New facts about CdCl₂ action on the photosynthetic apparatus of spinach chloroplasts and its comparison with HgCl₂ action

F. ŠERŠEŇ and K. KRÁLOVÁ

Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava, Slovakia

Abstract

Using EPR spectroscopy it was found that CdCl₂ and HgCl₂ interact (1) with the intermediates Z*/D*, i.e. with the tyrosine radicals on the donor side of photosystem (PS) 2 situated in the 161⁴ position in D₁ and D₂ proteins; (2) with the primary donor of PS1 (P700) whereby the oxidation of chlorophyll (Chl) a dimer in the reaction centre of PS1 occurs yet in the dark; (3) with the manganese cluster which is situated in the oxygen evolving complex. Due to these interactions of investigated metal chlorides with the photosynthetic apparatus, the interruption of the photosynthetic electron transport through photosynthetic centres occurs. Monitoring of time dependence of EPR signal I of chloroplasts treated with CdCl₂ or HgCl₂ after switching off the light suggests that all mechanisms, i.e. direct, cyclic, and non-cyclic reductions of P700⁺ are damaged. The formation of complexes between mercury or cadmium ions and amino acid residues constituting photosynthetic peptides was suggested as possible mechanism of their inhibitory action. The higher HgCl₂ efficiency in comparison with that of CdCl₂ was explained by higher ability of mercury ions to form complexes with amino acids, what was demonstrated by their apparent binding constants: K = 10 200 M⁻¹ for Hg²⁺ ions, and K = 3 700 M⁻¹ for Cd²⁺ ions.

Additional key words: cadmium; EPR spectroscopy; fluorescence spectroscopy; mercury; photosynthetic electron transport; Spinacia oleracea.

Introduction

Cadmium and mercury belong to the major heavy metal pollutants that have toxic effects on living organisms (Siedlecka and Krupa 1999). They affect various plant processes, such as the efficiency of water use, transpiration, photosynthesis, and plant growth (Clijsters and van Assche 1985, El-Shintinawy 1999, Ghorbani et al. 1999). Cadmium exhibits several toxic effects on higher plants, which are caused by direct and indirect mechanisms of its action on their photosynthetic apparatus (Krupa 1999). In our previous papers (Šeršen et al. 1998a,b) we dealt with inhibitory effects of Hg on photosynthetic apparatus. In this paper we focus our attention on the Cd action on photosynthesis. The site of action of Cd²⁺ ions was situated into the photosystem (PS) 2 either without precise localisation (Hampp et al. 1976, Nedunchezhian and Kulandaivelu 1995, Siedlecka and Krupa 1996, Purohit and Singh 1999) or on the donor side, particularly in the oxygen evolving complex (OEC) or in its vicinity (Bazzaz and Govindjee 1974, Van Duijvenbjik-Matteoli and Desmet 1975, Basyzinski et al. 1980, De Filippis et al. 1981, Atal et al. 1991). Other possibility was to situate it in the site of Q₅ or Q₆ on the acceptor side of PS2 (Singh and Singh 1987, Fodor et al. 1996). Paddock et al. (1999) found that Cd²⁺ reduced protonation of Q₅ in the reaction centre of Rhodobacter sphaeroides. Several authors reported that PS1 activity is little sensitive or inactive to Cd²⁺ (Bazzaz and Govindjee 1974, Baszyński et al. 1980, Atal et al. 1991, Krupa et al. 1987, Siedlecka and Krupa 1996). Besides the above-mentioned effects Cd²⁺ ions cause: (1) inhibition of ATP (De Filippis et al. 1981)

Received 2 July 2001, accepted 20 December 2001.
Abbreviations: Chl – chlorophyll; cw – continual wave; DCMU – 3-(3,4-dichlorophenyl)-1,1-dimethyleurea; DCPIP – 2,6-dichlorophenolindophenol; dₓ⁺/dₓ – the first derivative of the imaginary part of magnetic susceptibility χ with respect to magnetic induction B; EPR – electron paramagnetic resonance; IC₅₀-value – concentration of CdCl₂ or HgCl₂ causing the 50% inhibition of DCPIP photooxidation; OEC – oxygen evolving complex; PAR – photosynthetically active radiation, PET – photosynthetic electron transport, PS – photosystem; P700 – primary donor of PS1; Qₓ, Qₓ – the first and the second quinone acceptors of PS 2.
Acknowledgments: This work was supported by a grant of the Scientific Grant Agency of the Ministry of Education of Slovak Republic, registration number 1/725/20 and COST Action 837.

575
and Chl (Stobart et al. 1985) synthesis; (2) disorganisation of thylakoid membranes (Fernandez-Pinas et al. 1995, Ozounidou et al. 1997, Stoyanova and Tchakalova 1999); (3) changes in the lipid composition of thylakoid membranes (Skórzyńska-Poliń and Baszyński 1997).

This study was focused on the more precise specifica-
tion of the site and mechanism of action of Cd$^{2+}$ ions upon photosynthetic electron transport chain using emission fluorescence and EPR spectroscopy and on the comparison of CdCl$_2$ and HgCl$_2$ effects on the photosynthetic apparatus of spinach chloroplasts.

Materials and methods

Cadmium chloride, mercury chloride, and calcium chloride were purchased from Lachema (Brno, Czech Republic). All chemicals were of analytical grade purity and they have been applied in all experiments without further purification.

Chloroplasts were prepared from market spinach by the procedure of Walker (1980) partly modified by Šeršen et al. (1990) using TRIS buffer (20 mM, pH = 7.0) containing 0.4 M sucrose, 15 mM NaCl, and 5 mM MgCl$_2$. Chl content was determined according to Lichtenhauer and Wellburn (1983).

The photosynthetic electron transport (PET) through PS2 and PS1 in the suspension of spinach chloroplast (30 g(Chl) m$^{-2}$) was measured in phosphate buffer (pH = 7.2) containing 5 mM MgCl$_2$, 15 mM NaCl, and 0.4 M sucrose according to Xiao et al. (1997) by monitoring the rates of photoreduction of 2,6-dichlorophenolindophenol (DCPIP) or photooxidation of DCPIPH$_2$ using methyl viologen as a final acceptor. These photoprocesses were recorded as changes in the absorbance of DCPIP at 595 nm by a spectrophotometer Specord UV-VIS (Zeiss, Jena, Germany). We irradiated the chloroplast suspensions by the 250-W halogen lamp through the 5-cm water filter. The irradiance was 900 μmol m$^{-2}$s$^{-1}$ PAR, temperature was 25°C.

EPR was measured with an instrument ERS 230 (ZWG, AdW, Berlin, Germany) which operates in the X-band. The EPR spectra of spinach chloroplasts were recorded at 5 mW of microwave power with 0.5 mT amplitude modulation at 25°C. The samples containing 3.4 kg of Chl in m$^{-2}$ were measured in flat quartz cell and their irradiance (~400 μmol m$^{-2}$ s$^{-1}$ PAR) was carried out directly in the resonance cavity with a 250-W halogen lamp from 0.5 m distance through 5 cm water filter.

The fluorescence emission spectra were recorded by a fluorescence spectrophotometer F-2000 (Hitachi, Tokyo, Japan) at 25°C (excitation slit of 10 nm, emission slit of 20 nm). The samples of spinach chloroplasts [9 g(Chl) m$^{-2}$] were excited at λ$_{ex} = 436$ nm for monitoring fluorescence of Chl a (in 1 min time intervals). For monitoring fluorescence from aromatic amino acid residues contained in photosynthetic proteins the excitation UV radiation (λ$_{ex} = 275$ nm) was used. The samples were kept in the dark for 10 min before the measurements.

Results and discussion

Previously (Šeršen et al. 1998a, b) we found that the spinach chloroplasts treated with HgCl$_2$ exhibited a decrease of the rate of DCPIP photoreduction with the IC$_{50} = 28$ μM. In the present experiments CdCl$_2$ inhibited the DCPIP photoreduction as well, however, with pronounced lower effectiveness. The determined value of IC$_{50} = 1$ mM was in good agreement with that found by Hampp et al. (1976). On the other hand, we observed that 1 mM of CdCl$_2$ or 28 μM HgCl$_2$ completely inhibits the photoxidation of DCPIPH$_2$. Hence CdCl$_2$ and HgCl$_2$ interact with both photosynthetic centres.

Our finding that CdCl$_2$ inhibits the PET through PS1 differs from the findings of other authors who suggested that CdCl$_2$ does not interact with PS1. This contradiction can be caused by lower applied CdCl$_2$ concentrations in the experiments of Baszyński et al. (1980) and Krupa et al. (1987) or by other sort of plant chloroplasts (maize) used by Bazzaz and Govindjee (1974).

For more precise recognition of the site and mechanism of CdCl$_2$ inhibitory action on the photosynthetic apparatus of spinach chloroplasts the emission fluorescence and EPR spectroscopy were used. When chloroplasts were irradiated with λ = 436 nm, an emission band with the maximum at λ = 686 nm was observed. This band belongs to the pigment-protein complexes present mainly in PS2 (Atal et al. 1991, Govindjee 1995). Chloroplasts treated with CdCl$_2$ exhibited in our experiments a quenching of emission of Chl a-molecules. The quenching of Chl a-fluorescence increased with increasing CdCl$_2$ concentration (not documented here). This finding is in good agreement with that of Atal et al. (1991). The quenching of the emission of Chl a was ob-served also in chloroplasts treated with HgCl$_2$ (Šeršen et al. 1998a, b).

When chloroplast suspension was excited by radiation of λ = 275 nm an emission band at 334 nm was observed. This emission band belongs to fluorescence of aromatic
amino acid residues, mainly to tryp-tophan (Chen 1986). Fig. 1 demonstrates interaction of CdCl₂ with the aromatic amino acid residues in photosynthetic proteins: with increasing CdCl₂ concentration the intensity of fluorescence emission band at 334 nm decreased. The decay of this emission band is caused by the formation of complexes between Cd ions and aromatic amino acid residues contained in the peptides of the photosynthetic apparatus. Quenching of emission of aromatic amino acid residues was observed also in chloroplasts treated with HgCl₂ (Šeršen et al. 1998a).

![Graph showing fluorescence intensity vs. concentration](image)

Fig. 1. The dependencies of fluorescence intensity of aromatic amino acid residues in chloroplast peptides on concentrations of HgCl₂ (a) and CdCl₂ (b).

![Graph showing EPR spectra](image)

Fig. 2. The EPR spectra of untreated spinach chloroplasts (A) and chloroplasts treated with 0.033 M CdCl₂ (B). The full lines were recorded in the dark and the dashed ones under continuous irradiation.

The EPR spectroscopy is appropriate to determine the site of action of photosynthesis inhibitors because all green algae and higher plants exhibit EPR signals in the region of free radicals (g ≈ 2.00) yet at room temperature. These signals are: (1) The EPR signal I (g = 2.0026, ΔBpp = 0.8 mT) belonging to the cation radical of Chl a dimer in the reaction centre of PSI (P700) (Hoff 1979). This signal is observable in Fig. 2B as narrower part of the dashed line. (2) The EPR signal II composed from two parts, namely from signal I_slow and signal I very fast. The slow component of signal II belongs to the intermediate D', i.e. the tyrosine radical situated in the 161⁰ position in D₇ protein present on the donor side of PS2 (Debus et al. 1988). The signal I_slow is visible in Fig. 2A as a full line (g = 2.0046, ΔBpp = 1.9 mT). The fast component of signal II (signal I very fast) is observable in light and belongs to the intermediate Z' (Blankenship et al. 1975), i.e. the tyrosine radical in the 161⁰ position in D₁ protein present on the donor side of PS2 (Barry and Babcock 1987, Svensson et al. 1991). Because the intermediate Z' is reduced by Mn cluster in the microsecond time regime (Blankenship et al. 1975), only a certain part (ca. 29 %) of signal I very fast is observable by cw EPR spectroscopy. This is shown in Fig. 2A as an increase of signal II in the light. The spectroscopic parameters of signal I very fast are the same as those of signal I_slow, i.e. g = 2.0046, ΔBpp = 1.9 mT. Fig. 2B shows that CdCl₂ interacts with the intermediates Z'/D' what results in the intensity decrease of both components of signal II (Fig. 2B, both lines). The interaction of CdCl₂ with the intermediate Z' was better manifested at higher metal chloride concentrations (c > 0.05 M; not shown here). Besides these interactions with Z'/D' intermediates, CdCl₂ interacts also with the primary donor of PSI (P700). Due to this interaction, oxidation of Chl a dimer occurs yet in the dark what is reflected in EPR spectrum by the increase of signal I intensity (Fig. 2B, full line, its narrower part). The evidence that the narrower part of the spectra in Fig. 2B belongs to oxidised form of P700⁺ was presented in Šeršen et al. (1998a).

Van Duijvendijk-Matteoli and Desmet (1975), Basyukski et al. (1980), De Filippis et al. (1981), and Atal et al. (1991) suggested the OEC as possible site of CdCl₂ action on the base of indirect evidences. We present here the direct proof of CdCl₂ interaction with the Mn cluster, which is situated in the OEC. This is manifested by six lines belonging to free Mn²⁺ ions, which appear in EPR spectrum of chloroplasts treated with higher concentration of CdCl₂ (Fig. 3B). About 80 or 40 % of manganese was released from the OEC by HgCl₂ and CdCl₂, respectively. Thus, the efficiency of HgCl₂ was 1.7 fold higher than that of CdCl₂ used at the same molar concentration (0.07 M).

All the above-mentioned interactions of CdCl₂ with the photosynthetic apparatus result in the interruption of PET through photosynthetic centres. This interruption of electron transport is reflected in EPR spectra of spinach chloroplasts treated with CdCl₂ by a great increase of signal I intensity in the light (Fig. 2B, dashed line). This increase is caused by inability of the reduction of P700, which was oxidised by light.

By using the EPR method we found previously (Šeršen et al. 1998a,b) that the sites of HgCl₂ inhibitory action on PET in spinach chloroplasts were the same as the sites of CdCl₂ action, but the effectiveness of HgCl₂
effects on the photosynthetic apparatus was more intensive. The measure of PET damage by CdCl₂ or HgCl₂ can be expressed as an increase in intensity of the EPR signal I. From EPR spectra of chloroplasts treated with CdCl₂ and HgCl₂, we evaluated the signal I intensities (Table 1). They showed that HgCl₂ was more deleterious for photosynthetic apparatus than CdCl₂.

Table 1. The intensities of EPR signal I [relative] registered in EPR spectra of chloroplasts treated with HgCl₂ or CdCl₂.

<table>
<thead>
<tr>
<th>Concentration [M]</th>
<th>Signal intensity in the light</th>
<th>Signal intensity in the dark</th>
</tr>
</thead>
<tbody>
<tr>
<td>HgCl₂</td>
<td>17.1</td>
<td>13.9</td>
</tr>
<tr>
<td>CdCl₂</td>
<td>18.3</td>
<td>14.2</td>
</tr>
<tr>
<td>HgCl₂</td>
<td>19.7</td>
<td>18.1</td>
</tr>
</tbody>
</table>

concentrations we carried out an EPR experiment with the same concentration of CdCl₂. 0.05 M CdCl₂ caused no observable changes in EPR spectra of spinach chloroplasts. It denotes that CdCl₂ or HgCl₂ interact directly with photosynthetic apparatus and not through interaction of buffer with studied metals.

The time behaviour of EPR signal I of spinach chloroplasts after switching-off the light also supported the interaction of CdCl₂ and HgCl₂ with PS1. Fig. 4 presents the decrease of signal I intensity after switching-off the light. In the control sample, where all mechanisms (direct, cyclic, and non-cyclic) of reduction of P700⁺ were not damaged, the decrease of signal I intensity to the original value after switching-off the light was very fast, in the range of 5 s (Fig. 4, line a). As the control we used chloroplasts treated with 5 mM DCMU, which caused complete inhibition of the electron flow from PS2 to PS1 without damage of PS1. After adding CdCl₂ or HgCl₂ to chloroplast suspension the rate of the decrease of signal I intensity was restricted (Fig. 4, lines b and c) which indicates that the applied metal chlorides damaged all reduction mechanisms of P700⁺. This finding is in accordance with that of Sakurai et al. (1991) who found that HgCl₂ destroys Fe-S centre (F₆₅₃) on the acceptor side of PS1. Due to this interaction cyclic and non-cyclic electron transport through PS1 can be damaged. Fig. 4b,c also shows that the HgCl₂ action on PS1 is more effective than that of CdCl₂.

Both CdCl₂ and HgCl₂ similarly affected the photosynthetic apparatus. However, the inhibitory effect of HgCl₂ was larger than that of CdCl₂ (cf. the I₅₀ values of 1 mM CdCl₂ and 28 µM HgCl₂). Similarly, larger efficiency of HgCl₂ on the fluorescence quenching of emission bands of aromatic amino acid residues (λ = 334 nm) and chlorophyll (λ = 686 nm) was observed. Using EPR spectroscopy we documented also higher effects of HgCl₂ on the photosynthetic apparatus with respect to those of CdCl₂ (different intensities of EPR signals I and II at the same applied metal concentration). To determine the reason of greater inhibitory efficiency of HgCl₂ with respect to that of CdCl₂ we evaluated the apparent equilibrium constants K of complex formation between metal ions and aromatic amino acid residues according to Tominaga et al. (1995). We calculated K values from the concentration dependence of the fluorescence band at 334 nm according to formulae:

\[M^{2+} + L^- \leftrightarrow ML^+ \]

\[K = \frac{[ML^+]}{[M^{2+}][L^-]} = \frac{\alpha C_L}{(C_M - \alpha C_L) C_L(1 - \alpha)} \]
\[
\alpha = \frac{(KC_L + KC_L^2 + C_L) \pm \sqrt{[(KC_L + KC_L^2 + C_L)^2 - 4KC_L(C_L^2 - 4KC_M^2KC_L)]}}{2KC_L^2}
\]

where \(M^{2+}\) is metal ion (Cd\(^{2+}\) or Hg\(^{2+}\)), \(L\) is ligand (aromatic amino acid residues present in the peptides of chloroplast), \(C_M\) is the initial metal concentration, \(C_L\) is the initial ligand concentration, \(a\) is the fraction of bounded metal, \(F_1\) is the fluorescence intensity in the absence of metal, and \(F_s\) is the fluorescence intensity in the presence of saturating amount of metal ions. Fig. 1 shows dependencies of fluorescence quenching on the metal concentration.

![Diagram](image_url)

Fig. 4. The time dependencies of EPR signal intensity after switching off light in chloroplasts treated with 5 mM DCMU (a), 0.05 mM CdCl\(_2\) (b), and 0.05 mM HgCl\(_2\) (c).

From these dependencies we calculated equilibrium constants \(K\) using Eqs. (3) and (4). The \(K\) values obtained by computer fitting of the quenching curves \(a\) and \(b\) in Fig. 1 at the proposed concentration \(C_L = 5 \mu M\) were \(K = 10200 \text{ M}^{-1} (r^2 = 0.97)\) for HgCl\(_2\) and \(K = 3700 \text{ M}^{-1} (r^2 = 0.97)\) for CdCl\(_2\). The values of these calculated binding constants are only apparent because the final quenching can be affected by several factors, e.g. formation of complexes between cadmium (mercury) chloride and cysteins, histidines, glutamates, etc. We assume that interactions of the studied metal ions with aromatic amino acids are important in their fluorescence quenching. The absorption spectra of chloroplasts treated with the studied metal chlorides exhibited only a small absorption increase at 334 nm with respect to the absorption of control chloroplasts. Therefore the decrease of the emission band due to this absorption can be considered as negligible. Moreover, we determined the stability constants of the complexes between tryptophan and CdCl\(_2\) or HgCl\(_2\) in distilled water by the same method. The values of these constants are \(K = 182100 \text{ M}^{-1} (r^2 = 0.99)\) for HgCl\(_2\) or \(K = 17130 \text{ M}^{-1} (r^2 = 0.94)\) for CdCl\(_2\). Hence the affinity of CdCl\(_2\) to tryptophan is lower than that of HgCl\(_2\). On the basis of this finding we conclude that the lower inhibitory efficiency of HgCl\(_2\) than CdCl\(_2\) is caused by the higher ability of mercury ions to form complexes with aromatic amino acids.

Thus we found new sites of CdCl\(_2\) action on photosynthetic apparatus which were not published up to now, namely Z/D intermediate and the primary donor of PS1 (P700). The interaction of CdCl\(_2\) with P700 resulted in a damage of direct, cyclic, and non-cyclic reduction of P700'. By registration of released Mn\(^{2+}\) ions in EPR spectra of chloroplasts treated with CdCl\(_2\) we confirmed the Mn cluster in the water splitting complex as a further site of CdCl\(_2\) action. Some authors (Van Duijvenbeld-Matteoli and Desmet 1975, Baszyński et al. 1980, De Filippis et al. 1981, Atal et al. 1991) proposed this site of CdCl\(_2\) action on the base of indirect proofs. We found that CdCl\(_2\) has the same sites of action on the photosynthetic apparatus of spinach chloroplasts as HgCl\(_2\), but the efficiency of HgCl\(_2\) is much greater. As possible mechanism of CdCl\(_2\) action the formation of complexes between CdCl\(_2\) and amino acid residues in photosynthetic proteins is suggested. The quenching of fluorescence of chloroplast aromatic amino acid residues manifested this. The higher efficiency of HgCl\(_2\) than CdCl\(_2\) is caused by higher ability of Hg\(^{2+}\) ions to form these complexes.

References

Chen, R.F: Fluorescence quenching as a parameter for measuring complex formation between metal ions and aromatic

