Photoinhibition of photosynthesis in *Vitis berlandieri* and *Vitis rupestris* leaves under field conditions

M. BERTAMINI and N. NEDUNCHEZHIAN*

Istituto Agrario di San Michele all’Adige, 38010, San Michele all’Adige, Italy

Abstract

Photoinhibition of photosynthesis was investigated in *Vitis berlandieri* and *Vitis rupestris* leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of PS2, Fv/Fm markedly declined, Fv increased significantly in leaves of *V. berlandieri*, while Fv did not increase in *V. rupestris* leaves. Isolated thylakoids of leaves of *V. berlandieri* showed significant inhibition of whole chain and PS2 activities at midday. A smaller inhibition was observed for *V. rupestris*. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn²⁺ failed to restore PS2 activity in both species, while DPC and NH₂OH significantly restored PS2 activity in *V. rupestris* midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between *V. berlandieri* and *V. rupestris* leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in *V. berlandieri* while in *V. rupestris* it was the 33 kDa protein.

Additional key words: chlorophyll fluorescence; donor side; electron transport; photosystem 2.

Introduction

Diurnal and seasonal changes of irradiance in the field range from near darkness to levels well in excess of what is required for maximum photosynthesis. Excess irradiation has the potential to damage the photosynthetic apparatus and plants have evolved strategies to minimise its detrimental effects. For example, some plants move their leaves or chloroplasts away from the sun so as to reduce the radiation absorbing area and load (Hirota et al. 1983). Others have evolved metabolic processes that reduce the effects of excess photon energy and thus protect the photosynthetic apparatus from permanent damage.

Photoinhibition is most commonly connected with photodamage, a long-term depression of quantum efficiency due to damage to the photosynthetic apparatus as the result of an excess of photosynthetic photon flux density, PPFD (Demmig-Adams and Adams 1992, Walters and Horton 1993). Chronic photoinhibition may be considered as the depression of photosynthetic efficiency from which the plant does not recover even after 3-4 d in shade (Greer and Laing 1992). On the other hand, canopy shade is also not advantageous for photosynthesis of grapevine (Bertamini and Nedunchezian 2001).

Although photoinhibition has been extensively investigated under controlled conditions, there is still some doubt whether it is a significant factor for plants growing in the field. Ogren and Rosenvqvist (1992) argue that moderate photoinhibition is common in field-grown plants. Studies of Demmig-Adams et al. (1989), Greer and Laing (1992), and Lovelock et al. (1994) support this notion. Other investigators have found little evidence for photoinhibition defined as either photodamage or photoprotection (Ludlow and Powles 1988, Flexas et al. 2001).

Comparative studies have revealed differences in the tendencies of species to become photoinhibited (Ogren and Rosenvqvist 1992, Oquist et al. 1992). Lovelock et al. (1994) found that rain forest species differ in their
capacity to recover from sudden exposure to high PPFD. The capacity for recovery corresponds to the succession role of the species, such that species commonly found in gaps and open habitats recover to a greater extent than species found in the forest understory (Lovelock et al. 1994). Several investigators view photoinhibition of photosynthesis as a process of stress-induced damage of photosystem 2 (PS2). This view is based on the fact that, as a consequence of photoinhibition, the D1 protein of PS2 reaction centre becomes degraded (Kyle et al. 1984, Prášil et al. 1992, Rintamaki et al. 1995). But some recent reports suggest that photooxidation, first of all, results from the formation of photochemically inactive PS2 centres, which convert the excitation energy into heat. This down regulation of PS2 and thermal dissipation is considered as a protective mechanism against high irradiance stress (Cleland et al. 1986, Aro et al. 1993, Gilmore and Björkman 1994). The photooxidation and impairment of electron transport occur at the acceptor and donor sides of PS2, although inactivation of the acceptor side may be the main mechanism for the impairment of electron transport (Eckert et al. 1991, Aro et al. 1993). This evidence comes largely from the *in vitro* studies. But the mechanism of photooxidation *in vivo* may be more complicated, and the dominating mechanism of inactivation *in vivo* is not clear.

To our knowledge, the importance of photooxidation in grapevines has not been evaluated to date in the field. There is evidence from pot experiments that *Vitis vinifera* (Dowton 1983) and the related wild grape *Vitis californica* (Gammon and Pearcy 1990) are susceptible to photooxidation when stressed by water shortage and high temperature. The object of our work was to study photooxidation and the process of recovery in leaves of *Vitis berlandieri* and *Vitis rupestris* grown under field conditions at different sampling times. We measured photochemical efficiency of PS2 (Fm/Fm'), photosynthetic electron transport activities, and D1 and 33 kDa proteins in *V. berlandieri* and *V. rupestris* leaves under field conditions at different sampling time in a day.

Materials and methods

Plants: Leaves of *V. berlandieri* and *V. rupestris* were collected from selected 10-year-old seedlings grown in the field on training system with upright growing shoots (Cordon Royat) condition in Istituto Agrario di San Michele all’Adige, Italy. All measurements were made at five different sunny days (August 2001) and different sampling time intervals during the day, early in the morning (6 h, solar time), midday (12 h, solar time), and evening (19 h, solar time) on sunset. During experimental period the daily maximum PPFD on clear days was 2000 µmol m⁻² s⁻¹. The maximum temperature was 32-33 °C during the experimental period. PPFD and temperature were measured as in Iacono et al. (1994).

Modulated Chl fluorescence in leaves was measured on leaf discs using a *PAM 2000* fluorometer (*H. Walz, Effeltrich, FRG*). Before the measurements, the leaves were dark adapted for 30 min. F₀ was measured by switching on the modulated radiation of 0.6 kHz; PPFD was less than 0.1 µmol m⁻² s⁻¹ at the leaf surface. Fₘ was measured at 20 kHz with a 1-s pulse of 6000 µmol m⁻² s⁻¹ of “white light”.

Activities of electron transport: Thylakoid membranes were isolated from the leaves as described by Berthold et al. (1981). Whole chain electron transport (H₂O → MV) and partial reactions of photosynthetic electron transport mediated by PS2 (H₂O → DCBQ; H₂O → SiMo) and PS1 (DCPIP → MV) were measured as described by Nedunchezian et al. (1997). Thylakoids were suspended at 10 µg (Chl) m⁻³ in the assay medium containing 20 mM Tris-HCl, pH 7.5, 10 mM NaCl, 5 mM MgCl₂, 5 mM NH₄Cl, and 100 mM sucrose supplemented with 500 µM DCBQ and 200 µM SiMo.

DCPIP photoreduction was determined as the decrease in absorbance at 590 nm using a *Hitachi 557* spectrophotometer. The reaction mixture (3 cm²) contained 20 mM Tris-HCl, pH 7.5, 5 mM MgCl₂, 10 mM NaCl, 100 mM sucrose, 100 µm DCPIP, and thylakoid membranes equivalent to 20 µg of Chl. Where mentioned, the concentrations of MnCl₂, DPC, and NH₂OH were 5.0, 0.5, and 5.0 mM, respectively.

Immunological determination of thylakoid proteins was done by Western blotting. Thylakoids were solubilised in 5% SDS, 15% glycerine, 50 mM Tris-HCl (pH 6.8), and 2% mercaptoethanol at room temperature for 30 min. The polypeptides were separated by SDS-PAGE as described by Laemmli (1970) and proteins were then transferred to nitrocellulose by electrophoretting for 3 h at 0.4 A. After saturation with 10% milk powder in TBS buffer (pH 7.5), the first antibody in 1% gelatine was allowed to react overnight at room temperature. After washing with TBS containing 0.05% *Tween-20*, the secondary antibody [Anti-Rabbit IgG (whole molecule) Biotin Conjugate, Sigma] was allowed to react in 1% gelatine for 2 h. For detection of D1 protein, a polyclonal antiserum against spinach D1 protein was used (kindly provided by Prof. I. Ohad, Jerusalem, Israel), and the antibody against the 33 kDa protein of the water-splitting system was a gift from Dr. Barbato, Padova, Italy. The densitometric analysis of Western blots was performed with a *Bio-Image* analyser (Millipore Corporation, Michigan, USA).
Results

Changes in Chl fluorescence: To obtain information on PS2 activity, F_o/F_{m} which reflects the quantum yield of PS2 photochemistry (Krause and Weis 1991), was determined in vivo using leaf discs, which had been dark adapted for 30 min. The PS2 photochemical efficiency, measured as F_o/F_{m} of leaves sampled early in the morning (6 h, solar time), was 0.779 and 0.792 for *V. berlandieri* and *V. rupestris*, respectively (Fig. 1). For leaves measured at midday (12 h, solar time) on a fully sunny day, the F_o increased significantly in *V. berlandieri* while F_0 did not increase in *V. rupestris*. The F_o/F_{m} ratio decreased to around 0.516 in *V. berlandieri* and 0.690 in *V. rupestris* (Fig. 1). In samples prepared in the evening (19 h, solar time) on sunset, F_0 decayed significantly in *V. berlandieri* and F_o/F_{m} reached values of around 0.764 and 0.785 in *V. berlandieri* and *V. rupestris*, respectively.

Changes in photosynthetic activities: Photosynthetic electron transport activities were measured in thylakoids isolated from *V. berlandieri* and *V. rupestris* leaves at different sampling times in a day (Fig. 2). In contrast to morning, photosynthetic electron transport from $H_2O \rightarrow$ DCBQ and $H_2O \rightarrow$ SiMo, measured at midday, was reduced by about 39 or 4, and 3 or 18 % in *V. berlandieri* and *V. rupestris* leaves, respectively. A significant reduction of PS2 activity was noticed with DCBQ, but not with SiMo as electron acceptor in *V. berlandieri* (Fig. 2). In contrast, a reduction of PS2 activity was noticed only when the electron acceptor was SiMo in *V. rupestris*. Evening samples reached PS2 activity similar to those observed early in the morning in both plant species (Fig. 2). A small decline in PS1 activity was observed only in *V. berlandieri* leaves sampled at midday (Fig. 2).

Fig. 1. Changes in the relative levels of fluorescence emitted as minimal fluorescence (F_o) or variable fluorescence (F_v), and the ratio of variable to maximum fluorescence (F_v/F_{m}) of *Vitis berlandieri* and *Vitis rupestris* leaves at different sampling time intervals in a day. Means ± standard errors of 5 replicates.

Fig. 2. Changes in the rates of whole chain ($H_2O \rightarrow$ MV), PS2 ($H_2O \rightarrow$ DCBQ; $H_2O \rightarrow$ SiMo), and PS1 (DCIPH$_2 \rightarrow$ MV) electron transport activities in thylakoids isolated from *Vitis berlandieri* and *Vitis rupestris* leaves at different sampling time intervals in a day. Means ± standard errors of 5 replicates.

Fig. 3. Effect of various exogenous electron donors on PS2 activity ($H_2O \rightarrow$ DCPIP) in thylakoids isolated from *Vitis berlandieri* and *Vitis rupestris* leaves sampling at midday. Means ± standard errors of 5 replicates.

Changes in DCPIP photoreduction rate: To locate the possible site(s) of inhibition in the PS2 reaction, we followed the DCPIP photoreduction supported by various
exogenous electron donors in thylakoids isolated from photoinhibited midday leaves of *V. berlandieri* and *V. rupestris*. Wydrzynski and Govindjee (1975) found that MnCl₂, DPC, NH₂OH, and HQ could donate the electrons to PS2. In our experiments, PS2 activity was reduced to about 31 and 18% in *V. berlandieri* and *V. rupestris*, when water served as electron donor (Fig. 3). A similar trend was also found using MnCl₂ as donor in both plant species. A significant restoration of PS2 mediated DCPIP reduction was observed when NH₂OH and DPC were used as electron donor in *V. rupestris*. In contrast, the PS2 activity was not restored using either DPC or NH₂OH in *V. berlandieri* leaves (Fig. 3).

Changes in contents of D1 and 33 kDa proteins by immunoblot: Photoinhibition of PS2 induces breakdown of the D1 protein (Andersson and Stirling 1991, Prášil et al. 1992). In systems without protein biosynthesis this can be seen directly as a loss in D1 protein content. In intact plant the correlation between D1 protein content and activity of PS2 is more complex (Smith et al. 1990, Lütz et al. 1992). Photoinhibition of PS2 activity in thylakoids of *V. berlandieri* and *V. rupestris* leaves was compared with changes in the relative contents of D1 and 33 kDa proteins as determined by Western blotting followed by quantification by the Bio-Image apparatus (Fig. 4). The relative contents of D1 and 33 kDa proteins decreased to 42 and 2% in *V. berlandieri*, and to 3 and 14% in *V. rupestris* leaves sampled at midday. In the evening, the leaves reached net D1 or 33 kDa protein contents that were similar to those observed in early morning (Fig. 4).

In Fig. 5 relative D1 protein contents and Fv/Fm ratios are compared after photoinhibitory treatments (midday) of *V. berlandieri* and *V. rupestris* leaves. In the *V. rupestris* leaves, no significant D1 degradation could be attributed to the action of photoinhibitory PPDF, even when Fv/Fm ratios had decreased to 10-13% of the controls. The *V. berlandieri* leaves showed a strong decrease in D1 protein content together with the decline of Fv/Fm ratio by about 38% (Fig. 5).

Discussion

The grapevine leaves with exposed undisturbed positions in a field-grown canopy frequently exhibited a depression in the Fv/Fm ratio in the afternoon. The mechanism responsible is suggested to be photoinhibition of the well-known type with primary damage residing with in PS2.

A good PS2 activity was measured as the Fv/Fm ratio in both leaves when sampled early in the morning. In contrast, when sampling was made at midday, the Fv/Fm was markedly decreased in *V. berlandieri*. The PS2 photochemistry of both *V. berlandieri* and *V. rupestris* leaves was also dependent on the time of sampling made, decreasing from morning to midday, being minimal at midday and increasing again from the midday to evening (sunset). In the evening, *V. berlandieri* leaves reached maximum PS2 photochemical efficiencies similar to those observed early in the morning. The rate of recovery agrees well with other reports on photoinhibition in higher plants, for instance in Ögren et al. (1984) where complete recovery of photosynthesis by *Lemma* plants from 60% photoinhibition took about 10 h. The decrease
in F_v/F_m ratio was mainly due to decrease of variable fluorescence (F_v) in *V. rupestris* while in *V. berlandieri* it was decrease of F_o and marked increase of F_m. An increase of F_o may be induced by the inactivation of part of PS2 reaction centres (Govindjee 1990, Critchley and Russell 1994, Yamane et al. 1997). Our results from *V. berlandieri* leaves are in accord with this idea. Similar depolarizations in F_v/F_m ratio throughout the day have been already reported for several plant species (Demmig-Adams and Adams 1992, Iacono et al. 1995, Morales et al. 2000). From these studies we conclude that plants require variable times for recovering sufficient PS2 photochemistry after midday depression (Demmig-Adams and Adams 1992).

When analysing the electron transport activities in thylakoids isolated from midday leaves of *V. berlandieri*, it appeared that the oxygen evolution was inhibited markedly when the electron acceptor used was DCBQ, but not when it was SiMo. This clearly indicates that *V. berlandieri* leaves are affected at the reducing side of PS2 due to photoinhibition. This is also supported by our Chl fluorescence studies where F_v markedly increased. In contrast to this, in thylakoids isolated from *V. rupestris* the rate of PS2 activity observed with SiMo is lower than the one observed with DCBQ. This indicates that the donor side is more impaired than the acceptor side of PS2. The extent of variable fluorescence (F_v) was reduced markedly in *V. rupestris* leaves without affecting the F_o level. This is characteristic for inhibition of donor side of PS2. If the acceptor side of PS2 is photoinhibited the F_o level is significantly increased (Allakhverdiev et al. 1987, Šetlík et al. 1990).

To locate the possible site of inhibition in the PS2 reaction, we followed the DCP1P photoreduction supported by various exogenous electron donors in thylakoids isolated from midday leaves of *V. berlandieri* and *V. rupestris*. Among the artificial electron donors tested, DPC and NH$_3$OH donate electrons in the PS2 reaction centre (Wydzyński and Govindjee 1975). A significant restoration of PS2 activity was observed in *V. rupestris* by the addition of DPC and NH$_3$OH. This is in good agreement with findings that water-oxidising system is sensitive to high PPFD (Veeranjaneyulu et al. 1998), while in *V. berlandieri* leaves by using DPC or NH$_3$OH the loss of PS2 activity was not restored. Thus the *V. berlandieri* leaves are mainly affected on the acceptor side of PS2 due to photoinhibition. Similar observations were made for field grown Schefflera arboricola leaves adapted to different PPFD (Schießthaler et al. 1999).

The loss of PS2 activity in *V. berlandieri* and *V. rupestris* leaves during photoinhibition was mainly due to loss of PS2 reaction centres or water-splitting complex. This could be confirmed by the immunological determination of the PS2 reaction centre D1 protein and 33 kDa protein of water-splitting complex.

Photoinhibition is usually explained by a marked loss of D1 protein, so it occurs only when the rate of damage to D1 protein exceeds the rate of its repair (Kyle et al. 1984, Ohad et al. 1985, Barber 1995, Carpenter 1997). Moreover, the fluorescence parameter F_v/F_m may be a good measure of photoinhibition, and a decrease in F_v/F_m under photoinhibitory conditions is often attributed to the loss of D1 protein. Our study with *V. berlandieri* leaves agrees with such case. Both increased F_o and the decreased F_v/F_m caused by high PPFD during midday could almost completely recover in the evening (Fig. 1). Marked losses of D1 protein also occurred, as induced by high PPFD during midday and completely recovered in the evening (sunset). In contrast, no loss of D1 protein amount was found in *V. rupestris* after high PPFD on midday.

As shown by D1 protein quantification, even strong photoinhibition of *V. rupestris* leaves does not seem to be related to inactivation and degradation of the D1 protein in the PS2 reaction centre. In contrast, in *V. berlandieri* leaves substantial D1 inactivated appeared to be coincident with photoinhibition. Depending on species and leaf age, acclimation to high PPFD probably results in differing degrees of D1 stabilisation (Thiele et al. 1997).

We suggest that *V. berlandieri* is more susceptible to photoinhibition as compared with *V. rupestris*. This is mainly due to the marked reduction of F_v/F_m with significant increase of F_o, marked loss of PS2 activity and D1 protein content. Our results also suggest that photoactivation of PS2 is not correlated at all with net loss of D1 and photoinhibition represents the formation of inactive centres. These centres are apparently capable of dissipating excess excitation energy and thereby exert a regulatory protective function (Krause 1988, Smith et al. 1990, Flexas et al. 2001). We also conclude that high PPFD induces changes on the acceptor side of PS2 in *V. berlandieri* and on the donor side in *V. rupestris*.

References

Gilmore, A.M., Björkman, O.: Adenine nucleotides and the xanthophylls cycle in leaves. II. Comparison of the effects of CO2 and temperature limited photosynthesis on photosystem II fluorescence quenching, the adenylate energy charge and violaxanthin de-epoxidation in cotton. – Planta 192: 537-544, 1994.

Schießthaler, U., Russell, A.W., Bölüm-Nordenkampf, H.R., Critchley, C.: Photoregulation and photodamage in Schefflera arboricola leaves adapted to different light environments. –
New roles for MADS-box genes in higher plants
F. GARCIA-MAROTO, M.-J. CARMONA, J.-A. GARRIDO, M. VILCHES-FERRÓN, J. RODRÍGUEZ-
RUIZ, D. LÓPEZ ALONSO

In vitro culture of immature embryos of Cytisus laburnum
F. PAOLICCHI, P. PICCIARELLI, R. LORENZI

Effect of cytokinins and cytokinin antagonists on in vitro cultured Gypsophila paniculata L.
V. KAPCHINA-TOTAEVA, D. STOYANOVA

Propagation of Angelica archangelica plants in an air-sparged bioreactor from a novel embryogenic cell line, and their production of coumarins
M. EEEVA, T. OJALA, P. TAMMELA, B. GALAMBOSI, H. VUORELA, R. HILTUNEN,
K. FAGERSTEDT, P. VUORELA

Rapid micropropagation of five cultivars of mulberry
B.S. BHAU, A.K. WAKHLO

Phenylmethylosulphonyl fluoride inhibits the formation of jasmonate-induced proteins in cotyledons of Cucurbita pepo (zucchini)
K.I. ANANIEVA, E.D. ANANIEV

The 26S proteasome of the resurrection plant Tortula ruralis: cloning and characterization of the TrRPT2 subunit
X. CHEN, A.J. WOOD

Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips
H. SIMKOVA, J. ČÍHALÍKOVÁ, J. VRÁNA, M.A. LYŠÁK, J. DOLEŽEL

Valerophene synthase-like chalcone synthase homologues in Humulus lupulus
P. NOVÁK, J. MATOUŠEK, J. BRÍZA

Lack of mitotic delays at the onset of proliferation in dormant root primordia challenged by ionizing radiation
S. PÉREZ-TALAVERA, J.A. CARBALLO, C. DE LA TORRE

Influence of spectral range and carbon and nitrogen sources on oxygen evolution and Emerson enhancement in Chlamydomonas reinhardtii
E.A.M. HAMADA, S.M.A. DOWIADAR, T. PUNNET

Diurnal variations in the activity of phosphoenolpyruvate carboxylase and NADP-malic enzyme during the early steps of interaction between Glycine max and Bradyrhizobium japonicum
M. GENEVA, Y. MARKOVSKA, V. VASSILEVA, G. IGNATOV

Trigonelline concentration in field-grown soybean in response to irrrigation
Y. CHO, V.N. NIJI, X. CHEN, D.A. LIGHTFOOT, A.J. WOOD

Nitrogen and carbon concentrations, and stable isotope ratios in Mediterranean shrubs growing in the proximity of a CO2 spring
R. Tognetti, J. Penuelas

Inhibition of α-amylase acting in hexaploid triticale lines by exogenous abscisic acid
W. SOKKIEWICZ, T. SOKKIEWICZ

Growth and nitrate reductase activity of Chlorella fascia cells as affected by long term salinity
A.A. SHAFAEA

Lipid peroxidation and peroxide-scavenging enzymes in cotton seeds under natural ageing
A. GOEL, I.S. SHEORAN

Fractionation and electrophoretic patterns of storage proteins of Ebenus cretica. A preliminary survey as a tool in taxonomy
T. SYROS, T. YUPANJIS, A. ECONOMOU

The decrease of extracted apoplastic protein in soybean root tip by aluminium treatment
T. KATAOKA, J. FURUKAWA, T.M. NAKANISHI

Differential expression of peroxidase isoenzymes in soybean roots treated with the benzothiadiazole
L.V. HOFFMANN, M.T.V. CARVALHO, E.J.B. NOGUEIRA CARDOSO

1-aminoacyclopropane-1-carboxylic acid enhanced direct somatic embryogenesis from Oncidium leaf cultures
J.T. CHEN, W.C. CHANG

Micropropagation of Tectona grandis: assessment of genetic fidelity
G. GANGOPADHYAY, S. BASU GANGOPADHYAY, R. POODAR, S. GUPTA, K.K. MUKHERJEE

In vitro shoot regeneration from flower and leaf explants in Rhododendron
S. TOMSONE, D. GERTNERE

Assessment of phytotoxicity of α-aminoalkane phosphonic acids derivatives
K. BIELECKI, A. DZIAMSKA, J. SARAPUK

Effect of darkness on growth and flowering of Chenopodium rubrum and C. murale plants in vitro
A. MITROVIC, B. ŽIVANOVIC, I.J. CULAFIĆ

Effects of protein phosphatase inhibitors and calcium antagonists on self-incompatible reaction in buckwheat
J. MILIUS-DUKIĆ, S. NINKOVIC, M. NEŠKOVIC

Copper toxicity tolerance in Agilops and Halyssia seedlings
S. LANDJEVA, M. MERAKCHIJSKA-NIKOLOVA, G. GANEVA

http://www.plant.org/bp; e-mail: biol_plant@usb.cas.cz