

REVIEW

The PsbH protein of photosystem 2J. KOMENDA^{***}, D. ŠTYS^{**}, and L. LUPÍNKOVÁ^{**}

*Institute of Physical Biology, University of South Bohemia, 373 33 Nové Hrady, Czech Republic**
*Laboratory of Photosynthesis, Institute of Microbiology, Academy of Sciences of the Czech Republic,
 379 81 Třeboň, Czech Republic***

Abstract

The PsbH protein belongs to a group of small protein subunits of the photosystem 2 (PS2) complex and genes encoding PsbH homologues have been so far found in all studied oxygenic phototrophs. This single helix membrane protein is important for the proper function of the PS2 acceptor side and for stable assembly of PS2. Its hypothetical function as an analogue of the H subunit of the bacterial reaction centre as well as a putative role of its phosphorylation is evaluated.

Additional keywords: chloroplast; cyanobacterium; D1 protein; phosphorylation; photosynthesis.

Identification of the protein

Photosystem 2 (PS2) of higher plants, algae, and cyanobacteria is a membrane pigment-protein complex catalysing oxidation of water and reduction of plastoquinone. Its core consists of nearly 10 protein subunits of variable size. Two pairs of homologous polypeptides D1-D2 and CP47-CP43 represent the larger ones. The first pair binds redox-active functional groups of the reaction centre (like P680, pheophytin, and quinones Q_A and Q_B) performing charge separation while the second pair binds chlorophyll (Chl) molecules needed for energy transfer to the reaction center. There are also a number of low molecular mass proteins mostly with unknown function even though it is assumed that they are important for the optimisation of electron and energy transfer and for assembly of the complex (for review see Hankamer *et al.* 1997).

Bennett (1977, 1979) has originally found in thylakoids of higher plants the PsbH protein, the product of the psbH gene, as 10-kDa phosphoprotein. Its phosphorylation occurs on the threonine residue similarly to LHC2 proteins (Bennett 1977) and this phosphate group could be removed by trypsin (Bennett 1980). The protein has been initially considered as part of the ATP synthase due

to its co-migration with the DCCD-reactive CFo subunit III (Alfonso *et al.* 1980), as a small subunit of the cytochrome *b*₆ complex (Süss 1981), or as the α -subunit of cytochrome *b*-559 (Metz *et al.* 1983, Widger *et al.* 1984). First information on its amino acid composition and partial N-terminal sequence (first 9 amino acid residues) has been obtained with the protein isolated and purified from spinach PS2 particles by Farchaus and Dilley (1986). These authors provided evidence for the unique character of the protein clearly distinct from the cytochrome *b*-559 and ATP synthase subunits. Later, Hird *et al.* (1991) determined the whole sequence of the protein by sequencing a region of wheat chloroplast DNA. Genes similar to that found in wheat have been also found in liverwort, tobacco, and rice (Ohyama *et al.* 1986, Shinozaki *et al.* 1986, Hiratsuka *et al.* 1989). Protein with a similar amino acid sequence has been also partially sequenced in *Chlamydomonas* (Dedner *et al.* 1988) and in the thermophilic cyanobacterium *Synechococcus vulgaris* (Koike *et al.* 1989). Gene encoding the PsbH protein from the cyanobacterium *Synechocystis* PCC 6803 has been cloned and sequenced by Abdel-Mawgood and

Received 25 November 2002, accepted 17 February 2003.

***Fax: +420-384-721246, e-mail: komenda@alga.cz

Abbreviations: Chl – chlorophyll; DMBQ – 2,5-dimethyl-*p*-benzoquinone; IC7 – *psbH*-deletion mutant of the cyanobacterium *Synechocystis* PCC 6803; PS1 and PS2 – photosystem 1 and photosystem 2; WT – wild-type strain of the cyanobacterium *Synechocystis* PCC 6803.

Acknowledgment: We thank Prof. J. Barber for providing the *psbH* deletion mutant of *Synechocystis* PCC 6803. This work was sponsored by project MSM 12310001 of the Ministry of Education, Youth, and Sports of the Czech Republic and by Institutional Research Concept no. AV0Z5020903.

Table 1. Aligned N-terminal sequences of *psbH* homologs in various organisms (according to SWISS PROT database, May 2002). S.P.a.n., SWISS PROT accession number; organisms 1-8 do not contain LHC2-type of the PS2 antenna, organisms 9-23 contain LHC2-type of the external PS2 antenna. Tentatively phosphorylable threonine residues are in bold. * Sequence determined from the direct N-terminal protein sequencing.

Organism	S.P.a.n.	Aligned N-terminal sequence
1 <i>Prochlorothrix</i>	P31095	-----GQKTALSNFLKPFNSNAGKVVPG
2 <i>Cyanidium</i>	O19925	-----ALKTRLGELLRPLNSQYGKVAPG
3 <i>Cyanophora</i>	P48105	-----PQRTALGNILRPLNSEYYGKVAPG
4 <i>Guillardia</i>	O78514	-----ALRTRLGELLRPLNSEYYGKVAPG
5 <i>Odontella</i>	P49475	-----ALRTRLGEI LRPLNAEYYGKVAPG
6 <i>Porphyra</i>	P51325	-----ALRTRLGEILRPLNSEYYGKVAPG
7 <i>Synechococcus</i> *	P19052	-----ARRTWLGDILRPLNSEYYGKV
8 <i>Synechocystis</i>	P14835	-----AQRTLRLGDLRPLNSEYYGKVPG
9 <i>Chlamydomonas</i>	P22666	ATGT-----SKAKPSKVNSDFQEPLVTPGLTLLRPLNSEAGKVLPG
10 <i>Chlorella</i>	P56323	ATGTTSKVKVS-----GVSTPLGTLKPLNSEYYGKVAPG
11 <i>Euglena</i>	P31555	---T-----TISKNKTNSK-----GKTTLGTI LKPLNSKYGVLPG
12 <i>Marchantia</i>	P12160	ATQIIDDTPKTK-----GKKGIGDI LKPLNSEYYGKVAPG
13 <i>Mesostigma</i>	Q9MUV4	AD-----TSQ-----GKRTVVGFLKPLNSEYYGKVAPG
14 <i>Arabidopsis</i>	P56780	ATQTVEDSSRSG-----PRSTTVGKLLKPLNSEYYGKVAPG
15 <i>Hordeum</i>	P12363	ATQTVEDSSKPR-----PKRTGAGSLLKPLNSEYYGKVAPG
16 <i>Nicotiana</i>	P06415	ATQTVENSSRSG-----PRRTAVGDLLKPLNSEYYGKVAPG
17 <i>Oenothera</i>	P19820	ATQTAEESSRAR-----PKKTGLGGLLKPLNSEYYGKVAPG
18 <i>Oryza</i>	P09449	ATQTVEDSSRPG-----PRQTRVGFLKPLNSEYYGKVAPG
19 <i>Pinus</i>	P41627	ATQTIDDTSKTT-----PKETLVGTTLKPLNSEYYGKVAPG
20 <i>Populus</i>	Q36632	ATQSVEGSSRSG-----PRRTIVGDLLKPLNSEYYGKVAPG
21 <i>Spinacea</i>	P05146	ATQTVESSSRSR-----PKPTTVGALLKPLNSKYGVAPR
22 <i>Triticum</i>	P04965	ATQTVEDSSKPR-----PKRTGAGSLLKPLNSEYYGKVAPG
23 <i>Zea</i>	P24993	ATQTVEDSSRPK-----PKRTGAGSLLKPLNSEYYGKVAPG

Dilley (1990) and Mayes and Barber (1991). From that time genes encoding *PsbH* homologues have been identified and completely sequenced in more than 25 organisms

showing that the *PsbH* protein is a common component of PS2 in all oxygenic photosynthetic organisms (Table 1).

Localisation and expression of the gene in chloroplasts and cyanobacteria

In plants the *psbH* gene exhibits a conservative location in the *psbB-psbH-petB-petD* operon. The order and orientation of these genes are highly conserved in plant chloroplast genomes (e.g. Westhoff *et al.* 1983, Ohya *et al.* 1986, Shinozaki *et al.* 1986). A range of transcripts of various sizes containing the entire operon or its components can be detected in chloroplasts (Westhoff and Herrmann 1988, Westhoff *et al.* 1991). This means that all genes in the operon are co-transcribed and afterwards the primary transcript is processed. In *Synechocystis* PCC 6803, the *psbH* gene is a component of a different gene cluster containing *psbN*, *psbH*, *petC*, and *petA* genes (Mayes and Barber 1991). However, in contrast to the situation in chloroplasts, the *psbH* is transcribed as monocistronic mRNA while *petC-petA* genes as a separate, dicistronic unit (Mayes *et al.* 1993). In both types of organisms, the *psbH* gene is localised in a vicinity of genes coding for components of the cytochrome *b*/*f* complex. Functional importance of this association is possible, although it is challenged by the fact that in *Chlamy-*

domonas reinhardtii the genes encoding components of the cytochrome *b*/*f* complex are localised elsewhere in the chloroplast genome, and that the *psbH* gene exists in the cluster with *psbB* and *psbT* genes that code for CP47 and a small PS2 subunit *PsbT*, respectively. On the basis of analysis of nuclear mutants with impaired accumulation of *psbB*, *psbT*, and *psbH* transcripts it has been assumed that these three genes are co-transcribed (Monod *et al.* 1992, Johnson and Schmidt 1993). However, no interdependence of *psbB/psbT* and *psbH* mRNA accumulation suggests that *psbB/psbT* and *psbH* have separate promoters and each can be transcribed independently (Summer *et al.* 1997).

Despite the ongoing transcription of *psbB* and *psbH* genes, only *psbH* gene product could be identified in membranes of etiolated plant seedlings while CP47, the product of *psbB*, is not accumulated (Hird *et al.* 1991). Therefore, the transcription of the *psbH* gene and accumulation of its translation product is light independent.

Functional and structural role of the protein in PS2

Based on a certain similarity with the sequence of a LHC2 protein, Allen and Holmes (1986) proposed that the PsbH protein may bind Chl and play a role in the distribution of energy between both photosystems, as a part of the LHC2 complex. However, the absence of histidine residues in this single transmembrane helix-containing protein (Fig. 1) raised doubts about its ability to bind Chl. The hypothesis was also questioned after the discovery of PsbH in cyanobacteria lacking LHC2. A further negation of the hypothesis was brought about by the finding that the protein is present in etioplasts while known Chl-binding proteins, including CP47, are stable incorporated into the membrane only after irradiation when Chl is synthesised and stabilises the apoproteins (Eichacker *et al.* 1990). Based on the correlation between the phosphorylation of the PS2 proteins (Hodges *et al.* 1985), particularly of the PsbH protein (Packham 1987), and the electron transfer rate from the primary to the secondary quinone acceptors Q_A and Q_B , it has been proposed that the re-oxidation rate of Q_A is dependent on the phosphorylation status of the PsbH protein. This could indicate a close proximity of the PsbH protein to the reaction centre of PS2. First more extensive characterisation of the protein role in PS2 has been allowed by the construction of the *psbH*-less mutant of *Synechocystis* PCC 6803 (Mayes *et al.* 1993). The PS2 complex of the mutant differed from the WT complex in several aspects. Compared to the WT, the mutant strain was able to grow autotrophically but more slowly and only under low irradiance. In the absence of the PsbH protein, PS2 remained functional, but electron transfer between Q_A and Q_B was significantly slower, as revealed by fluorescence measurements (Mayes *et al.* 1993; Fig. 2). Measurements of thermoluminescence and flash-induced oxygen evolution revealed modification of the Q_B binding site but the influence of the PsbH absence on the donor side of PS2 and on the oxygen evolving complex could not be excluded. Recently, a more extensive characterisation of the *psbH* deletion mutant revealed further features of the PsbH-deficient PS2 (Komenda *et al.* 2002). We have found that after removal of CO_2 from the medium, electron transport between Q_A and Q_B is further slowed down. However, this change can be easily reversed by the addition of bicarbonate. In contrast, in the wild type strain (WT) the rate of Q_A re-oxidation remains the same after CO_2 removal. Also the very fast inactivation of DMBQ-supported oxygen evolving activity under high irradiance, typical for the mutant (Komenda and Barber 1995), can be either accelerated by CO_2 removal or slowed down on the addition of bicarbonate immediately prior to irradiation. This result corroborates the results of Sundby *et al.* (1989) who showed a negative correlation between the phosphorylation of the PsbH protein and the concentration of

bicarbonate in plant thylakoids. These data indicate that the PsbH protein is needed for the stable binding of bicarbonate on the PS2 acceptor side.

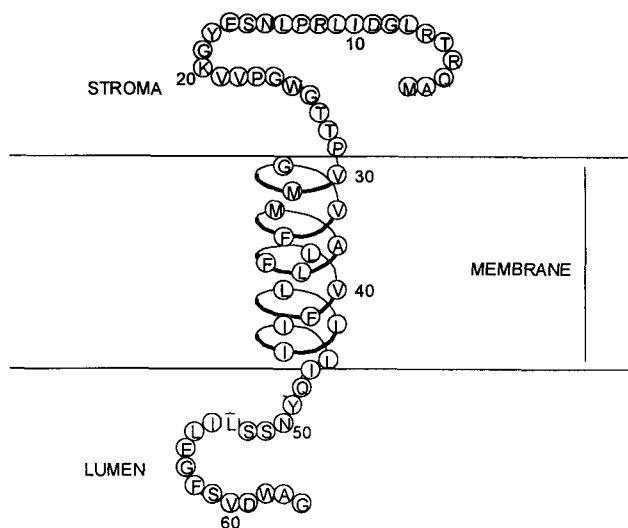


Fig. 1. Putative structure of the PsbH protein from the cyanobacterium *Synechocystis* PCC 6803.

After exposure of the mutant cells to high irradiance ($1\,000\ \mu\text{mol m}^{-2}\ \text{s}^{-1}$) formation of the D1-cytochrome *b*-559 adduct and formation of the D1 fragments has been identified (Komenda *et al.* 2002). At the same time, the oxygen-dependent shift of the D1 protein mobility in the electrophoretic gel and positive identification of the D1 band by an *Oxyblot* kit showed that increased oxidation of the D1 protein occurs in the mutant. As these features were unique for the mutant, and were not observed in the WT strain, it is assumed that in the absence of the PsbH protein, the impaired function of PS2 leads to increased probability of the formation of reactive oxygen species. These oxygen species oxidise the D1 protein which can be subsequently cross-linked with the α -subunit of cytochrome *b*-559 or fragmented.

A very important feature of the protein is its susceptibility to phosphorylation. This post-translational modification has been demonstrated in higher plants (Bennett 1977) and in the green alga *Chlamydomonas* (Dedner *et al.* 1988). The protein seems to be phosphorylated on two residues, one was identified as threonine 2 (Michel and Bennett 1987, Michel *et al.* 1988) while the other remains unknown (Vener *et al.* 2001). In line with this, a double band of phosphorylated PsbH in the PS2 of green algae *Chlamydomonas* and *Chlorella* has been identified with anti-phosphothreonine antibody (Hamel *et al.* 2000, Komenda *et al.* 2002, and Fig. 3). There is also a report on PsbH phosphorylation in *Synechocystis* (Race and Gounaris 1993) despite the absence of threonine in the

N-terminus segment of the protein in this organism. A recent Western blot analysis of threonine protein phosphorylation in thylakoids and PS2 complexes in *Synechocystis* did not reveal any phosphoproteins (Fig. 3) and also labelling with ^{33}P did not provide any evidence for the phosphorylation of the PsbH protein (Komenda *et al.* 2002). The aligned N-terminal sequences of PsbH (Table 1) show that all organisms not-containing LHC2-type of the PS2 antenna (prochlorophytes, cyanobacteria, rhodophytes, and diatoms) contain the PsbH protein with shorter N-terminal part without the phosphorylable threonine. Therefore, we believe that the phosphorylation of PsbH is important for the function of PS2 in the LHC2-containing stacked regions of the membrane. In line with this Giardi *et al.* (1994) showed that de-phosphorylation of PsbH by alkaline phosphatase causes an extremely fast inactivation of the PS2 in isolated spinach thylakoids, while in cyano-bacterial membranes the enzyme does not affect PS2 electron transfer activity.



Fig. 2. Re-oxidation of the PS2 primary electron acceptor Q_A is slowed down in the absence of the PsbH protein. Re-oxidation of the PS2 primary electron acceptor Q_A in cells of the WT strain (solid line) and the psbH-deletion mutant IC7 (dotted line) was measured by the double modulated fluorimeter P.S.I. as decay of the variable component of fluorescence elicited by strong flash after 5-min dark adaptation.

Phosphorylation of the PsbH increases with irradiance in chloroplasts (Ebbert and Godde 1994) and also in plant leaves (Rintamäki *et al.* 1997). In isolated plant thylakoids the phosphorylated PsbH is steadily accumulated during 60-min irradiation and no saturation has been observed (Štys *et al.* 1995). It is in contrast with phosphorylation of LHC2 that has its maximum at ambient irradiance but becomes inhibited at higher irradiance or after 30 min irradiation.

Besides its role in the function of the PS2 core complex, the PsbH protein is important also for the biogenesis and the structure of PS2. Deletion of the protein in *Chlamydomonas reinhardtii* leads to the disappearance of PS2 from the thylakoid membrane, documenting its role in the stable assembly of PS2 (Summer *et al.* 1997, O'Connor *et al.* 1998). Analysis of the PS2 assembly intermediates by radioactive pulse labelling showed that the synthesis of main protein components of the PS2 core D1, D2, CP43,

and CP47 is not affected but their assembly into larger PS2 complexes is inhibited (Summer *et al.* 1997). In the PsbH-deletion mutant of *Synechocystis* the turnover

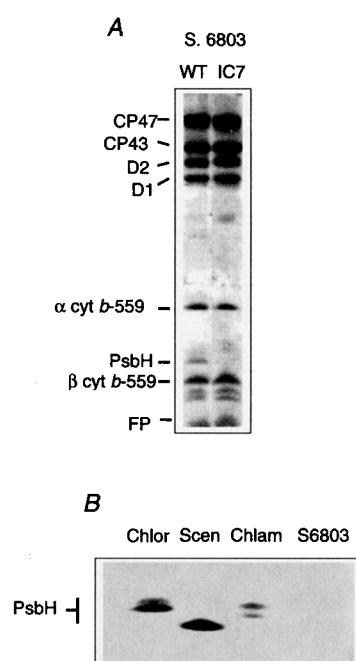


Fig. 3. (A) Identification of the PsbH protein in *Synechocystis* PS2 core complexes of WT and psbH deletion mutant IC7 and (B) its phosphorylation in PS2 core complexes of green algae *Chlorella* (Chlor), *Scenedesmus* (Scen), and *Chlamydomonas* (Chlam), and of the cyanobacterium *Synechocystis* (S6803). PS2 core complexes were obtained by *Deriphat*-PAGE of deoxycholate solubilised thylakoids. Analysis was performed on 12-20% polyacrylamide gel containing 7 M urea, gel was either stained by Coomassie Blue (A) or electroblotted, and phosphoproteins on the nitrocellulose membrane were detected by anti phosphothreonine antibodies (Zymed, USA; B).

of the D1 protein is slowed down and recovery from photoinhibition is also slower (Komenda and Barber 1995). This can be related to the effect described above, as the restoration of the PS2 activity occurs after the D1 replacement during which at least partial reassembly or rearrangement of PS2 subunits is required. As shown in the deletion mutant of *Chlamydomonas*, this process is exactly what is inhibited. A role of the PsbH protein in the stabilisation of PS2 has also been supported by our recent experimental data. We have isolated the PS2 core complex from the deletion mutant of *Synechocystis* and subjected it to *Deriphat* non-denaturing electrophoresis. In contrast to the isolated PS2 core from WT, a large amount of the reaction centre complex D1-D2-cytochrome $b-559$ appeared on the gel indicating that PsbH protein may stabilise the binding of CP47 to the D1-D2 heterodimer (Komenda *et al.* 2002). Such a role could also explain the instability of the PS2 core in *Chlamydo-*

monas, since weak binding of CP47 to the heterodimer could allow a fast proteolysis of PS2 subunits before the complex becomes fully assembled.

Recently, Zouni *et al.* (2001) published a model of PS2 of the thermophilic cyanobacterium *Synechococcus elongatus*, based on X-ray structural analysis at 35 nm resolution. In this model, the helix on the side of CP47

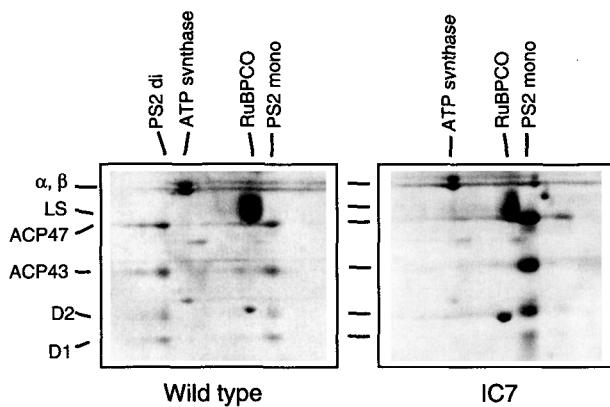


Fig. 4. The PS2 dimer is absent in the thylakoids of the *Synechocystis psbH* deletion mutant IC7. Thylakoids from the wild type (left panel) and IC7 mutant (right panel) were solubilised by dodecylmaltoside and complexes were analysed by Blue Native PAGE. Subunit composition of the complexes was determined by SDS-PAGE on 12-20 % acrylamide gel containing 7 M urea, and the 2-D gel was stained by Coomassie Blue. LS – large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO); α , β – subunits of ATP synthase; PS2 di and mono – dimer and monomer of the PS2 core complex.

and D2, in the proximity of the Q_A - Q_B region, was tentatively ascribed to the PsbH protein. This position of the PsbH protein was chosen because of the apparent effect of PsbH phosphorylation (in higher plants) or the PsbH absence (in cyanobacteria) on the electron transfer between the PS2 quinone acceptors. This localisation is in agreement with our data since it can also explain the recently observed stabilisation effect on the binding of CP47 to the D1-D2 heterodimer (Komenda *et al.* 2002). Using Blue-Native Gel Electrophoresis, a mild electrophoretic method for separation of native membrane complexes according to their size, no PS2 dimers were identified in the *psbH*-deletion strain IC7 of *Synechocystis* (Fig. 4). This is again in agreement with position of the protein in the interface between the PS2 monomers. The proximity of the PsbH protein to the PS2 reaction centre is also suggested by results of Kuhn *et al.* (1988) and Chiaramonte *et al.* (1999). A parallel degradation of the D1 and the PsbH proteins and their tentative cross-linking during irradiation of isolated spinach thylakoids was found (Kuhn *et al.* 1988). Chiaramonte *et al.* (1999) suggested close structural interaction of the D1 and PsbH subunits in PS2 from *Synechocystis* due to the observed conformational modification of the Q_B herbicide binding pocket that is caused by the replacement of the native PsbH by the homologue from maize (see also Bergantino *et al.* 2002). These data taken together are not in contradiction with the hypothesis of Packham (1988) who considered the PsbH protein as a possible functional homologue of the H subunit in the reaction centre of photosynthetic bacteria.

References

Abdel-Mawgood, A.L., Dilley, R.A.: Cloning and nucleotide sequence of the *psbH* gene from cyanobacterium *Synechocystis* 6803. – Plant mol. Biol. **14**: 445-446, 1990.

Alfonso, R., Nelson, N., Racker, E.: A light dependent protein kinase activity of chloroplasts. – Plant Physiol. **65**: 730-734, 1980.

Allen, J.F., Holmes, N.G.: A general model for regulation of photosynthetic unit function by protein phosphorylation. – FEBS Lett. **202**: 175-181, 1986.

Bennett, J.: Phosphorylation of chloroplast membrane polypeptides. – Nature **269**: 344-346, 1977.

Bennett, J.: Chloroplast phosphoproteins. The protein kinase of thylakoid membranes is light-dependent. – FEBS Lett. **103**: 343-344, 1979.

Bennett, J.: Chloroplasts phosphoproteins. Evidence for a thylakoid-bound phosphoprotein phosphatase. – Eur. J. Biochem. **104**: 85-89, 1980.

Bergantino, E., Brunetta, A., Segalla, A., Szabo, I., Carbonera, D., Bordignon, E., Rigoni, F., Giacometti, G.M.: Structural and functional role of the PsbH protein in resistance to light stress in *Synechocystis* PCC 6803. – Funct. Plant Biol. **29**: 1181-1187, 2002.

Chiaramonte, S., Giacometti, G.M., Bergantino, E.: Construction and characterization of a functional mutant of *Synechocystis* 6803 harbouring a eukaryotic PS2-H subunit. – Eur. J. Biochem. **260**: 833-843, 1999.

Dedner, N., Meyer, H.E., Ashton, C., Wildner, G.F.: N-terminal sequence analysis of the 8 kDa protein in *Chlamydomonas reinhardtii*. Localization of the phosphothreonine. – FEBS Lett. **236**: 77-82, 1988.

Ebbert, V., Godde, D.: Regulation of thylakoid protein phosphorylation in intact chloroplasts by the activity of kinases and phosphatases. – Biochim. biophys. Acta **1187**: 335-346, 1994.

Eichacker, L.A., Soll, J., Lauterbach, P., Rüdiger, W., Klein, R.R., Mullet, J.E.: *In vitro* synthesis of chlorophyll α in the dark triggers accumulation of chlorophyll α apoproteins in barley etioplasts. – J. biol. Chem. **265**: 13566-13571, 1990.

Farchaus, J., Dilley, R.A.: Purification and partial sequence of the M_r 10,000 phosphoprotein from spinach thylakoids. – Arch. Biochem. Biophys. **244**: 94-101, 1986.

Giardi, M.T., Komenda, J., Masojídek, J.: Involvement of protein phosphorylation in the sensitivity of photosystem II to strong illumination. – Physiol. Plant. **92**: 181-187, 1994.

Hamel, P., Olive, J., Pierre, Y., Wollman, F.-A., De Vitry, C.: A new subunit of cytochrome b₆f complex undergoes reversible

phosphorylation upon state transition. – *J. biol. Chem.* **275**: 17072-17079, 2000.

Hankamer, B., Barber, J., Boekema, E.J.: Structure and membrane organization of photosystem-II in green plants. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **48**: 641-671, 1997.

Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.-R., Meng, B.-Y., Li, Y.-Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K., Sugiura, M.: The complete sequence of the rice (*Oryza sativa*) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. – *Mol. gen. Genet.* **217**: 185-194, 1989.

Hird, S.M., Webber, A.N., Wilson, R.J., Dyer, T.A., Gray, J.C.: Differential expression of the *psbB* and *psbH* genes encoding the 47 kDa chlorophyll *a*-protein and the 10 kDa phosphoprotein of photosystem II during chloroplast development in wheat. – *Curr. Sci.* **19**: 199-206, 1991.

Hodges, M., Packham, N.K., Barber, J.: Modification of photosystem II activity by protein phosphorylation. – *FEBS Lett.* **181**: 83-87, 1985.

Johnson, C.H., Schmidt, G.W.: The *psbB* gene cluster of the *Chlamydomonas reinhardtii* chloroplast: sequence and transcriptional analyses of *psbN* and *psbH*. – *Plant mol. Biol.* **22**: 645-658, 1993.

Koike, H., Mamada, K., Ikeuchi, M., Inoue, Y.: Low-molecular-mass proteins in cyanobacterial photosystem II: identification of *psbH* and *psbK* gene products by N-terminal sequencing. – *FEBS Lett.* **244**: 391-396, 1989.

Komenda, J., Barber, J.: Comparison of *psbO* and *psbH* deletion mutants of *Synechocystis* PCC 6803 indicate that degradation of D1 protein is regulated by the *Q_B* site and is dependent on protein synthesis. – *Biochemistry* **34**: 9625-9631, 1995.

Komenda, J., Lupíková, L., Kopecký, J.: Absence of the *psbH* gene product destabilizes the Photosystem II complex and bicarbonate binding on its acceptor side in *Synechocystis* PCC 6803. – *Eur. J. Biochem.* **269**: 610-619, 2002.

Kuhn, M., Thiel, P., Böger, P.: The 9-kDa phosphoprotein involved in photoinhibition. – *Z. Naturforsch.* **43C**: 413-417, 1988.

Mayes, S.R., Barber, J.: Primary structure of the *psbN-psbH-petC-petA* gene cluster of the cyanobacterium *Synechocystis* PCC-6803. – *Plant mol. Biol.* **17**: 289-293, 1991.

Mayes, S.R., Dubbs, J.M., Vass, I., Hideg, É., Nagy, L., Barber, J.: Further characterization of the *psbH* locus of *Synechocystis* sp PCC 6803: Inactivation of *psbH* impairs *Q_A* to *Q_B* electron transport in photosystem 2. – *Biochemistry* **32**: 1454-1465, 1993.

Metz, J.G., Ulmer, G., Bricker, T.M., Miles, D.: Purification of cytochrome *b*-559 from oxygen-evolving Photosystem II preparations of spinach and maize. – *Biochim. biophys. Acta* **725**: 203-209, 1983.

Michel, H., Hunt, D.F., Shabanowitz, J., Bennett, J.: Tandem mass spectrometry reveals that three photosystem II proteins of spinach chloroplasts contain *N*-acetyl-*O*-phosphothreonine at their *NH₂* termini. – *J. biol. Chem.* **263**: 1123-1130, 1988.

Michel, H.P., Bennett, J.: Identification of the phosphorylation site of an 8.3 kDa protein from photosystem II of spinach. – *FEBS Lett.* **212**: 103-108, 1987.

Monod, C., Goldschmidt-Clermont, M., Rochaix, J.-D.: Accumulation of chloroplast *psbB* RNA requires a nuclear factor in *Chlamydomonas reinhardtii*. – *Mol. gen. Genet.* **231**: 449-459, 1992.

O'Connor, H.E., Ruffle, S.V., Cain, A.J., Deak, Z., Vass, I., Nugent, J.H.A., Purton, S.: The 9-kDa phosphoprotein of photosystem II. Generation and characterisation of *Chlamydomonas* mutant lacking PSII-H and a site-directed mutant lacking the phosphorylation site. – *Biochim. biophys. Acta* **1364**: 63-72, 1998.

Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., Ozeki, H.: Chloroplast gene organization deduced from complete sequence of liverwort *Marchantia polymorpha* chloroplast DNA. – *Nature* **322**: 572-574, 1986.

Packham, N.K.: Phosphorylation of the 9 kDa Photosystem II-associated protein and the inhibition of photosynthetic electron transport. – *Biochim. biophys. Acta* **893**: 259-266, 1987.

Packham, N.K.: Is the 9 kDa thylakoid membrane phosphoprotein functionally and structurally analogous to the 'H' subunit of the bacterial reaction centres? – *FEBS Lett.* **231**: 284-290, 1988.

Race, H.L., Gounaris, K.: Identification of the *psbH* gene-product as a 6 kDa phosphoprotein in the cyanobacterium *Synechocystis* 6803. – *FEBS Lett.* **323**: 35-39, 1993.

Rintamäki, E., Salonen, M., Suoranta, U.M., Carlberg, I., Andersson, B., Aro, E.M.: Phosphorylation of light-harvesting complex II and photosystem II core proteins shows different irradiance-dependent regulation *in vivo* – Application of phosphothreonine antibodies to analysis of thylakoid phosphoproteins. – *J. biol. Chem.* **272**: 30476-30482, 1997.

Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chungwongse, J., Obokata, J., Yamagishi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B.Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdon, N., Shimada, H., Sugiura, M.: The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. – *EMBO J.* **5**: 2043-2049, 1986.

Stys, D., Stancek, M., Cheng, L., Allen, J.F.: Complex formation in plant thylakoid membranes. Competition studies on membrane protein interactions using synthetic peptide fragments. – *Photosynth. Res.* **44**: 277-285, 1995.

Summer, E.J., Schmid, V.H.R., Bruns, B.U., Schmidt, G.W.: Requirement for the H phosphoprotein in Photosystem II of *Chlamydomonas reinhardtii*. – *Plant Physiol.* **113**: 1359-1368, 1997.

Sundby, C., Larsson, U.K., Henrysson, T.: Effect of bicarbonate on thylakoid protein phosphorylation. – *Biochim. biophys. Acta* **975**: 277-282, 1989.

Süss, K.-H.: Identification of chloroplast thylakoid phosphoproteins. Evidence for the absence of phosphoryl-polypeptide intermediates in the ATPase complex. – *Biochem. biophys. Res. Commun.* **102**: 724-729, 1981.

Vener, A.V., Harms, A., Sussman, M.R., Vierstra, R.D.: Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of *Arabidopsis thaliana*. – *J.*

biol. Chem. **276**: 6959-66, 2001.

Westhoff, P., Alt, J., Herrmann, R.G.: Localization of the genes for the two chlorophyll α -conjugated polypeptides (mol. wt. 51 and 44 kd) of the photosystem II reaction centre on the spinach plastid chromosome. – EMBO J. **2**: 2229-2237, 1983.

Westhoff, P., Herrmann, R.G.: Complex RNA maturation in chloroplasts. The *psbB* operon from spinach. – Eur. J. Biochem. **171**: 551-564, 1988.

Westhoff, P., Offermann-Steinhard, K., Höfer, M., Eskins, K., Oswald, A., Streubel, M.: Differential accumulation of plastid transcripts encoding photosystem II components in the mesophyll and bundle-sheath cells of monocotyledonous NADP-malic enzyme-type-C₄ plants. – Planta **184**: 377-388, 1991.

Widger, W.R., Farchaus, J.W., Cramer, W.A., Dilley, R.A.: Studies on the relation of the M, 9000 phosphoprotein to cytochrome *b*-559 in spinach thylakoid membranes. – Arch. Biochem. Biophys. **233**: 72-79, 1984.

Zouni, A., Witt, H.T., Kern, J., Fromme, P., Krauss, N., Saenger, W., Orth, P.: Crystal structure of photosystem II from *Synechococcus elongatus* at 3.8 Å resolution. – Nature **409**: 739-43, 2001.