

# Comparison of whole system of carbon and nitrogen accumulation between two maize hybrids differing in leaf senescence

Ping HE<sup>\*,\*\*</sup>, Mitsu OSAKI<sup>\*\*\*</sup>, Masako TAKEBE<sup>\*\*</sup>, and Takuro SHINANO<sup>+</sup>

*Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China*<sup>\*</sup>

*National Agricultural Research Center for Hokkaido Region, Sapporo, 062-8555, Japan*<sup>\*\*</sup>

*Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan*<sup>\*\*\*</sup>

*Creative Research Initiative "Sousei" (CRIS), Hokkaido University, Sapporo, 060-8-8, Japan*<sup>+</sup>

## Abstract

A field experiment was conducted to investigate the carbon (C) and nitrogen (N) balance in relation to grain formation and leaf senescence in two different senescent types of maize (*Zea mays* L.), one stay-green (cv. P3845) and one earlier senescent (cv. Hokkou 55). In comparison with Hokkou 55, P3845 had a higher N concentration ( $N_c$ ) in the leaves and a higher specific N absorption rate by roots (SAR<sub>N</sub>), which indicated that a large amount of N was supplied to the leaves from the roots during maturation. This resulted in a higher photosynthetic rate, which supports saccharide distribution to roots. Thus, stay-green plants maintained a more balanced C and N metabolism between shoots and roots. Moreover, the coefficients of the relationship between the relative growth rate (RGR) and  $N_c$ , and between the photon-saturated photosynthetic rate ( $P_{sat}$ ) and  $N_c$  were lower in P3845. The  $P_{sat}$  per unit  $N_c$  in leaves was lower in the stay-green cultivars, which indicated that high yield was attained by longer green area duration and not by a high  $P_{sat}$  per unit  $N_c$  in the leaf. Consequently, a high  $P_{sat}$  caused a high leaf senescence rate because C and N compounds will translocate actively from the leaves.

*Additional key words:* dry matter accumulation; photosynthetic rate; relative growth rate; specific N absorption rate by roots.

## Introduction

Leaf senescence, as is quantified by leaf area duration (LAD), is a major determinant of yield in many crops (Patterson 1992, Thomas 1992, Osaki *et al.* 1993, Kumudini *et al.* 2002). Studies on 'stay-green' cultivars of several species confirm that delayed senescence increases the yield of determinate crops (Duvick 1992, Rajcan and Tollenaar 1999). Many senescence-related mutants have been found in crop plants that maintain leaf greenness after the grain-ripening stage, and these are referred to as stay-green or non-yellowing (Thomas and Smart 1993). Genotypes possessing the stay-green trait have a significant yield advantage compared with genotypes not possessing this trait, especially under post-anthesis drought conditions (Borrell *et al.* 2000, He *et al.* 2001, 2002a,b, Kumudini *et al.* 2002).

Nitrogen from decomposed ribulose-1,5-bisphosphate carboxylase/oxygenase and chlorophyll is re-translocated to reproductive organs during the grain filling stage (Osaki *et al.* 1988a,b,c). For this reason, dry matter production is strongly regulated by N accumulation in plants

(Osaki *et al.* 1992). It is important, therefore, to balance C and N metabolism for high yield production (Feller and Fisher 1994, Osaki *et al.* 1995a). The relative growth rate (RGR) is closely related to  $N_c$  in plants (Hirose *et al.* 1988, Pons *et al.* 1994, Wilkstrom and Agren 1995, Osaki and Shinano 2001). There is also a positive correlation between the leaf photon-saturated net photosynthetic rate ( $P_{sat}$ ) and leaf  $N_c$  in various plants (Evans and Seemann 1989, Bondada and Oosterhuis 1998, Osaki and Shinano 2001) regardless of whether the variation in leaf  $N_c$  is due to the microenvironment, leaf age, or N availability (Reich and Schoettle 1988). Moreover, this relationship is stable across species or growth conditions (Field and Mooney 1986) when expressed per leaf mass (Reich *et al.* 1992). The coefficient of the RGR- $N_c$  regression of the whole plant, or that of the  $P_{sat}$ - $N_c$  regression of the individual leaves, may differ among species (Evans and Seemann 1989, Osaki and Shinano 2001). Therefore, the coefficient of RGR- $N_c$  or that of  $P_{sat}$ - $N_c$  within two maize cultivars with different senescent

Received 19 May 2003, accepted 11 August 2003.

*Acknowledgements:* This research was supported by a fellowship from the Japan Science and Technology Agency (STA) and the National Nature Science Foundation of China (Grant No. 30000098). Maize seeds were provided by Dr. K. Koinuma from the National Agricultural Research Center for Hokkaido Region, Sapporo, Japan.

appearance may be different. The reasons for variation in the coefficient of  $RGR-N_c$  or that of  $P_{sat}-N_c$  related to grain formation and leaf senescence needs further study within two maize cultivars.

$P_{sat}$  is regulated not only by  $N_c$ , but also by other factors such as leaf longevity. A negative relationship between  $P_{sat}$  and leaf longevity was confirmed (Field and Mooney 1986, Koike 1988, Reich *et al.* 1992, 1995, Wright and Cannon 2001), and the longevity of a leaf is intimately related to its N status (Thomas and Rogers 1990, Borrell and Hammer 2000, Borrell *et al.* 2000). Mass-based  $P_{sat}$  and leaf N levels are usually positively related to each other and negatively related to leaf thickness/density (low specific leaf area, SLA) and longevity (Reich *et al.* 1991, 1992, 1997, 1998, Haase *et al.* 2000, Craine and Reich 2001). Osaki and Shinano (2001) also found a negative correlation between  $P_{sat}$  and leaf longevity, and stated that the net C translocation rate (or photosynthetic rate) is closely related to the net translocation rate of N compounds from leaves. Therefore, leaf longevity decreases or increases when  $P_{sat}$  is high or low, respectively, because N is quickly or slowly translocated

from leaves in correspondence to a high or low  $P_{sat}$ . Thus, a high photosynthetic rate results from a high translocation rate of C and N compounds from the leaves. In a canopy, new cultivars have improved towards increased leaf longevity, which means a longer LAD and relatively lower net assimilation rate (NAR). High yield is attained due to the high LAD and not to a high NAR (Osaki *et al.* 1991, 1993, Kumudini *et al.* 2002) since NAR is negatively correlated with LAD (Patterson 1992, Osaki *et al.* 1993).

Only a few reports are related to senescence of field-grown plants (Adams *et al.* 1990, Humbeck *et al.* 1996, Murchie *et al.* 2000, Lu *et al.* 2001, Osaki and Shinano 2001, He *et al.* 2002a,b). How this process is related to C and N translocation in two differently senescent types of maize remains unknown. To this end, a field experiment was carried out to investigate dry matter accumulation, RGR, N content, N accumulation, and  $SAR_N$ , to determine the relationship between C and N balance and grain formation in two maize hybrids differing in leaf senescence.

## Materials and methods

**Plants:** Seeds of two hybrids of maize (*Zea mays* L.), the representative stay-green (cv. P3845) and the representative earlier senescent (cv. Hokkou 55), were soaked with water for germination. The germinated seeds were sown in the field of the Graduate School of Agriculture, Hokkaido University, Sapporo, Japan ( $43^{\circ}03'N$ ,  $141^{\circ}20'E$ ) on 16 May 2001. Both the earlier senescent and stay-green hybrids are morphologically similar and do not differ in phenology. These two hybrid types have previously been used in studying physiological processes contributing to yield increase (He *et al.* 2001, 2002a,b). The plots ( $54\text{ m}^2$ ) were arranged in a randomised complete block design with three replications and a plant density of 66 667 plants per ha (space:  $0.60 \times 0.25\text{ m}$ ). Nitrogen [ $30\text{ g m}^{-2}$ , *i.e.*  $300\text{ kg(N) ha}^{-1}$ ], 50 kg N supplied by a rapid release fertiliser, and the other 250 kg N supplied as a slow release fertiliser], phosphorus [ $20\text{ g(P}_2\text{O}_5\text{) m}^{-2}$ ], and potassium [ $20\text{ g(K}_2\text{O) m}^{-2}$ ] were applied as basal applications with  $(\text{NH}_4)_2\text{SO}_4$  or urea, superphosphate, and potassium sulfate, respectively.

Five to 10 plants in each replicate were sampled 42, 61, 82, 105, 124, and 134 d after sowing (DAS) from the vegetative growth stage to maturity. Samples were separated into leaf blades, stems, roots, and grains. For the dry mass and  $N_c$  determination, samples were dried at  $80^{\circ}\text{C}$  for 72 h in an air-forced oven, weighed, and ground. Fifty plants were sampled at harvest to determine yield and yield components.

**Determination of  $N_c$ , RGR, specific nitrogen absorption rate by root ( $SAR_N$ ), and greenness:** Nitrogen was

determined by the Kjeldahl method (Hind 1993). RGR of the whole plant was calculated using the following equation:  $RGR = (1/M)(dM/dt)$ , where M is the averaged total dry mass between two consecutive stages, dM is the difference of total dry mass [ $\text{g m}^{-2}$ ] at the two stages, and dt is days (d) elapsed between the two stages.

Specific N absorption per unit dry mass of root [ $\text{g(N) d}^{-1} \text{ kg}^{-1}(\text{root dry mass})$ ] was calculated according to Shinano *et al.* (1994) and Osaki *et al.* (1995b) using the equation:  $SAR_N = (1/M)(dN/dt)$ , where M is dry mass of roots [ $\text{g m}^{-2}$ ], N is the amount of nitrogen absorbed by the roots [ $\text{mg m}^{-2}$ ], and t is the diurnal time [d].

Greenness was determined by the number of green leaves as a proportion of the maximum number of leaves, and a leaf was considered green if more than half of its area remained green (Birch 1998).

**$N_c$  and  $P_{sat}$  in individual leaves:**  $P_{sat}$  was measured 54, 77, 96, 121, and 133 DAS in the field, and corresponding leaves were taken simultaneously for the measurement of  $N_c$ . To determine leaf position, individual leaves were marked from the ground level after emergence and  $P_{sat}$  was measured at photon saturation by placing the individual attached leaf in a transparent plastic chamber connected to an infrared gas analyser (model *ADC-3*, Shimadzu, Kyoto, Japan). A halogen lamp (*KTS-100R*, Kenko Co., Tokyo, Japan) supplied irradiance of about  $1\ 500\ \mu\text{mol m}^{-2} \text{ s}^{-1}$ . Air temperature, relative humidity, and the  $\text{CO}_2$  concentration in the chamber were  $20\text{--}25^{\circ}\text{C}$ ,  $40\text{--}50\%$ , and  $350\text{--}370\text{ g m}^{-3}$ , respectively.

**Statistical analysis:** Standard analyses of variance were used to assess the significance of treatment means. Differences between treatment means were compared using

the least significant difference (LSD). The regression was subjected to statistical analysis by SPSS 10.0 (SPSS for Windows 1999).

## Results

**Yield and yield components:** Both biomass and grain yield for the stay-green cv. P3845 were significantly higher than those for the earlier senescent Hokkou 55, and there was no significant difference in the harvest

indexes between the two cultivars. Grain numbers per ear in P3845 were markedly higher than in Hokkou 55, although the 100-grain mass in P3845 was lower than in Hokkou 55 (Table 1).

Table 1. Yield and yield components in two maize hybrids. Means ( $\pm$ S.E.) of three replications. Significant differences at  $p < 0.05$  according to LSD test are marked with different letters.

| Cultivar  | 100-grain mass [g]       | Grain number per ear      | Grain yield [ $\text{g m}^{-2}$ ] | Biomass [ $\text{g m}^{-2}$ ] | Harvest Index (HI)         |
|-----------|--------------------------|---------------------------|-----------------------------------|-------------------------------|----------------------------|
| Hokkou 55 | $32.70 \pm 0.75\text{a}$ | $438.8 \pm 17.4\text{ b}$ | $937.0 \pm 22.2\text{ b}$         | $2053.0 \pm 36.8\text{ b}$    | $0.456 \pm 0.010\text{ a}$ |
| P3845     | $28.20 \pm 0.64\text{b}$ | $531.2 \pm 15.5\text{ a}$ | $1016.0 \pm 21.8\text{ a}$        | $2177.0 \pm 70.0\text{ a}$    | $0.467 \pm 0.010\text{ a}$ |

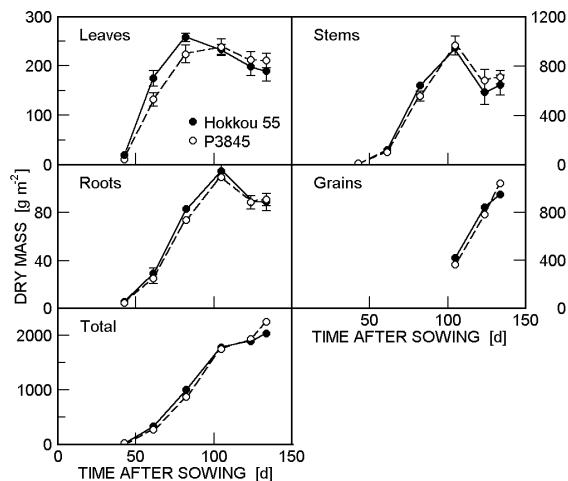



Fig. 1. Changes of dry matter accumulation in different parts of two maize hybrids. Means ( $\pm$ S.E.) with three replications.

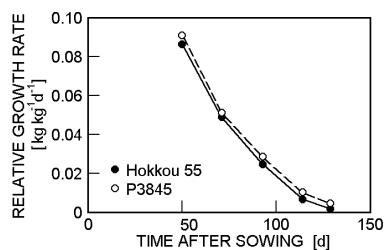



Fig. 2. Changes of relative growth rate in two maize hybrids.

**Dry matter accumulation and RGR:** There was a difference in the dry matter accumulation between the two hybrids. Total dry matter in P3845 was lower than in Hokkou 55 before flowering, but higher than Hokkou 55 after flowering until harvest (Fig. 1). For both hybrids, dry mass in the leaves and stems reached a maximum at 82 DAS (the time of flowering), and then declined with further growth. Leaf and stem dry masses in P3845 were

lower than in Hokkou 55 before flowering and, following this, a higher dry mass was observed in the stay-green hybrid, P3845. Dry mass of grains in P3845 was lower than that in Hokkou 55 before the early maturation stage (124 DAS), but was higher than Hokkou 55 at harvest. The dry mass in roots in P3845 was slightly lower than in Hokkou 55 during the entire growth period. Osaki *et al.* (1995b) reported that root mass was not affected by N absorption or dry matter production, especially at the maturation stage, which means that root mass is not the only index of high yield.

The RGR declined with growth in both hybrids, and P3845 had a higher RGR through all growth stages compared with that in Hokkou 55 (Fig. 2).

**$N_c$  and N accumulation:** Fig. 3 showed leaves, stems, and roots for both hybrids had the highest  $N_c$  at the early seedling stage, then  $N_c$  decreased with growth. The  $N_c$  in leaves, stems, and roots in P3845 was higher than in Hokkou 55 during the entire growth period. However, the  $N_c$  in the grain of P3845 was higher than in Hokkou 55 at 105 DAS, but decreased after 124 DAS until harvest. The lower  $N_c$  of grain in P3845 after 124 DAS was possibly caused by stronger dilution during grain filling, a result in accordance with previous reports (He *et al.* 2001, 2002a,b). The N accumulation in different organs followed trends similar to dry matter accumulation (Fig. 4).

**$SAR_N$ :** The specific N absorption rate per unit dry mass of the root ( $SAR_N$ ) was calculated to estimate the role of roots in N uptake (Shinano *et al.* 1994, Osaki *et al.* 1995b). The  $SAR_N$  in P3845 was higher than in Hokkou 55 during the entire growth period. This trend was in accordance with the RGR (Fig. 5). This result demonstrated that stay-green hybrid had a larger N absorption ability in roots during grain filling compared with the earlier senescent genotype.

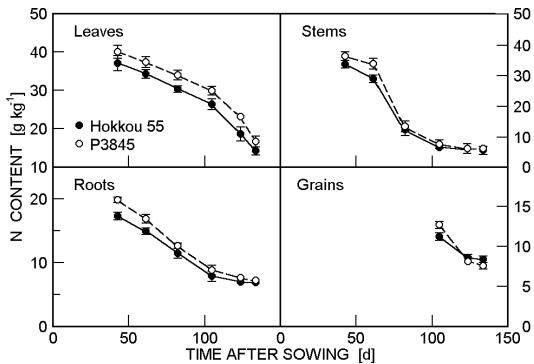



Fig. 3. Changes of nitrogen concentration in different parts of two maize hybrids.

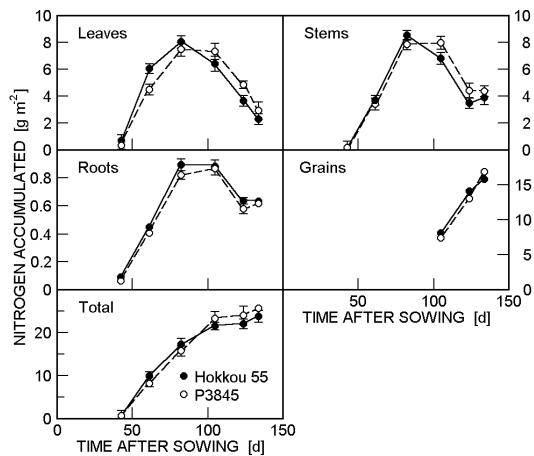



Fig. 4. The amount of nitrogen accumulated in different parts of two maize hybrids at successive stages.

## Discussion

There was a linear relationship between RGR and  $N_c$  of the whole plant (Ingestad 1979, Hirose *et al.* 1988, Pons *et al.* 1994, Wilkstrom and Agren 1995). Furthermore, Osaki and Shinano (2001) found that RGR had a linear relation with  $N_c$  of the canopy leaf, such that  $RGR = DMf N_c + RGR_0$  (where DMf and  $RGR_0$  are constants). They

**Greenness** is the standard used to quantify the percentage of green leaf area (Birch *et al.* 1998). Green area duration, or healthy area duration, was highly correlated with yield (Wolfe *et al.* 1988, Osaki *et al.* 1991, 1993, Kumudini *et al.* 2002). Fig. 6 shows the differences of greenness among the two cultivars after 75 DAS. As expected, there were fewer green leaves in Hokkou 55 than in P3845. At harvest, the green leaf area in P3845 was 51.1 % larger than in Hokkou 55, indicating that the stay-green hybrid delayed leaf senescence.

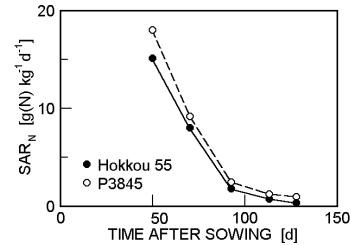



Fig. 5. Changes of  $SAR_N$  in two maize hybrids.

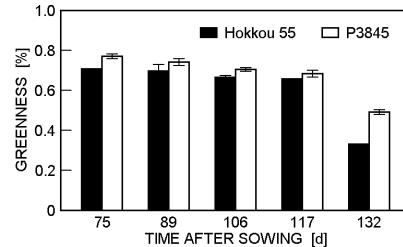



Fig. 6. Changes of greenness in two maize hybrids.

suggested DMf is different among cultivars and species and pointed out that C and N translocation was closely related and that leaf longevity was negatively related to the C and N translocation rate. In this research, RGR also displayed a linear relationship with  $N_c$ , such that  $RGR = DMf N_c + RGR_0$ .

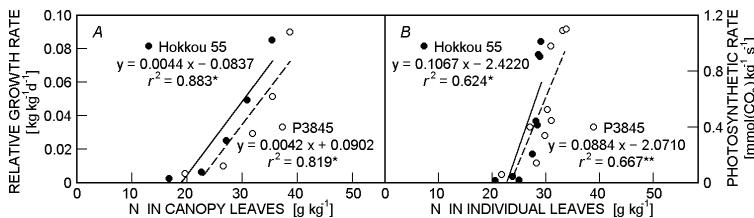



Fig. 7. Relationships between the RGR and  $N_c$  in canopy leaves (A) and between the  $P_{sat}$  and  $N_c$  of individual leaves (B) of Hokkou 55 (●, —) and P3845 (○, - - -). \* and \*\* denote significance at the 0.05 and 0.01 probability levels, respectively.

The RGR- $N_c$  and  $P_{sat}$ - $N_c$  were estimated from the canopy and individual leaves, respectively. As the RGR indicated photosynthetic rate parameters, some relation-

ship between RGR and  $P_{sat}$  is expected. When  $P_{sat}$  was calculated on leaf area basis, it was difficult to determine the RGR- $P_{sat}$  relationship. Osaki and Shinano (2001)

pointed out that  $P_{\text{sat}}$  could explain RGR across cultivars or species, when  $P_{\text{sat}}$  was expressed on leaf dry mass basis. Mass-based  $P_{\text{sat}}$  and leaf N contents are usually positively related to each other and negatively related to leaf longevity (Reich *et al.* 1991, 1992, 1997, 1998, Haase *et al.* 2000, Craine and Reich 2001). In our work,  $P_{\text{sat}}$  expressed on leaf dry mass basis was closely related with RGR. Osaki and Shinano (2001) noted that the C translocation rate per unit of N, from the entire or individual leaves, was highly correlated with the N translocation rate from lower leaves, and that both C and N translocation rates showed negative relationships with leaf longevity. In our study, DMf in Hokkou 55 was higher than that in P3845 (Fig. 7A). A higher DMf means higher net C translocation from the leaf canopy per unit of  $N_c$ . The net carbon translocation rate from leaves to grain in the earlier senescent hybrid was faster than that in the stay-green genotype, which accelerated leaf senescence. However, the rate of decrease of  $P_{\text{sat}}$  per unit of  $N_c$  in individual leaves was higher in Hokkou 55 (Fig. 7B). Therefore, both coefficients of the RGR- $N_c$  (whole leaves) and  $P_{\text{sat}}-N_c$  (individual leaves) were lower in P3845 than in Hokkou 55, corresponding to slow senescence.

The correlation of RGR and  $SAR_N$  was similar to that of the RGR and  $N_c$  (Fig. 8), showing that RGR was high if  $SAR_N$  was high. In addition, the coefficient of the relation between RGR and  $SAR_N$  in Hokkou 55 was higher than in P3845.

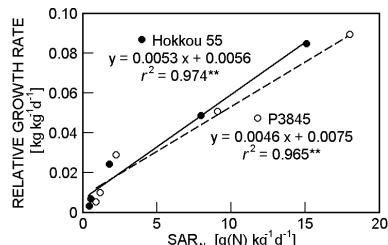



Fig. 8. The correlation between the RGR and  $SAR_N$  in the leaf canopy of Hokkou 55 (●, —) and P3845 (○, - - -). \* and \*\* denote significance at the 0.05 and 0.01 probability levels, respectively.

## References

Adams, W.W., III, Winter, K., Schreiber, U., Schramel, P.: Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of *Platanus occidentalis* L. during autumnal leaf senescence. – *Plant Physiol.* **93**: 1184-1190, 1990.

Birch, C.J., Hammer, G.L., Rickert, K.G.: Improved methods for predicting individual leaf area and leaf senescence in maize (*Zea mays*). – *Aust. J. agr. Res.* **49**: 249-262, 1998.

Bondada, B.R., Oosterhuis, D.M.: Relationships between nitrogen content and net gas exchange components of a cotton leaf during ontogeny. – *Photosynthetica* **35**: 631-635, 1998.

Borrell, A.K., Hammer, G.L.: Nitrogen dynamics and the physiological basis of stay-green in sorghum. – *Crop Sci.* **40**: 1295-1307, 2000.

Borrell, A.K., Hammer, G.L., Henzell, R.G.: Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. – *Crop Sci.* **40**: 1037-1048, 2000.

Craine, J.M., Reich, P.B.: Elevated  $\text{CO}_2$  and nitrogen supply alter leaf longevity of grassland species. – *New Phytol.* **150**: 397-403, 2001.

Duvick, D.N.: Genetic contributions to advances in yield of

To achieve high yield, N should be actively absorbed through roots during maturation (Osaki *et al.* 1991), and root activity should remain high during this period. Photosynthates, as energy substances, must be translocated to the roots to maintain high root activity. If a large amount of N is supplied to leaves from roots during maturation, photosynthesis in leaves will remain high, which supports the distribution of saccharides to roots. Thus, the growth of roots and shoots should mutually regulate each other.

In this study,  $N_c$  in leaves and  $SAR_N$  remained high during the maturation stage in P3845, indicating that stay-green hybrid supplied a larger amount of N to leaves from roots during maturation. This resulted in a higher photosynthetic rate, which in turn supported saccharide distribution to roots. Thus, the stay-green variety maintained a more balanced C and N metabolism between the shoots and roots. Earlier senescent hybrids had higher dry matter and N before flowering, but the higher C translocation rate per unit of N from the lower to upper leaves or apical organs accelerated the progress of leaf senescence. The lower  $N_c$  in leaves and the lower root  $SAR_N$  led to an imbalance of C-N between shoots and roots, which resulted in lower crop production.

Reich *et al.* (1997) mentioned that productivity of the individual plant increased with a decrease of leaf life span among species. We found that in maize a cultivar with a relatively longer leaf life span had a higher productivity at harvest. The difference in RGR was small before flowering, while RGR was higher in P3845 than in Hokkou 55 after flowering (Fig. 2). Although the difference was not large, it led to a higher yield. The strategy for achieving higher yields in maize may differ from the relationship observed in other species by Reich *et al.* (1997).

Higher productivity was attained with lower leaf activity per unit of nitrogen. Lower leaf activity was related to longer LAD. Thus, the strategies we elucidated that result in high productivity are: (1) a relatively low activity of leaf metabolism per unit nitrogen, and (2) maintenance of leaf longevity. Our results, and those of other authors, indicate that it is difficult to sustain both higher leaf activity and greater longevity.

U.S. maize. – *Maydica* **37**: 69-79, 1992.

Evans, J.R., Seemann, J.R.: The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences, and control. – In: Briggs, W.R. (ed.): *Photosynthesis*. Pp. 183-205. Wiley-Liss, New York 1989.

Feller, U., Fischer, A.: Nitrogen metabolism in senescing leaves. – *Crit. Rev. Plant Sci.* **13**: 241-273, 1994.

Field, C., Mooney, H.A.: The photosynthesis-nitrogen relationship in wild plants. – In: Givnish, T.J. (ed.): *On the Economy of Plant Form and Function*. Pp. 25-55. Cambridge University Press, Cambridge – London – New York – New Rochelle – Melbourne – Sydney 1986.

Haase, P., Francisco, I.P., Clark, S.C., Incoll, L.D.: Photosynthetic rate and canopy development in the drought-deciduous shrub *Anthyllis cytisoides* L. – *J. arid Environ.* **46**: 79-91, 2000.

He, P., Jin, J.Y., Zhou, W.: Effect of N application on accumulation and translocation of carbon and nitrogen compounds in two maize cultivars with different senescent appearance. – *J. Plant Nutr.* **24**: 671-681, 2001.

He, P., Osaki, M., Takebe, M., Shinano, T.: Changes of photosynthetic characteristics in relation to leaf senescence in two maize hybrids with different senescent appearance. – *Photosynthetica* **40**: 547-552, 2002a.

He, P., Zhou, W., Jin, J.Y.: Effect of N application on redistribution and transformation of photosynthesized  $^{14}\text{C}$  during grain formation in two maize cultivars with different senescent appearance. – *J. Plant Nutr.* **25**: 2443-2456, 2002b.

Hind, G.: Thylakoid components and processes. – In: Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (ed.): *Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual*. Pp. 283-298. Chapman & Hall, London – Glasgow – New York – Tokyo – Melbourne – Madras 1993.

Hirose, T., Marinus, J.A.W., Jan, W.A., Van Rheenen, A.: Canopy development and leaf nitrogen distribution in a stand of *Carex acutiformis*. – *Ecology* **70**: 1610-1618, 1988.

Humbeck, K., Quast, S., Krupinska, K.: Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. – *Plant Cell Environ.* **19**: 337-344, 1996.

Ingestad, T.: Nitrogen stress in birch seedlings. II. N, P, K, Ca and Mg nutrition. – *Physiol. Plant.* **45**: 149-157, 1979.

Koike, T.: Leaf structure and photosynthetic performance as related to the forest succession of deciduous broad leaved trees. – *Plant Species Biol.* **4**: 77-87, 1988.

Kumudini, S., Hume, D.J., Chu, G.: Genetic improvement in short-season soybeans. – *Crop Sci.* **42**: 141-145, 2002.

Lu, C.M., Lu, Q.T., Zhang, J.H., Kuang, T.Y.: Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field. – *J. exp. Bot.* **52**: 1805-1810, 2001.

Murchie, E.H., Chen, Y., Hubbart, S., Pen, S., Horton, P.: Interactions between senescence and leaf orientation determine *in situ* patterns of photosynthesis and photoinhibition in field-grown rice. – *Plant Physiol.* **119**: 553-563, 2000.

Osaki, M., Hada, K., Tanaka, A.: [Behavior of carbon- and nitrogen-compounds during ripening in soybean.] – *Jap. J. Soil Sci. Plant Nutr.* **59**: 190-196, 1988a. [In Jap.]

Osaki, M., Hada, K., Tanaka, A.: [Reconstruction of the leaf-proteins into grain-proteins during ripening in the rice plant.] – *Jap. J. Soil Sci. Plant Nutr.* **59**: 272-278, 1988b. [In Jap.]

Osaki, M., Iyoda, M., Tadano, T.: Ontogenetic changes in the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenol/pyruvate carboxylase, and chlorophyll in individual leaves of maize. – *Soil Sci. Plant Nutr.* **41**: 285-293, 1995a.

Osaki, M., Komatsu, R., Tanaka, A.: [Reformation of carbon- and nitrogen-compounds during the translocation of materials from the shoot to the tubers in potato.] – *Jap. J. Soil Sci. Plant Nutr.* **59**: 266-271, 1988c. [In Jap.]

Osaki, M., Morikawa, K., Matsumoto, M., Shinano, T., Iyoda, M., Tadano, T.: Productivity of high-yielding crops. III. Accumulation of ribulose-1,5-bisphosphate carboxylase/oxygenase and chlorophyll in relation to productivity of high-yielding crops. – *Soil Sci. Plant Nutr.* **39**: 399-408, 1993.

Osaki, M., Morikawa, K., Yoshida, M., Shinano, T., Urayama, M., Tadano, T.: Productivity of high-yielding crops I. Comparison of growth and productivity among high-yielding crops. – *Soil Sci. Plant Nutr.* **37**: 331-339, 1991.

Osaki, M., Shinano, T.: Plant growth based on interrelation between carbon and nitrogen translocation from leaves. – *Photosynthetica* **39**: 197-203, 2001.

Osaki, M., Shinano, T., Matsumoto, M., Ushiki, J., Shinano, M.M., Urayama, M., Tadano, T.: Productivity of high-yielding crops V. Root growth and specific absorption rate of nitrogen. – *Soil Sci. Plant Nutr.* **41**: 635-647, 1995b.

Osaki, M., Shinano, T., Tadano, T.: Carbon-nitrogen interaction in field crop production. – *Soil Sci. Plant Nutr.* **37**: 553-564, 1992.

Patterson, D.T.: Effect of temperature and photoperiod on growth and reproductive development of goatsrue. – *J. Range Manage.* **45**: 449-453, 1992.

Pons, T.L., Van der Werf, A., Lambers, H.: Photosynthetic nitrogen use efficiency of inherently slow- and fast-growing species, possible explanations for observed differences. – In: Roy, J., Garnier, J.E. (ed.): *A Whole Plant Perspective on Carbon-Nitrogen Interactions*. Pp. 61-77. SPB Academic Publishing, The Hague 1994.

Rajcan, I., Tollenaar, M.: Source:sink ratio and leaf senescence in maize: I. Dry matter accumulation and partitioning during grain filling. – *Field Crops Res.* **60**: 245-253, 1999.

Reich, P.B., Kloepfel, B.D., Ellsworth, D.S., Walters, M.B.: Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. – *Oecologia* **104**: 24-30, 1995.

Reich, P.B., Schoettle, A.W.: Role of phosphorus and nitrogen in photosynthetic and whole plant carbon gain and nutrient use efficiency in eastern white pine. – *Oecologia* **77**: 25-33, 1988.

Reich, P.B., Uhl, C., Walters, M.B., Ellsworth, D.S.: Leaf lifespan as a determinant of leaf structure and function among 23 tree Amazonian species. – *Oecologia* **86**: 16-24, 1991.

Reich, P.B., Walters, M.B., Ellsworth, D.S.: Leaf life span in relation to leaf, plant, and stand characteristics among diverse ecosystems. – *Ecol. Monogr.* **62**: 365-392, 1992.

Reich, P.B., Walters, M.B., Ellsworth, D.S.: From tropics to tundra: Global convergence in plant functioning. – *Proc. nat. Acad. Sci. USA* **94**: 13730-13734, 1997.

Reich, P.B., Walters, M.B., Ellsworth, D.S., Vose, J.M., Volin, J.C., Gresam, C., Bowman, W.D.: Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf lifespan: a test across biomes and functional groups. – *Oecologia* **114**: 471-482, 1998.

Shinano, T., Osaki, M., Yamada, S., Tadano, T.: Comparison of

root growth and nitrogen absorbing ability between Gramineae and Leguminosae during the vegetative stage. – *Soil Sci. Plant Nutr.* **40**: 485-495, 1994.

Thomas, H.: Canopy survival. – In: Baker, N., Thomas, H. (ed.): *Crop Photosynthesis: Spatial and Temporal Determinants*. Pp. 11-41. Elsevier, Amsterdam 1992.

Thomas, H., Rogers, L.J.: Turning over an old leaf. – *Univ. Wales Rev. Sci. Tech.* **6**: 29-38, 1990.

Thomas, H., Smart, C.M.: Crops that stay green. – *Ann. appl. Biol.* **123**: 193-219, 1993.

Wilkstrom, F., Agren, G.I.: The relationship between the growth rate of young plants and their total-N concentration is unique and simple: a comment. – *Ann. Bot.* **75**: 541-544, 1995.

Wolfe, D.W., Henderson, D.W., Hsiao, T.C., Alvino, A.: Interactive water and nitrogen effects on senescence of maize. I. Leaf area duration, nitrogen distribution, and yield. – *Agron. J.* **80**: 859-864, 1988.

Wright, I.J., Cannon, K.: Relationship between leaf lifespan and structural defenses in a low nutrient, sclerophyll flora. – *Funct. Ecol.* **15**: 351-359, 2001.