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Abstract 
 
Wheat seedlings (Triticum aestivum L.) develop plastids (etioplasts and chloroplasts) which exhibit alterations in inner 
membrane organisation after treatment with Norflurazon (NF), an inhibitor of carotenoid biosynthesis. In dark-grown 
plants, it results in a decreased amount of partitions (contact zones) between prothylakoids. Under weak red radiation 
(WRR), plants contain chloroplasts devoid of grana. Using the fluorescent probe 9-amino acridine (9-AA), the average 
surface charge density of isolated prothylakoids (PTs) was –21.8±3.2 mC m-2 and –27.4±2.6 mC m-2 in the control and 
after treatment, respectively. Thylakoid membranes isolated from plants grown under WRR exhibited slightly more 
negative values, –23.5±2.9 mC m-2 and –29.0±2.1 mC m-2, in control and after NF treatment, respectively. The surface 
charge density of de-stacked thylakoids from greenhouse-grown untreated plants, containing extensive grana stacking, 
was –34.3±2.5 mC m-2. Assays using the fluorescent probe of DPH (1,6-diphenyl-1,3,5-hexatriene) showed a higher po-
larisation value when incorporated into thylakoids from NF-treated plants compared to untreated plants grown under 
WRR. The highest polarisation value was found in untreated plants grown in the greenhouse. This indicates a lower ro-
tation transition of the probe in the lipid environment of thylakoids after NF treatment, which can be interpreted as more 
rigid membranes. Hence the surface charge density and the mobility of membrane components may play a major role for 
the formation of partitions in dark-grown plants and in the formation of grana in plants grown under WRR. 
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——— 
 
Thylakoids consist of a lipid bilayer to which proteins 
and protein-complexes are associated. The formation of 
thylakoid appressions occurs between regions of the 
membrane where the Coulombic repulsive forces be-
tween two adjacent membranes are decreased. This 
occurs through lateral segregation of thylakoid compo-
nents, such as displacement of negative membrane sur-
face charges to membrane regions not involved in stac-
king and/or through cations, screening negative mem-
brane surface charges in areas involved in stacking 
(Barber 1982). Plants grown in the presence of the herbi-
cide Norflurazon (NF) contain approximately 0.5 and  
2.0 % of the normal content of carotenoids in etioplasts 
 

and chloroplasts of wheat seedlings, respectively (Dahlin 
1989). In etioplasts, the NF treatment leads to low 
amount of partitions between the prothylakoids. Chloro-
plasts in NF-treated plants, grown under weak red radia-
tion (WRR) to avoid photodestruction, lack the ability to 
form normal grana. The inability to form grana after NF 
treatment is correlated to the deficiency of LHCP, the 
light-harvesting protein of photosystem 2 (Dahlin 1988). 
The absence of LHCP, and consequently the excess of 
stroma-exposed positive charges of lysine and arginine 
(cf. Bűrgi et al. 1987) as well as charged acyl lipids 
(Sandelius and Dahlin 1990) suggest that the unability to 
form grana after NF treatment in light may be related to 
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differences in membrane surface charges. 
In the present paper, the possible correlation between 

the surface charge densities and the fluidity of membra-
nes are related to the formation of prothylakoid overlap 
and grana of plastid inner membranes from NF-treated 
plants grown in darkness or in non-photooxidising WRR, 
respectively. 

Wheat seeds (Triticum aestivum L.) were soaked in 
tap water with (10-4 M) or without NF. The seedlings 
were grown in darkness or in a greenhouse (untreated 
only; 16 : 8 h light : dark regime) or in continuous WRR 
(16 mW m-2; Philips TL 20W/15, Ryberg et al. 1980) for 
6 d at 20±1 °C. Dark-grown plants were used for the pre-
paration of prolamellar bodies (PLBs) and prothylakoids 
(PTs) (cf. Lindsten et al. 1988). Preparation of etioplast 
inner membranes (not separated into PLBs and PTs, i.e. 
EPIMs) and thylakoids from plants grown in WRR or in 
the greenhouse was performed as described by Engdahl  
et al. (2001). 

Lipids were extracted from suspended membranes ac-
cording to Sandelius and Sommarin (1986) and analysed 
according to Sandelius and Dahlin (1990). The total 
amount of proteins was measured with Coomassie 
Brilliant Blue according to Lindsten et al. (1988). The 
content of chlorophylls (Chls) was determined spectro-
photometrically according to Lichtenthaler and Wellburn 
(1983). 

The fluidity of membrane fractions was measured 
with fluorescence polarisation of DPH (1,6-diphenyl-
1,3,5-hexatriene, cf. Hernando et al. 2001). The mem-
branes were suspended at 100 g m-3 Chl with 75 µM DPH 
and incubated for 40 min at room temperature. The 
membranes were then washed by centrifugation, and 
DPH polarisation was performed with an excitation 
wavelength of 365 nm and an emission wavelength of 
450 nm using a Baltzer filter B-40 450 9. Fluorescence 
polarisation values were estimated generally as described 
by Ford and Barber (1980). 

To measure membrane surface charge density, the 
fluorescent dye 9-amino acridine (9-AA) was used. This 
dye carries a net positive charge at neutral pH. When 
suspended in a solution with low cation content together 
with membranes, it will be attracted to negatively charged 
membrane surfaces. The dye will then be concentrated to 
such an extent that its fluorescence is quenched (Searle 
and Barber 1978). By titrating the solution with salts 
(functionally cations), the surface potential is reduced. 
The dye then exchanges to the bulk solution and its 
fluorescence is restored. Certain 9-AA fluorescence 
reflects the same average surface potential for both 
mono- and di-valent cations. The salts used here were 
KCl and (DM)Br2 (N,N,N,N´,N´,N´-hexamethyldecane-
1,10-diamine bromide). The measurements were per-
formed with 20 µM 9-AA on 35 g m-3 membrane protein 
in 0.3 M sucrose, 3 mM MOPS, and 50 µM Na-EDTA at 
pH 7.1. The excitation wavelength was 355 nm. Re-
absorption of the 9-AA fluorescence by Chls and carote-

noids was kept at a minimum by measuring small volu-
mes (250 mm3) at an emission wavelength of 498 nm. 
The addition of the uncoupler FCCP (carbonyl cyanide  
p-trifluoro-methoxy-phenylhydrazone; 10-6 M) did not 
give any change in 9-AA fluorescence, indicating that the 
dye did not accumulate inside the membrane vesicles 
(Møller and Lundborg 1985). 

The surface charge density (σ) was calculated accord-
ing to A. Bérczi and I.M. Møller (personal communica-
tions), at F/Fmax = 0.80. This calculation takes into 
account the monovalent cation concentration of the buffer 
and also the 2 : 1 salt. This is a modification of the 
method used by Chow and Barber (1980) which stems 
back to the theories of Gouy (1910) and Chapman (1913) 
on colloidal surfaces. The exact equations used are given 
in Dahlin (1989). The Mann-Whitney U test was used to 
evaluate differences between paired observations in two 
groups (Sokal and Rohlf 1981). 

Ultrastructural studies of etioplasts in dark-grown 
plants have revealed a significantly lower amount of par-
titions between the PTs after NF treatment (Dahlin et al. 
1983). The intention here was to investigate possible dif-
ferences in membrane surface charges between etioplast 
inner membranes from NF and control seedlings. First, 
increasing amounts of membranes (on a protein basis) 
were added to a low-salt buffer containing 9-AA. This 
showed that EPIMs from NF-treated plants were able to 
quench the 9-AA fluorescence stronger than did EPIMs 
from untreated plants (Fig. 1). This quenching could 
partly be restored by adding MgCl2 to the solution, 
indicating that the quenching actually was due to the  
 

 
 
Fig. 1. Representative data of changes in 9-AA fluorescence 
following addition of thylakoids and EPIMs isolated from 
control and NF-treated wheat seedlings. Circles denote EPIMs 
isolated from dark-grown wheat seedlings; squares denote 
thylakoid membranes from wheat seedlings grown in weak red 
radiation, WRR (16 mW m-2). Triangles denote thylakoids from 
untreated plants grown in the greenhouse. Open and filled 
symbols denote membranes from seedlings grown in the 
presence or absence of NF, respectively. 
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accumulation of 9-AA to the membrane surface, and not 
to the lumen. 

Isolated PLB and PT membranes from control and 
NF-treated dark-grown plants were then used for surface 
charge density measurements using 9-AA. No major 
differences in 9-AA quenching or surface charge densi-
ties were observed between PLBs isolated from untreated 
and NF-treated seedlings (not shown). In PTs on the other 
hand, calculations of the surface charge density (σ) 
confirmed a difference in the concentrations of membrane 
negative charges between PTs from untreated and 
NF-treated plants. The latter ones exhibited higher 
surface charge density, –27.4±2.6 mC m-2, as compared 
to –21.8±3.2 mC m-2 in PTs from untreated plants  
(p < 0.03). These membranes were then used for steady-
state polarisation (p) measurements using the fluorescent 
probe 1,6-diphenyl-1,3,5-hexatriene (DPH). No major 
difference could be observed between the control mem-
branes and the membranes from NF-treated etioplasts. 
This suggests that migration of membrane components 
(fluidity) is fairly similar in membranes from control and 
NF-treated plants. 

The low amount of partitions between plastid inner 
membranes after NF treatment is not only confined to 
dark-grown plants. Herbicide treated plants grown in 
non-photo-oxidising WRR contain chloroplasts lacking 
grana and LHCP (Axelsson et al. 1982, Dahlin 1988). 
Careful 9-AA fluorescence measurements and surface 
charge density (σ) calculations showed that also the σ of  
 

isolated thylakoids from NF-treated plants was higher 
(more negative) than that of corresponding thylakoids 
from untreated plants (Table 1). Surprisingly, the average 
surface charge density of de-stacked thylakoids isolated 
from untreated greenhouse-grown plants was ca. –34 mC 
m-2 (Table 1). That is, plants containing normal grana 
exhibited the highest σ of all membranes assayed 
(Table 1). This value is by far more negative than the  
–25 mC m-2 which Barber (1982) reported as the highest 
σ value allowing thylakoid appression. Obviously, other 
parameters than average surface charge density are invol-
ved in regulating the formation of thylakoid appression 
and stacking. DPH measurements showed that this probe 
exhibits a higher polarisation value (p) when incorporated 
into the thylakoids of NF-treated plants as compared to 
untreated seedlings grown in WRR (Table 1). This 
indicates a lower rotation transition of the probe (cf. 
Hernando et al. 2001), and consequently a more rigid 
lipid phase after NF treatment. In thylakoids of green-
house-grown plants, the p value was approximately 
0.215, which is significantly the lowest value of all mem-
branes assayed (p<0.03, cf. Table 1), indicating a relati-
vely high fluidity. An inversed relationship was observed 
between polarisation values and fatty acid to protein 
ratios. Thylakoids from NF-treated plants exhibited the 
highest p value. These membranes also contain the 
highest amounts of fatty acids on a protein basis, whereas 
thylakoids from W-plants exhibit lowest fatty acid to pro-
tein ratios as well as lowest p values (Table 1). 

 
Table 1. Lipid/protein ratios, surface charge densities (σ), and fluidity of thylakoid membranes isolated from leaves of wheat grown 
with or without NF during seed imbibition. The fluidity is expressed as a steady-state DPH fluorescence polarisation (p). C – untreat-
ed seedlings grown in the greenhouse, WRR – untreated seedlings grown in weak red radiation (WRR), WRR/NF – NF-treated seed-
lings grown in WRR. Means followed by standard deviation (p<0.03); there were five experiments. 
 
Treatment  Fatty acid/protein [mol kg-1] σ [mC m-2] P 

C   910±30 –34.3±2.5 0.215±0.004 
WRR   950±40 –23.5±2.9 0.230±0.005 
WRR/NF 1030±40 –29.0±2.1  0.241±0.006 

 
Surface-exposed membrane charges create an envi-

ronment of electrostatic forces acting within the plane of 
the membrane as well as between different membranes. 
At physiological pH, the main membrane charges facing 
the stroma arise from oxidised carboxyl groups of pro-
teins (Prochaska and Gross 1977). The contribution of 
charged lipids to the membrane surface charges is more 
obscure. Exposed charges of membrane lipids (Murphy 
and Woodrow 1983) as well as individual fatty acids 
(Doltchinkova and Nikolov 1997) may contribute to the 
surface charges. On the other hand, Barber and Gounaris 
(1986) argued that the bulk of charged lipids (e.g. PG and 
SQDG) are associated with proteins in such a way that 
the charges are not exposed to the stroma. The method of 
9-AA fluorescence has been used to measure surface 
charge densities on a variety of biological membranes, 

such as plasmalemma vesicles from roots (Møller et al. 
1984), mitochondrial membranes (Møller et al. 1981), 
and thylakoids as well as sub-fractionated thylakoids (cf. 
Barber 1982). Brauer et al. (2000) tested the method on 
artificial liposomes. They concluded that change in 9-AA 
fluorescence is a reliable method for the calculation of 
surface charge density of membranes. As shown in this 
study, there is a general correlation between the average 
surface charge density, thylakoid appression, and mem-
brane fluidity, except for thylakoids from greenhouse-
grown plants, as discussed later. The differences in flui-
dity of the membranes studied here are likely to depend 
of at least two things. Firstly, the altered fluidities after 
NF-treatment could be due to difference in protein-lipid 
interactions (cf. Páli et al. 2003) since the lipid/protein 
ratio is largely unaffected by the herbicide treatment 
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(Table 1). Secondly, the subsequent relative increase in 
content of zeaxanthin (cf. Dahlin 1988) may increase the 
rigidification of the membranes (Latowski et al. 2002). 

The main protein of LHC2 (LHCP) is normally con-
centrated to the appressed regions of the thylakoids. This 
has been shown with fractionation studies (Andersson 
and Anderson 1980) and immunogold localisation 
(Dahlin 1989). This correlates well with the apparent in-
ability to form grana in plants lacking LHC2, thereby ex-
posing the more negatively charged PS2 (Dobrikova et al. 
2000). On the other hand, partitions between plastid inner 
membranes are not entirely regulated by LHCP since PTs 
of NF-treated dark-grown plants exhibit lower degree of 
partition as compared to untreated plants (Dahlin et al. 
1983). Thylakoids in greenhouse-grown control plants 
contain normal grana. Surprisingly, these membranes also 
exhibit the highest negative average surface charge 
density (Table 1). This value may be explained in terms 
of lateral segregation of charges in order to allow appres-
sion. Considering the apparent higher amount of LHC1 in 
thylakoids of greenhouse-grown plants, and in turn nega-
tive surface charges (Barber 1980), a displacement of ex-
cess negative charges to membrane regions not partaking 
in the appressions is likely. That is, the excess of exposed 
negative charges of PS1 and its light-harvesting antennae 

(LHC1) have to be displaced to membrane regions not 
partaking in the appressions (Chow et al. 1991). This will 
lead to that certain areas will have a less negative value of 
–25 mC m-2 and allow appression. However, this requires 
a membrane with relatively high fluidity which allows 
such displacement, as seen in the p value from untreated 
greenhouse-grown seedlings (Table 1). The p values after 
NF treatment indicate a lower rotation transition. The 
reason for this is unclear since the contents of uncoloured 
lipids are largely unaffected by the treatment (Sandelius 
and Dahlin 1990). 

Finally, in light-grown plants the negative effects of 
NF on the accumulation of membrane and stromal pro-
teins were found (Gray et al. 2002). This is due to the 
photodestruction of one or several plastid signal(s) which 
affect nuclear gene expression. However, in darkness or 
under non-photooxidising conditions, no major effects on 
the transcripts have been found (Sullivan and Gray 2002). 
The only obvious effect in NF-treated wheat grown under 
non-photooxidising conditions is the lack of LHCP 
(Dahlin 1989). It therefore may be assumed that the NF-
induced increase in the surface charge density originates 
from the inability of LHCP to anchor to the thylakoids in 
the absence of carotenoids. This in turn increases the rela-
tive proportion of negative membrane charges. 
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