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Abstract

Pigment contents of chloroplasts and net photosynthetic rate were dramatically reduced in maize leaves suffering from
iron deficiency. However, the reduction in photosynthesis was probably not caused by decreased contents of chloro-
phylls and carotenoids and by photon absorption; the primary limiting factor for photosynthesis may rather be the de-
crease of electron transport activity in photosystem 1. Iron-deficient leaves suffered serious acceptor-side photoinhibi-
tion, and more than 60 % of absorbed photons were dissipated, while less than 40 % was used in photochemical reaction.
Thermal energy dissipation depending on xanthophyll cycle and D1 protein turnover was enhanced when acceptor-side
photoirhibition occurred in iron-deficient maize leaves.
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Introduction

Iron is important in the synthesis of chlorophyll (Chi) in
higher plants, and leaves suffering from iron deficiency
show damaged chloroplast structure and decreased Chl
content (Terry and Abadia 1986). As the Chl content de-
creases, the amount of absorbed excitation energy may
decline, possibly leading to a decrease in the amount of
excitation energy distributed to photochemical reaction.
Iron is a constituent component of the photosynthetic
_electron transport chain: both photosystem (PS) 1 and
PS2 complexes contain iron-proteins. The PS1 complex
is particularly abundant in iron due to its four Fe-S
proteins. The Fe-S protein synthesis is inhibited in iron-
deficient leaves and the decreased size and activity of
PS1 is attributed to the absence of this protein (Sandmann
and Malkin 1983). The content of iron in PS2 is lower
than that in PS1, but iron here plays a role in water
splitting (Hulsebosch et al. 1996); thus also in PS2 the
iron-deficiency may lead to decreased activity. Iron may
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play different roles in individual photosystems. The kind
of damage of PS1 and PS2 caused by iron-deficiency may
be different. If PS1 is damaged more seriously than PS2,
acceptor-side photoinhibition is observed, whereas if PS2
is damaged more seriously, donor-side photoinhibiton is
observed. Are the two kinds of photoinhibition associated
with different energy dissipation mechanisms? If the
activity of carbon assimilation decreases, more excess
energy will result. Thus, the iron-deficient leaves will
face greater risk of photodamage. Iron-deficiency may
affect the photosynthetic apparatus in various ways.
However, less information is available about how
excitation energy may be distributed, and what is the
main mechanism of energy dissipation that protects iron-
deficient leaves against photodamage. Our objective was

'to gain a coherent understanding of the effects of iron-

deficiency on photoprotection mechanisms.
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Materials and methods

Plants: The experiments were done in Tai-an city, Shan-
dong Province, China, in July and August of 1999. Maize
(Zea mays L.) plants (cv. Luyull) were grown in Hoa-
gland nutrient solutions with and without iron (iron was
introduced into the medium as FeSO,) under natural irra-
diation. The nutrient solutions of control and iron-defi-
cient treatments were replaced 3 times a week and ad-
justed to pH 5.0+0.5 with HCIl. After the plants had
grown for 7 weeks, at which time serious symptoms of
iron deficiency appeared, the youngest fully expanded
leaves were used for measurements. Iron content of Hoa-
gland nutrient solutions with and without iron measured
by atomic absorption spectroscopy (WFD-Y, Japan) was
0.802 kg m™ in the control nutrient solution and unde-
tected in iron-deficient nutrient solution, which indicated
iron content less than 0.010 kg m™ in iron-deficient nu-
trient solution.

Inhibitor treatments: 6 mM DTT (1,4-dithiothreitol)
was used to inhibit de-epoxidation of xanthophyll cycle
(Park et al. 1995, Darké et al. 2000, Xu et al. 2000, Ye et
al. 2000). 2 mM SM (streptomycin sulphite) was used as
an inhibitor of D1 protein synthesis (Leitsch er al. 1994,
Schnettger et al. 1994, Darké er al. 2000). Leaves were
cut at the base of petiole and placed in a beaker contain-
ing water or solutions of inhibitors and kept under weak
irradiance (10 umol m™s™) for 12 h.

Net photosynthetic rate (Py): Py-PFD and P-CO, re-
sponse curves were measured at room temperature (about
30 °C) with a portable photosynthetic system (CIRAS-1,
PP Systems, UK). PFD was changed every 3 min in a
sequence of 2 000, 1 600, 1200, 800, 600, 400, 300, 200,
150, and 100 pmol m? s'. CO, concentration was
changed every 3 min in a sequence of 1000, 800, 600,
400, 300, 200, 100, and 50 pmol mol”. Irradiance and
CO; concentration were controlled by the automatic con-
trol function of the CIRAS-I photosynthetic system. Car-
boxylation efficiency was calculated according to the
initial slope of Py-C; response curve.,

Chl fluorescence parameters were measured at room
temperature with a portable fluorometer (FMS2, Han-
satech, UK). Initial fluorescence (F,) was recorded in
leaves adapted to dark for 15 min. A single saturating
radiation pulse was applied to obtain maximum fluores-
cence (F,,). Steady state fluorescence (F,) was determined

Results
Effect of iron deficiency on photosynthesis and pig-

ment contents: Remarkable difference in Py was ob-
served in control and iron-deficient maize leaves (Fig.
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under actinic irradiation. The actinic irradiation was
changed every 3 min in a sequence of 2 000, 1 200, 800,
600, 300, 100, and 0 pmol m™ s, Saturating pulse was
applied to obtain F,,’ following each actinic irradiation.
The actinic radiation was removed and the minimal fluo-
rescence in the light-adapted state (Fy’) was determined
by irradiating the leaf disk for 3 s with far-red radiation.

The maximum efficiency of PS2 photochemistry in
the dark-adapted state (F./F,), efficiency of PS2 units
with open PS2 reaction centres during irradiation
(Fy’/Fy"), actual quantum yield of PS2 (®ps,) in the light-
adapted state, non-photochemical quenching (NPQ),
fraction of photons absorbed in PS2 antenna that is dissi-
pated via thermal energy dissipation (D), and photo-
chemical reaction rate (Pp.) were calculated using both
light and dark fluorescence parameters according to
Demmig-Adams et gl. (1996).

Pigment analysis: Leaf Chls and carotenoids were ex-
tracted with 80 % acetone and the extracts were analysed
using UV-120 (Shimadzu, Japan) according to Arnon
(1949). The carotenoids of xanthophyll cycle were de-
termined according to Thayer and Bj6rkman (1990) with
some modifications. After dark adaptation for 12 h,
leaves were exposed to irradiation of 1200 pmol m™s™
for 0, 0.5, 1, 2, or 3 h, then were quickly frozen in liquid
nitrogen and extracted with 100 % acetone. Pigment
separation was performed in an HPLC system (Waters,
USA) at room temperature. The mobile phase was com-
posed of three solvents: acetonitrile, methanol, and meth-
ylene chloride. To achieve a better separation of the xan-
thophyll cycle pigments, the elution program was as fol-
lows. During 0-10 min an 0.05 M mixture of solvents,
acetonifrile — methanol — tris-HCI (75:15: 10, viviv)
was run, followed by 5 min of linear gradient, then the
mixed solvent was changed to methanol and hexane
(5 : 1) for 10 min. Between the two sample analyses, the
column was re-equilibrated for 15 ‘min with the mixed
solvent used in the first period (0-10 min). The de-
epoxidation of xanthophyll cycle was calculated in %
using peak area:

(A + Z) = (Apeak area t Zpeak area)/ (vpeak area T Apeak area T
Zpeak area)-

Eacli experiment was conducted at least three times
independently.

14,B): at iron deficiency Py increased very little by in-
creasing PFD and CO; concentration. The saturating irra-
diances of control and iron-deficient maize leaves were



about 1600 and 300 umol m™ s™', respectively, and the
maximum Py under saturating PFD was about 35 and 1
pmol m?s™, respectively. Maximum Py at saturating CO,
of control and iron-deficient maize leaves were about 40
and 2 pmol m™? s, respectively. The carboxylation effi-
ciencies of iron-deficient and control leaves measured by
the gas exchange method were 0.103 and 1.016, respec-
tively (Fig. 10).

One of the obvious characteristics of iron-deficient
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maize leaves was the reduction of Chl and carotenoid
contents compared to control leaves (Table 1). However,
the extent of decrease was significantly different among
different pigments. In iron-deficient rhaize leaves, Chl a
and Chl b contents decreased by about 90 %, while for
carotenoids a decrease of only about 80 % was observed.
The relative content of carotenoids was much higher in
chlorotic Fe-deficient leaves compared to the control
leaves (Table 1).

Table 1. Chiorophyll (Chl) and carotenoid (Car) contents [g m™] in control and iron-deficient (—Fe) maize leaves.

Chia Chl b Car Chla/b Car/Chl(a+ b)

control  17.63+2.80 4.77+1.60 5.07+1.50 3.69
-Fe 2.09+£0.11  0.66+0.02 1.07+0.02 3.17
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Fig. 1. Response curves of net photosynthetic rate (Py) to irradiance (4) or CO, concentration (B), and carboxylation efficiency de-
termined by the mmal slope of C; response curve (C) in control () and iron-deficient (A) maize leaves measured in air (4) or at
l 200 pmol m? s (B) at room temperature. Values in C are means + SE of 3 separate experiments; for control y = 1.0158x + 2.0695,

=().9552; for Fe-deficiency y = 0. 0995x— 1.8487, +* = 0.908.

Effects of iron deficiency on photesynthetic electron
transport: F./F, reflects the maximal PS2 efficiency
when the reaction centres are fully opened, ie., when
NPQ is absent. Thus F,/F,, may represent original activity
of PS2 (Hulsebosch et al. 1996). F/F, in control and
iron-deficient maize leaves was 0.85:0.03 and 0.75+0.02,
respectively, thus it decreased by only 12 % due to iron-
deficiency. Hence the PS2 integration and its function
were not seriously harmed by the iron deficiency.
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Fig. 2. Changes of pQ reduction extent in control (empty col-
umns) and iron-deficient (full columns) maize leaves exposed to
different PFD.

Because PS1 and carbon assimilation cycle are lo-
cated behind PS2 along the electron transport chain, the
extent of pQ reduction can be used to evaluate the rela-
tive activity of PS2 versus PS1/carbon assimilation cycle.

If the activity of PS1 and carbon assimilation is lower
than that of PS2, the electron transport behind PS2 is
blocked and pQ reduction extent would be increased,
whereas, if the activity of PS1 and carbon assimilation is
higher than PS2, pQ reduction extent would be decreased.
We found that pQ reduction extent in iron-deficient
leaves was about 6 times higher than that in control
leaves under weak and moderate irradiance, and only 4
times higher under high irradiance (Fig. 2). From these
values we can deduce that the effect of iron deficiency on

. PS2 was less severe than that on PS1 and/or carbon

assimilation.

Effect of iron deficiency om excitation energy
distribution: The photochemical reaction rate (Pme) in
control leaves increased rapidly with the increase in PFD
(Fig. 34), but in iron-deficient leaves it mcreased only
slightly before PFD reached 600 pmol m™? s and then it
was at a plateau. These values indicate that only a small
part of excitation energy was used in photochemical
reaction, but more of it was dissipated in iron-deficient
leaves compared to control leaves. In iron-deficient
leaves under high irradiance, the dissipated energy was
about 60 % of the absorbed radiation. The fraction of
photons absorbed in PS2 antenna that was lost via
thermal energy dissipation (D) of control leaves was
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much lower than that of iron-deficient leaves (Fig. 3B).
Also NPQ in iron-deficient leaves was 1.4 times higher
than that in control leaves (Fig. 3C).
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Fig. 3. Changes of photochemical reaction rate, P, (4),
fraction of photons absorbed in PS2 antenna that is removed via
thermal energy dissipation, D (B), and nonphotochemical
quenching, NPQ (C) in control (¢) and iron-deficient (0) maize
leaves exposed to different PFD.

Effect of iron deficiency on energy dissipation
depending on xanthophyll cycle and D1 protein
turnover: About 90 % of the total xanthophyll content
took the de-epoxidised form (A+Z) in iron-deficient
leaves after 3 h of high irradiance, but only about 40 % in
control leaves under the same condition (Fig. 4). The

Discussion

If the decrease in pigment content was the limiting factor
for photosynthesis, absorbed radiant energy should in-
crease with increasing PFD in both control and iron-defi-
cient leaves, and thus in both cases Py should increase
with increasing PFD. However, we found only a little
increase in Py due to increase of PFD in iron-deficient
leaves (Fig. 14). Hence the decrease in Py was not caused
by the decrease in pigment content. We infer two possible
causes of this low Py despite sufficient PFD and CO,
concentration in iron-deficient maize leaves. One possi-
bility is that the production of NADPH and ATP de-
creases due to blocked electron transport; the other is a
decrease in carbon assimilation. The two photosystems
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NPQ in iron-deficient and control leaves decreased by
about 40 and 30 %, respectively, as a result of DTT
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Fig. 4. Changes of de-epoxidation extent of xanthophyll cycle in
control and iron deficient maize leaves under high irradiance
(1 200 pmol m>s).
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Fig. 5. Changes of nonphotochemical quenching, NPQ in
control and iron-deficient leaves treated with dithiothreitol,
DTT (A4) or streptomycin sulphite, SM (B) under different
irradiance (PFD).

treatment (Fig. 54). When treated with SM, the NPQ in
iron-deficient and control leaves decreased by about 70
and 50 %, respectively (Fig. 5B).

are both iron-containing proteins, but because iron’s role
in the two systems may be different, the effect of iron
deficiency may also be different. We found that the effect
(oriron deficiency on PS2 was less than that on PSI
and/or carbon assimilation (Fig. 2). To date, there have
been no experiments showing that iron is required in the
process of ribulose-1,5-bisphosphate carboxylase/oxyge-
nase (RuBPCO) synthesis and activa-tion. McKey et al
(1997) found that serious iron deficiency had little effect
on the content of RuBPCO. Therefore, the severe pQ re-
duction in iron-deficient leaves might be caused by the
decrease in electron transport activity of PS1. The dra-
matically decreased carboxylation efficiency in iron-defi-



cient leaves may be a result of deficiency in NADPH and
ATP due to blocked PS1 electron transport. However, it is
hard to determine whether and to what extent the activity
of RuBPCO is directly affected by iron deficiency. To
better understand whether PS1 or carbon assimilation is
the limiting factor of photosynthesis in iron-deficient
leaves, further direct evidence is needed. Whatever the
case may be, iron-deficient leaves would suffer serious
acceptor photoinhibition at high irradiance.

Though the amount of absorbed photons declined due
to the decrease of Chl content in iron-deficient leaves, the
excess photons in iron-deficient leaves might have more
serious effect than those observed in control leaves be-
cause of blocked electron transport. To avoid photodam-
age, the excess radiant energy must be dissipated. The
fact that about 60 % of excited energy were removed
through thermal dissipation at high irradiance indicates
that the photosynthetic apparatus can be effectively pro-
tected against photodamage in iron-deficient leaves (Fig.
3B).

The photochemical reaction rate (P,.) in iron-defi-
cient leaves did not stop increasing with increasing irra-
diance until the PFD reached 600 umol m?s™” (Fig. 34).
As the saturating irradiance for Py in iron-deficient leaves
was only about 300 pmol m?s™ (Fig. 14), it is plausible
that part of the radiant energy involved in photochemical
reaction rate (P.) may not be used in carbon assimila-
tion, but rather to produce active oxygen. Another ex-
periment of ours showed that the production of active
oxygen in iron-deficient leaves under high irradiance was
3-4 times as much as under weak irradi-ance (values not
shown).

The xanthophyll cycle is an important dissipation
mechanism (Bjorkman 1987, Demmig-Adams 1990,
Gilmore 1997, Goss et al. 1998), and it may play an im-
portant role in iron-deficient leaves. About 90 % deep-
oxidation was observed in iron-deficient leaves exposed
to high irradiance (Fig. 4). When treated with DTT, the
decrease of NPQ in iron-deficient leaves was about 1.5
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