BIBLIOGRAPHY

Bibliography of reviews and methods of photosynthesis – 85

Z. ŠESTÁK and J. ČATSKÝ

Institute of Experimental Botany, Academy of Sciences of the Czech Republic,
Na Karlovce 1a, CZ-160 00 Praha 6, Czech Republic

REVIEW PAPERS


Abbreviations in the notes: BChl = bacteriochlorophyll; Bil = phyloebilins; Car = carotenoids; CC = column chromatography; Chl = chlorophyll; Cyt = cytochrome; GC = gas chromatography; HPLC = high performance liquid chromatography; IRGA = infra-red gas analyser; LAI = leaf area index; PC = paper chromatography; PEPC = phosphoenolpyruvate carboxylase; PAR = photosynthetically active radiation; Ps = photosynthesis; RuBPCO = ribulose-1,5-bisphosphate carboxylase/oxygenase; TLC = thin-layer chromatography; Tr = transpiration; WUE = water use efficiency; ab = abstract; E = English; F = French; G = German; R = Russian; ref. = references.


Heyn, M.P., Borucki, B., Otto, H.: Chromophore reorientation during the photocycle of bacteriorhodopsin. Experimental


Lüttge, U.: The tonoplast functioning as the master switch for circadian regulation of crusulacean acid metabolism. – Planta 211: 761-769, 2000. [63 ref.]


Massacci, A., Loreto, F.: Diffusive resistances to CO2 entry in the leaves and their limitations to photosynthesis. – In: Pessarakli, M. (ed.): Handbook of Plant and Crop


1995. [160 ref.]


619

Perr, R.J., Sheer, H.: ¹⁸O and mass spectrometry in chlorophyll research: Derivation and loss of oxygen atoms at the periphery of the chlorophyll macromolecule during biosynthesis, degradation and adaptation. – Photosynth. Res. 66: 159-175, 2000. [69 ref.]


620


Struve, W.S.: Theory of electronic energy transfer. — In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (ed.):


Thornber, J.P.: Thirty years of fun with antenna-pigment-proteins and photochemical reaction centres: A tribute to the people who have influence my career. – Photosynth. Res. 44: 3-22, 1995. [102 ref.]


METHODOLOGICAL PAPERS

A. Energy transformation, electron transfer, C fixation, and related methods


Akita, M., Nielsen, E., Keegstra, K.: Identification of protein transport complexes in the chloroplast envelope mem-

623


Wang, P., Roey, M., Houtz, R.L.: Affinity purification of rubisco-1,5-bisphosphatase carboxylase/oxygenase large
BIBLIOGRAPHY

B. Analysis of chloroplast pigments and their in vivo complexes


Martinez, G.A., Civello, P.M., Chaves, A.R., Añón, M.C.: Partial characterization of chlorophyllase from strawberry fruit (Fragaria ananassa, Duch.). – J. Food Biochem. 18: 627
BIBLIOGRAPHY

Strasser, B.J., Strasser, R.J.: Measuring fast fluorescence transients to address environmental questions: The JP-test. –
BIBLIOGRAPHY


C. Analysis of gas exchange and accumulation of dry matter and energy


Goulden, M.L., Crill, P.M.: Automated measurements of CO2 exchange at the moss surface of a black spruce forest. – Tree Physiol. 17: 537-542, 1997. [Closed system with IRGA.]


Ingestad, T.: A shift of paradigm is needed in plant science. – Physiol. Plant. 101: 446-450, 1997. [Ps; opinion; review; 48 ref.]


Mortensen, L., Engvild, K.C.: Effects of ozone on ¹⁴C translocation velocity and growth of spring wheat (Triticum


Nouchi, I., Kobayashi, K.: Effects of enhanced ultraviolet-B radiation with a modulated lamp control system on growth of 17 rice cultivars in the field. – J. agr. Meteorol. 51: 11-20, 1995. [Continuous proportional control for supplemental UV-B irradiation in the field.]


D. Canopies and aquatic communities: analysis of structure, production, and mass and energy exchange


McMurtrie, R.E., Medlyn, B.E., Dewar, R.C.: Increased understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years. – Tree Physiol. 21: 831-839, 2001.


BIBLIOGRAPHY


[Model]


E. Measurement of leaf area, and surface and volume of plant organs


F. PAR and environmental measurements


G. Cultivation of experimental material and phytotronics


H. Choice of useful tools and laboratory equipment


González, J.E., Tsiem, R.Y.: Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. – Chem. Biol. 4: 269-277, 1997. [Car.]

