 pmol
m? s of “white light”. Modulated Chl fluorescence on
isolated PS2 membranes at room temperature was
measured with the same device in 0.7 cm’® of reaction
mixture containing 50 mm Tris-HCl, pH 7.5, 2 mM
MgCl,, 100 mM sucrose, and 10 pg Chl equivalent PS2
membranes. The integrated measuring irradiance (480
nm) was 0.15 umol m? s’ red actinic irradiance (650
nm) was 100 pmol m™ 5™,

SDS-PAGE: Thylakoids and PS2 membranes were
separated using the discontinuous polyacrylamide gel
system of Laemmli (1970), with the following
modifications. Gels consisted of a 10-18 % gradient of
polyacrylamide containing 4 M urea. Samples were
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solubilised at 20 °C for 5 min in 2 % (m/v) SDS, 60 mM
DTT, and 8 % sucrose using SDS-Chl ratio of 20: 1.
Electrophoresis was performed at 20 °C with constant
current of 5 mA. Gels were stained in methanol/acetic
acid/water (4:1:5, v/v/v) containing 0.1 % (m/v)
Coomassie brilliant blue R and de-stained in
methanol/acetic acid/water (4 : 1 : 5, v/v/v). '

Immunoblotting experiment: The relative content of
some thylakoid proteins was determined immunologically
by Western-blotting. Thylakoids were first solubilised in
5 % SDS, 15 % glycerine, 50 mM Tris-HCI, pH 6.8, and
2 % mercaptoethanol at room temperature for 30 min.
The polypeptides were separated by SDS-PAGE as
described above and proteins were then transferred to

Results

The visible symptom of ageing induced by dark stress in
detached wheat leaves was the gradual yellowing of the
leaf. DCMU prevented the appearance of yellow colour,
as the leaf segments of DCMU-treated seedlings remained
green even 6 d after incubation (results not shown). The
control leaf segments became almost yellow by the sixth
day of dark incubation. Thus for all our experiments the
leaf segments were incubated for 6 d.

Changes in PS2 reaction: To obtain information on PS2
activity, F/Fy,, which reflects the quantum yield of PS2
photochemistry (Krause and Weis 1991), was determined
in vivo using leaf discs which had been dark adapted for
30 min. At the beginning of the experiment the values of
F./Fq in the control and DCMU-treated leaves were 0.87
and 0.75, respectively (Table 1). After 6 d of dark
incubation, the F,/F,, ratio decreased to around 0.53 in
control leaves and to 0.70 in DCMU-treated leaves. F,
was marginally increased in both types of leaves. A
similar increase in F;, has been observed in leaves in

Table 1. Changes in the relative levels of fluorescence emitted
as minimal fluorescence (Fy), variable fluorescence (F,), and the
ratio of variable to maximum fluorescence (F/F,) in the leaves
from control and DCMU-treated leaves incubated for 6 d in the
dark. F, was measured by switching on the modulated radiation
0.6 kHz; PPFD was less than 0.1 pmol m? s at the leaf
surface. F,, was measured at 20 kHz with a 1 s pulse of 6 000
umol m? s of “white light”,

Treatment [d] F, F, F./F,
Control 0  2.00£0.05 16.20+0.45 0.87+0.02
6  2.70£0.06 3.00+0.05 0.5310.01
DCMU 0  4.00£0.10 12.0030.25 0.75+0.02
: 6  43040.11 9.80+0.18 0.7040.02

nitrocellulose by electroblotting for 3 h at 0.4 A. After
saturation with 10 % milk powder in TBS buffer, pH 7.5,
the first antibody in 1 % gelatine was allowed to react
overnight at room temperature. After washing with TBS
buffer that contained 0.05 % Tween-20, a secondary
antibody [Anti-Rabbit IgG (whole molecule) Biotin
Conjugate, Sigma] was allowed to react in 1 % gelatine
for 2 h. The D1 protein was detected using polyclonal
antiserum against spinach D1 protein (kindly provided by
Prof. 1. Ohad, Jerusalem, Israel) and the antibody against
the 33 kDa protein of the water-splitting system (gift from
Dr. R. Barbato, Padova, Italy). The bands were quantified
by densitometry wusing the Bio-image apparatus
(Millipore, Michigan, USA).

anaerobic condition or in leaves from plants grown in
deficiency of Mg and S. In both cases, the increase of F,
was ascribed to the presence of reduced Q. (Setlik ef al.
1990, Godde and Dannehl 1994).
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Fig. 1. Changes in the rate of photosystem (PS) 2 electron
transport activity in thylakoids and PS2 membranes isolated
from control and DCMU-treated leaves at different days of
ageing under dark incubation. The 100 % values are [mmol(O,)
kg (Chl) s'): H,0—DCBQ 42, 27, H;,0—K;Fe(CN) ¢ 36, 22;
H,0-8iMo 25, 24 for thylakoids, and H,0—DCBQ 54, 28;
H,0-K; Fe(CN)s 46, 26; H,0—SiMo 32, 28 for PS2
membranes isolated from control and DCMU-treated leaves,
respectively. Values represent averages of 3 experiments. All
values are significant at +5 % level.

The rate of PS2 activity of thylakoids and PS2
membranes was decreased with increase of the time of
dark incubation in both control and DCMU-treated leaves
(Fig. 1). After 6 d, photosynthetic electron transport from
H,0—DCBQ, H,0—K;Fe(CN)s, and H,0—SiMo was
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reduced by about 73, 67, and 80 % in control leaves and
by 34, 28, and 0 % in DCMU-treated leaves, respectively.

To locate the possible site(s) of inhibition in the PS2
reaction, we followed the DCPIP photoreduction
supported with various artificial electron donors in PS2
membranes isolated from dark incubated control and
DCMU-treated leaves. According to Wydrzynski and
Govindjee (1975), MnCl,, DPC, and NH,OH donate
electrons in the PS2 reaction. In our experiment, the
electron transport activity of PS2 isolated from 6-d dark
incubated control and DCMU-treated leaves was reduced
to about 82 and 52 %, respectively, when water served as
electron donor (Fig. 2). A similar trend was found using
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Fig. 2. Effect of various exogenous electron donors on
photosystem 2 (PS2) activity in PS2 membranes isolated from
control and DCMU-treated leaves at 6 d of ageing under dark
incubation. The 100 % values are [mmol(Q;) kg™'(Chl) s
H,0—DCPIP 54, 31; MnCl,—DCPIP 49, 29; DPC—DCPIP
54, 31; NH,OH—DCPIP 56, 32 for control and DCMU-treated
leaves, respectively. Values represent averages of 3 experi-
ments. All values are significant at +5 % level.

MnCl; as a donor, while using DPC and NH,OH a
significant restoration of PS2 mediated DCPIP reduction
was observed in dark incubated control leaves. In contrast
to this, in dark incubated DCMU-treated leaves PS2
activity was not restored, using neither DPC nor NH,OH
(Fig. 2). )

These results agree with measurements obtained by
modulated Chl fluorescence with various exogenous
electron donors (Fig. 3). The addition of DPC and
NH;OH to control PS2 membranes induced a 75-80 %
increase of variable fluorescence (F,) (Table 2). The
FJ/F, ratio also increased from 0.25 to 0.54. In this
experiment F, was also slightly increased (Fig. 3). These
results indicated that during ageing of control leaves, the
water splitting system is inhibited and, at least in part, the
changes in the Q,™ re-oxidation kinetics may be related to
donor side limitation. On the other hand, during ageing of
DCMU-treated leaves F, increased and F, did not change
by addition of electron donors (Fig. 3).
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Table 2. Changes in the relative fluorescence emitted as
minimal fluorescence (F,), variable fluorescence (F,;), and the
ratio of variable to maximum fluorescence (F/F,) in PS2
membranes isolated from control and DCMU-treated leaves
with or without electron donors. Concentrations of MnCl,,
DPC, and NH,OH were 5.0, 0.5, and 5.0 mM, respectively. The
integrated measuring irradiance (480 nm) was 0.15 umol m? 5™,
red actinic (650 nm) irradiance was 100 ymol m? s,

Treatment Fy F, FJ/Fn
Control 0d 1.90+0.04  3.60+0.11  0.65+0.02
6 d ageing 2.10£0.08 0.70+0.01  0.25+0.01
MnCl, 2.10£0.06  1.10£0.02  0.34+0.01
DPC 2.10£0.07 2.20+0.08 0.51+0.02
NH,O0H 2.10+0.07 2.50+0.10 0.54+0.02
DCMU 0d 3.10£0.08 2.30+0.09 0.43%+0.01
6 d ageing 3.50£0.10 1.80+£0.05  0.34+0.01
MnCl, 3.50+0.10 1.70+0.04 0.33+0.01
DPC 3.50£0.11 1.70+£0.04 0.33+0.01
NH,0H  3.50+0.10 1.70+0.05 0.33+0.02
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Fig. 3. Room temperature chlorophyll (Chl) fluorescence
induction curves from PS2 membranes of control and DCMU-
treated leaves. a (0 d) and b (6 d), without donors; ¢, MnCl,; 4,
NH,OH; e, DPC. The Chl concentration was 10 pg m.
Switching on the measuring irradiation (480 nm, 0.15 pmol m™
s and actinic radiation (650 nm, 100 pmol m™? s™) on T and {
off, respectively.

Changes in thylakoid and PS2 membrane proteins:
Since changes in photosynthetic electron transport
activities could be caused primarily by the changes or
reorganisation of thylakoid components, the polypeptide
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profiles of thylakoids and PS2 membranes were analysed
by SDS-PAGE. After 6 d of leaf incubation, the contents
of 33, 28-25, and 23 kDa polypeptides were significantly
reduced in control leaves, while the loss of these
polypeptides was less pronounced in DCMU-treated
leaves (Fig. 4).

THYLAKOIDS PS2 MEMBRANES
a b € d 8 b c d
[kDa]
-—33
28-25
—23
— 17

Fig. 4. Coomassic blue stained polypeptide profiles of
thylakoids and PS2 membranes isolated from control and
DCMU-treated leaves. Gel lanes were loaded with equal
amount of proteins (100 pg). a, 0 d control; &, 6 d control; ¢, 0
d DCMU; 4, 6 d DCMU.

Changes in D1 and 33 kDa proteins followed by
immunoblet: Photoinactivation of PS2 induces break-
down of the D1 protein (Andersson and Styring 1991,
Pra&il et al. 1992). In systems without protein bio-
synthesis this can be seen directly. In intact plant the cor-

Discussion

Analysis of PS2 activity in thylakoids and PS2
membranes induced by ageing of DCMU-treated leaves
showed that oxygen evolution was inhibited when the
electron acceptor was DCBQ or ferricyanide, but not
inhibited when electron acceptor was SiMo. This
indicates that DCMU-treated leaves were further affected
only on the acceptor side of PS2 during senescence. In
contrast, the rate of PS2 activity was decreased faster
when SiMo was used than with DCBQ in dark-adapted
control leaves. This indicates that the donor side of P82 is

relation between D1 protein content and activity of PS2 is
more complex (Smith e al. 1990, Lutz et al. 1992).

To study ageing, the contents of D1 protein per Chl in
control and DCMU-treated leaves were determined by
Western-blotting (Fig. 5). The relative content of DI
protein decreased by 30 and 67 % in control and DCMU-
treated leaves. Besides the changes in D1 protein, we also
observed a very clear and substantial decrease in the con-
centration of 33 kDa protein of water-splitting system in
ageing leaves. This protein was more drastically
diminished in control leaves than in the DCMU-ireated
leaves (Fig. 5).
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Fig. 5. A: Degradation of D1 and 33 kDa proteins in control and
DCMU-treated leaves. Each lane was loaded to equal amounts
of chlorophyll (5 pg). B: Histogram: Bio-image densitometric
evaluation.

more impaired than the acceptor side during senescence
in control leaves.

Among the artificial electron donors tested, DPC
donates electrons directly to the reaction centre, while
NH,;OH to a site between Z; and Z, (Wydrzynski and
Govindjee 1975). DPC and NH,OH restored PS2 activity
markedly in ageing control leaves and partially in DCMU
treated leaves; this is supported by earlier findings that
the water-oxidising system is sensitive to ageing (Biswal
and Biswal 1988, Nedunchezhian et al. 1996). These
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results were also confirmed by measurement of modulated
Chl fluorescence (see also Rohagek and Bartdk 1999).
After addition of DPC and NH,OH in PS2 membranes
from 6-d aged control leaves, a marked increase in F, was
observed, whereas Fo marginally increased. Hence the site
of senescence is on the oxidising side of PS2, prior to the
NH,OH donation side and perhaps close to or after the
DPC donation side. This is supported by our earlier
reports in Vigna seedlings (Nedunchezhian et al. 1995,
1996). In contrast to this, in PS2 membranes from aged
DCMU-treated leaves a slight increase of F, without any
change in F, was observed when exogenous electron
donors were added. The loss of PS2 activity could only
partially be ascribed to a functional inhibition of PS2
since F./F,, was reduced by about 41 and 8 % in control
and DCMU-treated leaves, respectively. We therefore
assume that it was mainly due to the loss of PS2 centres
or water oxidation complex on a Chl basis. Immunologi-
cal determination of the PS2 reaction centre polypeptides
DI and 33 kDa of the water oxidising complex poly-
peptide confirmed this fact.

The degradation of the D1 protein may be caused by
damage to the PS2 reaction centre protein (Andersson and
Styring 1991, Prasil et al. 1992). We found loss of D1
protein that corresponds fairly well with the values from
the electron transport experiments. The loss of D1 protein
was accompanied by a similar significant decrease in the
content of 33 kDa protein of the water splitting system,
showing that the whole PS2 is rapidly degraded under
prolonged dark stress. A similar phenomenon was ob-
served by Schuster er al. (1986) and by Miyao er al.
(1995) under photoinhibition.

The most likely explanation for the inactivation of
electron transport activity is that the related protein(s)
is(are) exposed at the thylakoid surface (Seidler 1994),
From the polypeptide profiles of ageing control and
DCMU-treated thylakoids and PS2 membranes, a signifi-
cant loss of 33, 28-25, and 23 kDa polypeptides was
observed in control leaves and smaller losses in DCMU-
treated leaves. Three extrinsic proteins of 33, 23, and 17
kDa associated with the lumenal surface of thylakoid
membranes are required for optimal functioning of the
oxygen-evolving machinery. The three proteins are
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