

Caemmerer, S. von: **Biochemical Models of Leaf Photosynthesis.** (Techniques in Plant Sciences No.2.) - CSIRO Publishing, Collingwood 2000. ISBN 0 643 06379 X. 165 pp., USD 42.00.

This book has appeared as the second volume of a new series of monographs "Techniques in Plant Sciences", launched by CSIRO Publishing in 1998 (cf. *Photosynthetica* 37: 476, 1999 for review of the first volume).

Successful mathematical descriptions of photosynthesis are linked to rate equations of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation and oxygenation. Thus, these equations form the basis for the biochemical models of photosynthesis presented in this book.

The book contains 6 chapters. In the first chapter, *in vitro* and *in vivo* responses of Rubisco are compared: kinetics and activation of Rubisco [activation of Rubisco in the absence and presence of ribulose-1,5-bisphosphate (RuBP), carbamylatation ratio of Rubisco, Rubisco activase and model of its action, derivations of rate equations, etc.]. Chapter 2 is entirely devoted to the frequently used photosynthesis model of G.D. Farquhar *et al.* proposed in 1980 (simplifying assumptions, stoichiometry of C₃ photosynthesis, rate equations for CO₂ assimilation, CO₂ partial pressure in the chloroplast, parametrization of the model, CO₂ compensation concentration, CO₂ response curves at different irradiances, temperature, O₂ partial pressure, irradiance response curves at O₂ and CO₂ partial pressure, quantum yield, and temperature responses). This chapter also replies to the question "Does the activation state of Rubisco need to be incorporated into models of CO₂ assimilation?", and discusses the problems of long-term effect of environment on photosynthesis (maximal Rubisco carboxylation rate, maximal electron transport rate, and the transition from Rubisco to electron transport limitation, effect of growth temperature, growth at elevated CO₂ concentration), and possibilities of engineering a better Rubisco.

The main topic of the third chapter is chlorophyll fluorescence and oxygen exchange during C₃ photosynthesis. Attention is paid on calculating electron transport rate from chlorophyll fluorescence (J_f), estimating electron transport rate from CO₂ assimilation rate, and calculation of mesophyll conductance to CO₂ transfer. Also

relationships between J_f and incident irradiance, and between chlorophyll fluorescence in the light and maximal chlorophyll fluorescence during a saturating light pulse of a leaf in the light are discussed. Further, oxygen exchange during C₃ photosynthesis are dealt with in Chapter 3 (total oxygen evolution and uptake, the Mehler ascorbate peroxidase reaction, estimation of Rubisco carboxylation and oxygenation rates, CO₂, O₂, and temperature dependences of O₂ exchange, etc.).

Chapter 4 is focused on modelling of C₄ photosynthesis. The biochemical model described here (S. von Caemmerer and R.T. Furbank 1999) explores the relationships between gas-exchange characteristics and leaf biochemistry (enzyme-limited and light- and electron-transport-limited photosynthesis: analysis of CO₂ assimilation in the bundle sheaths, the rate of PEP carboxylation, rates of ATP and NADPH consumption, partitioning of electron transport rate between C₃ and C₄ cycles, light-dependence of electron transport rate). Then, the model is analysed: its parametrization, the model at high irradiance (PEP carboxylase and Rubisco activity, bundle-sheath conductance, CO₂ and O₂ response, CO₂ transfer inside the leaf, etc.), CO₂ fixation at limiting light, and modelling different decarboxylation types.

The Chapter 5 is devoted to models of C₃-C₄ intermediate photosynthesis in several species of the genera *Moricandia*, *Flaveria*, and *Panicum*. The model presented in this chapter is a synthesis of the earlier models by M. Peisker *et al.* and that by S. von Caemmerer in 1989 and 1992. Perhaps this chapter provides the best examples of how the biochemical models presented in this book can aid in the formulation of ideas. Author's conception of future activities in constructing and use of these models also completes the book in short "Concluding remarks". The bibliography presents 414 essential references to the world literature in the field.

The book is well produced and carefully edited. I can recommend it as a perfect guide to modelling photosynthesis.

J. ČATSKÝ (*Praha*)