

Diurnal gas exchange and superior resources use efficiency of typical C₄ species in Hunshandak Sandland, China

S.L. NIU, G.M. JIANG*, Y.G. LI, L.M. GAO, and M.Z. LIU

Laboratory of Quantitative Vegetation Ecology, Institute of Botany, The Chinese Academy of Science, 20 Nanxincun, 100093, Beijing, China

Abstract

Net photosynthetic rate (P_N), transpiration rate (E), stomatal conductance (g_s), leaf water potential (Ψ_{leaf}), leaf nitrogen content, and photosynthetic nitrogen use efficiency (PNUE) were compared between a typical C₄ plant, *Agriophyllum squarrosum* and a C₃ plant, *Leymus chinensis*, in Hunshandak Sandland, China. The plant species showed different diurnal gas exchange patterns on June 12-14 when photosynthetic photon flux density (PPFD), air temperature (T_{air}), and water potential were moderate. P_N , E , and g_s of *A. squarrosum* showed distinct single peak while those of *L. chinensis* were depressed at noon and had two peaks in their diurnal courses. Gas exchange traits of both species showed midday depression under higher photosynthetic photon flux density (PPFD) and T_{air} when Ψ_{leaf} was significantly low down on August 6-8. However, those of *A. squarrosum* were depressed less seriously. Moreover, *A. squarrosum* had higher P_N , Ψ_{leaf} , water use efficiency (WUE), and PNUE than *L. chinensis*. Thus *A. squarrosum* was much more tolerant to heat and high irradiance and could utilise the resources on sand area more efficiently than *L. chinensis*. Hence species like *A. squarrosum* may be introduced and protected to reconstruct the degraded sand dunes because of their higher tolerance to stress and higher resource use efficiency.

Additional key words: adaptation to arid environment; *Agriophyllum*; C₃ species; *Leymus*; photosynthetic nitrogen use efficiency; stomatal conductance; transpiration rate; water use efficiency.

Introduction

Since the initial discovery of C₄ photosynthesis in the late 1960s, a significant progress has been made in elucidating the biochemical and physiological characteristic of this pathway (Pearcy and Ehleringer 1984). The higher photosynthetic efficiency of C₄ plants under tropical conditions and their consequently higher growth rate and daily organic production is widely recognised (Hatch 1999, Smith 1997). Based on the higher carboxylation ability, C₄ species have higher water use efficiency (WUE) and nitrogen use efficiency (PNUE) (Makino *et al.* 1994, Schulze *et al.* 1996, Orsenigo *et al.* 1997, Rudmann *et al.* 2001). However, Pearcy *et al.* (1981) found that water limited conditions did not enhance the competitive ability of C₄ relative to C₃ that was observed under well-watered conditions. The diurnal changes of gas exchange of C₃ and C₄ species has also been introduced (Read *et al.* 1997, Matos 1998, Maragni *et al.* 2000). Nevertheless, the midday depression induced by

high irradiance of these two typical photosynthetic pathways has not been compared in detail, and their corresponding physiological mechanisms have not been interpreted clearly. Although many experiments comparing C₃ and C₄ plants have been done, most of them were conducted in the controlled ideal environments. How do they respond to the stressful habitats, such as high irradiance, heat, drought, and N limitation that are common in the arid sandy areas? Does the superiority of C₄ plants still be expressed in the resource limited conditions? In this study the differences between *A. squarrosum* and *L. chinensis* were analysed in diurnal courses of photosynthesis, WUE, and PNUE under field conditions. Our aim was to explore the different adaptive strategies of C₃ and C₄ species to arid environment.

A. squarrosum is a pioneer species in sandland, which widely distributes in shifting sand dunes (Chen 1986). It is crucial in fixing the shifting sand dunes. *L. chinensis*,

Received 10 March 2003, accepted 7 April 2003.

*Author for correspondence; fax: (+8610) 62590843, e-mail: jgm@ht.rol.cn.net

Acknowledgements: We thank N.B. Hao for his valuable comments on the manuscript and R.T. Wu for providing aids of accommodation and great facilities. This work was supported by the Knowledge Innovation Project of Chinese Academy of Science (KSCXI-08-02).

which is mainly distributed in fixed sand dunes and lowland, is a dominant species and occurs at the later-succession stage when environment is stabilised. Both of them are annual grasses while the former is a typical C_4 plant and the latter is a typical C_3 plant (Yin and Li 1997). In spite of their ecological importance, the information on the diurnal variations of gas exchange and water potential

of these two species has not been documented yet. In this paper, the diurnal CO_2 and water vapour exchange of two species and their difference in WUE and PNUE were compared in order to understand the eco-physiological mechanisms, the successful resource use, and fast growth of *A. squarrosum* in the temperate sandy areas.

Materials and methods

Study area: The experiment was carried out in Hunshandak Sand Area ($42^{\circ}30'–43^{\circ}54'N$; $112^{\circ}45'–116^{\circ}36'E$), Inner Mongolia Autonomous Region of China, warm desert area of China. The prevailing climate is of the temperate semiarid type with annual mean temperature of $1.7^{\circ}C$, annual precipitation of 250–350 mm, and annual potential transpiration of 2 000–2 700 mm. Total nitrogen content in rhizosphere soil is very low (only 96.5 mg kg^{-1}). The main habitats included shifting sand dunes, semi-fixed sand dunes, fixed sand dunes, and lowlands. The coverage of vegetation in these habitats is $< 10\%$, $10–40\%$, $> 40\%$, and 60% , respectively. In recent years, some fixed sand dunes have been reactivated and grassland degeneration has been accelerated with increasing human activities. Therefore, the shifting sand dune account or will account for higher proportions in the sandy area.

Photosynthesis was measured on clear days at two stages (on June 12–14 and August 6–8, 2002) throughout day-time at two-hour intervals. Photosynthetic photon flux density (PPFD), air temperature (T_{air}), net photosynthetic rate (P_N), transpiration rate (E), and stomatal conductance (g_s) were measured using a portable gas exchange system (*LCA-4*, *ADC*, Hoddesdon, England). The leaf area was measured using an area meter (*AM100*, *ADC*, UK). WUE was calculated as P_N/E . Before measuring, the CO_2 and H_2O analysers were calibrated using CO_2 standards ($460 \mu\text{mol mol}^{-1}$) and *WG-602* Water Vapour Generator (*ADC*, Hoddesdon, England), respectively. During operation, air was collected from 6 m above the floor and dried (by passing through “drier”) to 20 % relative humidity before being pumped into the analyser. Relative air flow through the leaf chamber was $6.250 \text{ mm}^3 \text{ s}^{-1}$. The central portion of most leaves was approximately horizontal, and the leaf cuvette was clamped on this portion of the leaf and kept in the horizontal so that the effect of leaf angle on incident photon flux was minimised during the measurements. Full-expanded functional leaves in upper shoots were selected. Gas exchange data were recorded as soon as readings became stable, usually 30–90 s after leaf

insertion into the cuvette. Three replications were carried out for each species at each time.

Leaf water potential (Ψ_{leaf}): After gas exchange measurements, Ψ_{leaf} was measured with a *WP4* Dewpoint Potential Meter (*Decagon Devices*, Pullman, Washington, USA). Fully expanded leaves were taken near to the tops of plants, and then kept in a sealed plastic bag and stored in an ice box after being collected. Measurements were done immediately after being brought into laboratory. Calibration was checked hourly. Five to eight maturing leaves were sampled for each determination. When measuring, small linear leaves or leaf section was put into chamber for measurement. Mature leaf tissue was used to minimise growth effects on leaf water potential. Three replications were made for each species.

Nitrogen contents in leaves: Leaves were collected from upper canopy on June 12–14 and August 6–8, respectively. Three replicates were taken. Leaves were dried at $70^{\circ}C$ to constant mass. N content was determined with an automatic N analyser (*KJELTEC system, 1026* distilling unit, U.S.A.). The method and calculation were introduced by Miller and Keoney (1982).

Data analysis: The large data sets of photosynthesis were entered into an *Excel* spread sheet which included physiological measurements, leaf areas, times of measurement, and species. Analysis of variance of leaf traits was carried out on each measurement and the significance of plant mean square determined by testing against the standard error (species \times replicate). The least significances of the differences (LSD) between the means were estimated at 95 % confidence level. Calculations and linear regressions were performed by *Sigma-Plot 8.0* program. Significant differences between species are reported at $p < 0.05$ if not otherwise indicated. The final data of each time in June were the means of the same time on June 12–14, while that in August was the mean on August 6–8.

Results

The diurnal courses of gas exchange and weather parameters: The maximal PPFD and T_{air} on June 12-14 and August 6-8 at 14:00 were 1980 and 2270 $\mu\text{mol m}^{-2} \text{s}^{-1}$, and 33.3 and 37.7 °C, respectively (Fig. 1AB). Mean diurnal air temperature on August 6-8 was 3.5 °C higher than that on June 12-14 (Fig. 1B).

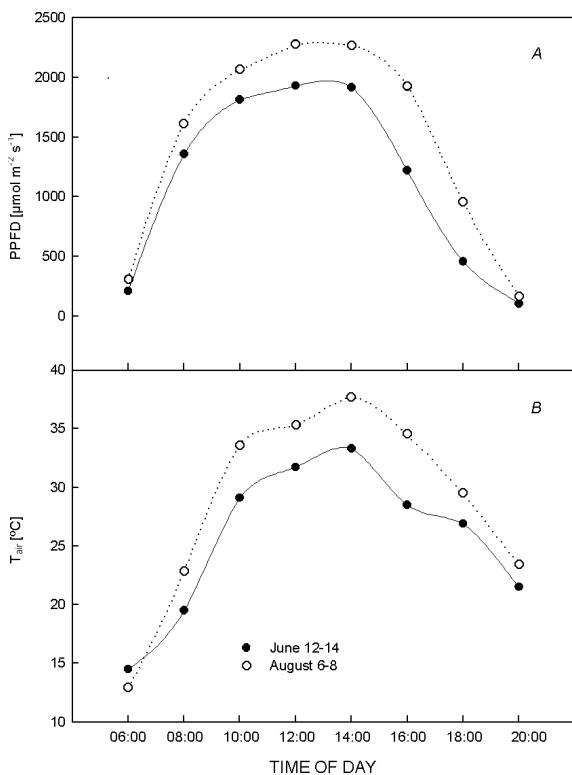


Fig. 1. Diurnal changes in photosynthetic photon flux density (PPFD) and air temperature (T_{air}) on June and August.

A. squarrosum showed one-peak and *L. chinensis* showed two-peaks pattern in the diurnal courses of P_{N} , E ,

Discussion

Differences in gas exchange pattern and their possible reasons: Under the conditions shown in Fig. 1, *A. squarrosum* exerted a distinct single peak response of P_{N} and g_s on June 12-14, whereas *L. chinensis* had two peaks because there were pronounced midday depressions. This illustrated that *A. squarrosum* was much more tolerant to heat and high irradiance than *L. chinensis*. The maximal PPFD and T_{air} on August 6-8 were higher than those on June 12-14. Such conditions, together with the low Ψ_{leaf} , caused midday depression in both *A. squarrosum* and *L. chinensis* (Fig. 2B). However, the extent of depression in the former was lower than that in the latter, i.e. P_{N} of *L. chinensis* was inhibited more seriously than that of *A. squarrosum* which can be seen from the curves

and g_s in June. The peaks of these three parameters for *A. squarrosum* all appeared at 10:00. *L. chinensis* showed two peaks at 08:00 and 16:00 for both P_{N} and g_s , while that of E occurred at 10:00 and 14:00 (Fig. 2ACE).

With the higher irradiance and air temperature in August, both *A. squarrosum* and *L. chinensis* showed two peaks of P_{N} , E , and g_s . The first one appeared at 08:00, except that *A. squarrosum* showed its first peak of E at about 10:00, and the second one appeared at 16:00 for both species (Fig. 2BDF). However, the degree of the midday depression was different: at noon, P_{N} of *A. squarrosum* and *L. chinensis* decreased by 43 and 55 %, respectively, whereas g_s was 55 and 84 % lower than the maximal one in the morning. With few exceptions, *A. squarrosum* showed higher P_{N} , E , and g_s than *L. chinensis* on both stages, of which the former showed 80 and 41 % greater P_{max} than the latter in June and August, respectively.

Differences in WUE and Ψ_{leaf} between two species: *A. squarrosum* had higher WUE on June 12-14 and August 6-8, even though of different degree (Fig. 3A,B). An obviously inversed single peaked curve was observed in the diurnal variation of Ψ_{leaf} in leaves, which was similar in both species with the range from -0.14 to -0.63 MPa on June 12-14 (Fig. 3C). However, the difference between two species was greater and on average for *A. squarrosum* was about 18 % more than for *L. chinensis* during the second measuring period (Fig. 3D).

Leaf N content and PUE: Leaf N content on area basis in *A. squarrosum* was 15 and 16 % lower than that in *L. chinensis* for June and August, respectively ($p < 0.05$) (Fig. 4A). However, PNUE of *A. squarrosum* was 2.1 and 1.7 times that of *L. chinensis* in June and August, respectively.

of P_{N} and g_s (Fig. 2B,F).

Difference in WUE between two species: P_{N}/E reflects the instantaneous WUE of the plant at leaf level. Larger g_s could result in higher E and P_{N} (Fig. 2). However, larger increase of P_{N} than E made a greater WUE in *A. squarrosum* than in *L. chinensis* though at the expense of higher E . The superiority of *A. squarrosum* in WUE is expressed more clearly under drought conditions. For instance, when water content in plant was sufficient in June (Ψ_{leaf} was from -0.14 to -0.63 MPa, Fig. 3A), *A. squarrosum* and *L. chinensis* had similar Ψ_{leaf} . But the difference between the two species was enlarged in August because leaf water deficits occurred (the lowest Ψ_{leaf} was

-3.34 MPa in *L. chinensis*, Fig. 3B), and then *A. squarrosum* maintained greater Ψ_{leaf} than *L. chinensis*. The ability to maintain higher Ψ_{leaf} at moderate water deficits may be an adaptation mechanism of plant to water-limited conditions (Ehsaie *et al.* 1991, Zhu *et al.*

2002). When leaves of plants were subjected to water stress at noon, *A. squarrosum* showed higher WUE and Ψ_{leaf} than *L. chinensis*. So the risk of photoinhibition was reduced.

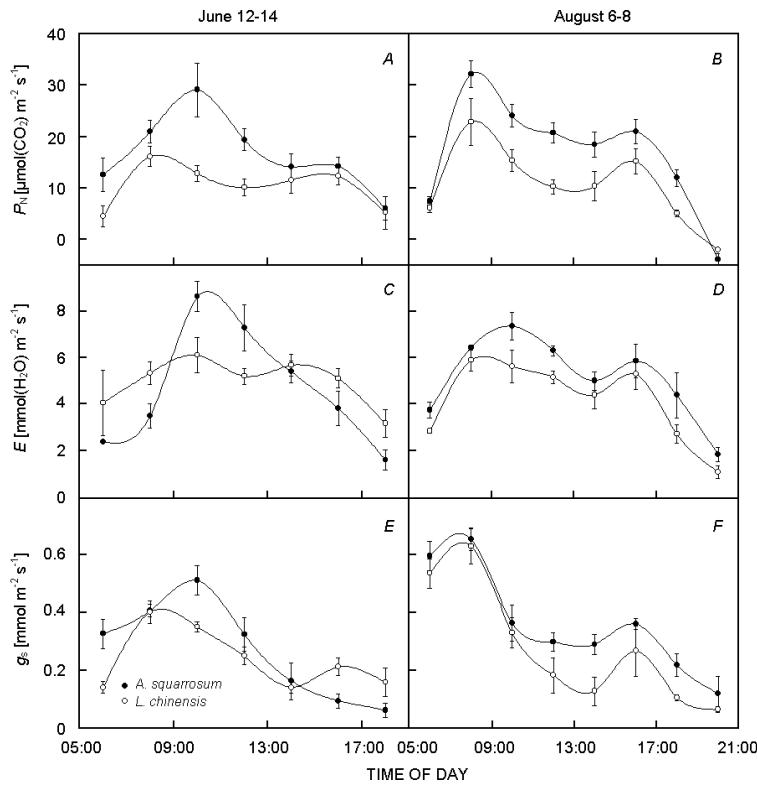


Fig. 2. Diurnal courses of net photosynthetic rate (P_N), transpiration rate (E), and stomatal conductance (g_s) of *A. squarrosum* and *L. chinensis* on June 12-14 (A, C, E) and August 6-8 (B, D, F).

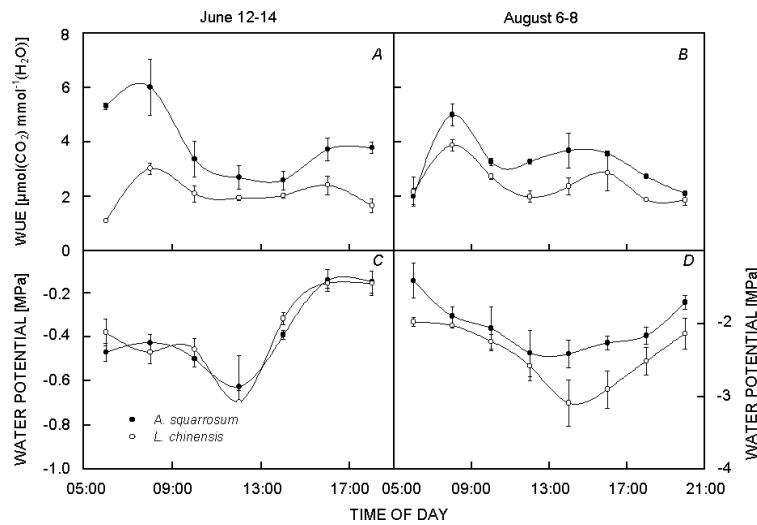


Fig. 3. The daily changes in water use efficiency (WUE) and water potential of *A. squarrosum* and *L. chinensis* on June 12-14 (A, C) and August 6-8 (B, D).

Leaf N content and utilisation: Positive correlation has been observed between the rate of irradiance-saturated photosynthesis of a leaf and its N content (Reich *et al.* 1994, 1995, Niinemets *et al.* 2002). This is because a large percentage of leaf organic N (up to 75 %) is present in chloroplasts (Makino *et al.* 1994, Nakano *et al.* 1997). However, their extents differ according to plant species, which reflects diversity in PNUE (Reich *et al.* 1998).

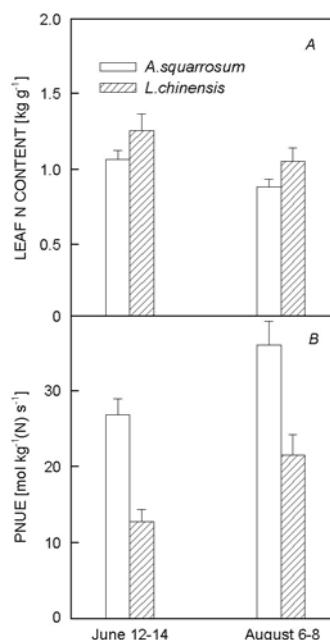


Fig. 4. Leaf nitrogen content and photosynthetic nitrogen use efficiency (PNUE) of *A. squarrosum* and *L. chinensis* on June 12-14 (A) and August 6-8 (B).

PNUE, the ratio of CO₂ assimilation rate to leaf organic N content, is important in determining the efficiency with which species utilise N to achieve growth (Garnier *et al.* 1995). The inter-specific difference in PNUE has been described for many herbaceous species (Reich *et al.* 1995, Milka *et al.* 1999). In our study, the higher PNUE of *A. squarrosum* probably resulted from the C₄ concentrating mechanism that leads to CO₂ saturation of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO). Because far less RuBPCO is required to achieve high photosynthetic rates in C₄ than C₃ plants (Sage *et al.* 1987), and RuBPCO is a large, N expensive enzyme accounting for typically 20-30 % of total leaf N in C₃ plant (Evans 1989), the N saving in C₄ plants is obvious. So the high PNUE was maintained in the C₄ plant. Another explanation may be the N localisation. In our study, *A. squarrosum* showed slightly lower leaf N content and Chl content (values not shown) but significantly greater PNUE than *L. chinensis* (Fig. 4). This shows that much more N was located in carboxylation components (such as RuBP carboxylation and regeneration enzymes) rather than in light-harvesting (such as Chl and carotenoids) ones (Field 1983, Ishida *et al.* 1999). We therefore infer that *A. squarrosum* is more effective in N distribution and utilisation.

In conclusion, the C₄ species *A. squarrosum* had higher photon, water, and nitrogen use efficiency than the C₃ species *L. chinensis* in the semi-arid sandy area, which can be attributed mainly to its C₄ photosynthetic mechanism. This may be the reason for its survival in shifting sand dunes. The results also suggested that *A. squarrosum* should be first introduced and protected at recovering the degraded sandy land in Hunshandak.

References

Chen, S.H.: [Root Types of Plants in Inner Mongolia Grassland.] – Inner Mongolia People Press, Hohhot 1986. [In Chin.]

Ehsaie, B., Hall, A.E., Farquhar, G.D., Nguyen, H.T., Waines, J.G.: Water-use efficiency and carbon isotope discrimination in wheat. – *Crop Sci.* **31**: 1282-1288, 1991.

Evans, J.R.: Photosynthesis and nitrogen relationships in leaves of C₃ plants. – *Oecologia* **78**: 9-19, 1989.

Field, C.B.: Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. – *Oecologia* **56**: 341-347, 1983.

Garnier, E., Gobin, O., Poorter, H.: Interspecific variation in nitrogen productivity depends on the photosynthetic nitrogen use efficiency and on nitrogen allocation within the plant. – *Ann. Bot.* **76**: 667-672, 1995.

Hatch, M.D.: C₄ photosynthesis: a historical overview. – In: Sage, R.F., Monson, R.K. (ed.): C₄ Plant Biology. Pp. 17-46. Academic Press, San Diego 1999.

Ishida, A., Uemura, A., Koike, N., Matsumoto, Y., Hoe, A.L.: Interactive effects of leaf age and self-shading on leaf structure, photosynthetic capacity and chlorophyll fluorescence in the rain forest tree, *Dryobalanops aromatica*. – *Tree Physiol.* **19**: 741-747, 1999.

Makino, A., Nakano, H., Mae, T.: Effect of growth temperature on the responses of ribulose-1,5-bisphosphate carboxylase, electron transport components and sucrose synthesis enzymes to leaf nitrogen in rice, and their relationships to photosynthesis. – *Plant Physiol.* **105**: 1231-1238, 1994.

Maragni, L.A., Knapp, A.K., McAllister, C.A.: Patterns and determinants of potential carbon gain in the C₃ evergreen *Yucca glauca* (Liliaceae) in a C₄ grassland. – *Amer. J. Bot.* **87**: 230-236, 2000.

Matos, M.C., Matos, A.A., Mantas, A., Cordeiro, V., Vieira da Silva, J.B.: Diurnal and seasonal changes in *Prunus amygdalus* gas exchanges. – *Photosynthetica* **35**: 517-524, 1998.

Milka, H.M., Westbeek, T.S.L., Pons, M.L.C., Owen, K.A.: Analysis of differences in photosynthetic nitrogen use efficiency of alpine and lowland *Poa* species. – *Oecologia* **120**: 19-26, 1999.

Miller, R.H., Keoney, D.R.: Methods of Soil Analysis. Part 2: Chemical and Microbiological Traits. – American Society of Agronomy, Madison 1982.

Nakano, H., Makino, A., Mae, T.: The effect of elevated partial pressure of CO₂ on the relationship between photosynthetic capacity and N content in rice leaves. – *Plant Physiol.* **115**: 191-198, 1997.

Niinemets, Ü., Angelika, P., Laimi, T.: Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three *Betula* species. – *Ann. Bot.* **89**: 191-204, 2002.

Orsenigo, M., Patrignani, G., Rascio, N.: Ecophysiology of C₃, C₄ and CAM plants. – In: Pessarakli, M. (ed.): *Handbook of Photosynthesis*. Pp. 1-25. Marcel Dekker, New York – Basel – Hong Kong 1997.

Pearcy, R.W., Ehleringer, J.: Comparative ecophysiology of C₃ and C₄ plants. – *Plant Cell Environ.* **1**: 1-13, 1984.

Pearcy, R.W., Tumosa, N., Williams, K.: Relationships between growth, photosynthesis and competitive interactions for a C₃ and a C₄ plant. – *Oecologia* **48**: 371-376, 1981.

Read, J.J., Morgan, J.A.: Chatterton, N.J., Harrison, P.A.: Gas exchange and carbohydrate and nitrogen concentrations in leaves of *Paspalum smithii* (C₃) and *Bouteloua gracilis* (C₄) at different carbon dioxide concentrations and temperatures. – *Ann. Bot.* **79**: 197-206, 1997.

Reich, P.B., Kloeppel, B.D., Ellsworth, D.S., Walters, M.B.: Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. – *Oecologia* **104**: 24-30, 1995.

Reich, P.B., Walters, M.B., Ellsworth, D.S., Uhl, C.: Photosynthesis-nitrogen relations in Amazonian tree species. I. Patterns among species and communities. – *Oecologia* **97**: 62-72, 1994.

Reich, P.B., Walters, M.B., Ellsworth, D.S., Vose, J.M., Volin, J.C., Gresham, C., Bowman, W.D.: Relationship of leaf dark respiration to leaf-nitrogen specific leaf area and leaf life span: a test across biomes and functional groups. – *Oecologia* **114**: 471-482, 1998.

Rudmann, S.G., Milham, P.J., Conroy J.P.: Influence of high CO₂ partial pressure on nitrogen use efficiency of the C₄ grasses *Panicum coloratum* and *Cenchrus ciliaris*. – *Ann. Bot.* **88**: 571-577, 2001.

Sage, R.F., Pearcy, R.W., Seemann, J.R.: The nitrogen use efficiency of C₃ and C₄ plants. III. Leaf nitrogen effects on the activity of carboxylating enzymes in *Chenopodium album* (L.) and *Amaranthus retroflexus* (L.). – *Plant Physiol.* **85**: 355-359, 1987.

Schulze, E.-D., Ellis, R., Schulze, W., Trimborn, P.: Diversity metabolic types and delta ¹³C carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions. – *Oecologia* **106**: 352, 1996.

Smith, B.N.: The origin and evolution of C₄ photosynthesis. – In: Pessarakli, M. (ed.): *Handbook of Photosynthesis*. Pp. 977-986. Marcel Dekker, New York – Basel – Hong Kong 1997.

Yin, L.J., Li, M.R.: [A study on the geographic distribution and ecology of C₄ plants in China. I. C₄ plant distribution in China and their relation with regional climatic condition.] – *Acta ecol. sin.* **4**: 350-363, 1997. [In Chin.]

Zhu, G.J., Jiang, G.M., Hao, N.B., Liu, H.Q., Kong, Z.H., Du, W.G., Man, W.Q.: [Relationship between ecophysiological features and grain yield in different soybean varieties.] – *Acta bot. sin.* **44**: 725-730, 2002. [In Chin.]