

BRIEF COMMUNICATION

Reconstitution of the Mn-depleted photosystem 2 by using some manganese complexes

M.S. KARACAN* and G. SOMER

Gazi University, Department of Chemistry, 06500, Teknikokullar, Ankara, Turkey

Abstract

Restoration of electron flow and oxygen-evolution quantity of Mn-depleted photosystem 2 (PS2) was performed with using synthetic manganese complexes $Mn(im)_6Cl_2$, $Mn(im)_2Cl_2$, $Mn(5-Cl_{salgy})_2$, and $Mn(salgy)_2$ instead of original manganese cluster for reconstruction of electron transport and oxygen evolution.

Additional key words: chlorophyll fluorescence; oxygen evolution; *Spinacia*.

Biological water oxidation during plant photosynthesis represents a source of electrons for the photon-driven reactions of photosystem 2 (PS2) and leads also to the evolution of molecular di-oxygen. The oxygen-evolving complex (OEC) of the photosynthetic apparatus that catalyses this oxidation contains a cluster of four Mn atoms that acts as the locus of charge accumulation. Calcium ion is essential cofactor of this oxidation (Cheniae and Martin 1970, Yocom *et al.* 1981, Klimov *et al.* 1982a, Allakhverdiev *et al.* 1986, Renger *et al.* 1989, Debus 1992, Renger 1993). Much effort has been concentrated on elucidating the identity of the Mn site (Brudwig and de Paula 1987, Peloquin and Britt 2001, Robblee *et al.* 2001, Carrell *et al.* 2002). Ferreira *et al.* (2004) suggested cube-like Mn_3CaO_4 structure for the cluster.

Up to now, several cluster models containing binuclear or tetranuclear Mn centres have been synthesized as photosynthetic Mn clusters (Christou and Vincent 1987, Vincent and Christou 1989, Wieghardt 1989, Bossek *et al.* 1990, Armstrong 1992, Pecoraro 1992). So it is interesting to use synthetic Mn complexes for the reconstitution studies dealing with the oxygen evolution capacity and electron transport of Mn-depleted PS2.

In our former studies, efficiency of synthetic binuclear manganese complexes: dimeric $L_2Mn(III)Mn(III)L_2(OAc)_2(M-2)$, dimeric $[LMn(III)-O-Mn(III)L(Oac)_2(H_2O)_2](M-3)$ (Allakhverdiev *et al.* 1994), dimeric $[Mn(salpn)_2](ClO_4)_2$, and dimeric μ -oxo $[Mn(salpn)O]_2$ (Karacan and Somer 2004) were tested for reconstituting Mn-depleted PS2. In the present work, we

compared four manganese(II) complexes, monomeric $Mn(im)_6Cl_2$, polymeric $Mn(im)_2Cl_2$, dimeric $Mn(5-Cl_{salgy})_2$, and dimeric $Mn(salgy)_2$ in the reconstitution of the Mn-depleted PS2. The complexes were synthesized in our laboratory according to Chaudhury and Dash (1981) and Dutta and Ray (1977).

Chloroplasts were isolated from fresh and not blossoming spinach leaves according to Whatley and Arnon (1963). PS2-enriched preparations were obtained by treating chloroplasts with 0.4 % digitonin and 0.15 % *Triton X-100* and centrifuging at 20 000 $\times g$ according to the method of Allakhverdiev *et al.* (1992) and Allakhverdiev and Klimov (1992). These PS2 preparations (called DT-20) exhibited O_2 evolution rates of 70–83 mmol $kg^{-1}(Chl)$ s^{-1} under saturating irradiance and in the presence of 200 μM phenyl-*p*-benzoquinone (Ph-*p*-BQ) plus 300 μM $K_3[Fe(CN)_6]$ as electron acceptor. The DT-20 preparations contained 80–100 chlorophyll (Chl) molecules per PS or RC (reaction centre) (Allakhverdiev *et al.* 1986, Allakhverdiev and Klimov 1992). Ten μg Chl per cm^3 contains 1×10^7 M RC (Klimov *et al.* 1982a). Manganese and the three extrinsic regulatory proteins with apparent molecular masses of 33, 24, and 18 kDa (based on the encoding genes these polypeptides are now designated as PS2-O, PS2-P, and PS2-Q proteins, respectively) were extracted from DT-20 preparations according to the following procedure: Samples of 200 g(Chl) m^{-3} were incubated for 10 min at 2 °C in a suspension containing 20 mM N,N,N',N'-tetramethyl ethylenediamine (TEMED), 0.5 M $MgCl_2$, and 20 mM

Received 22 July 2004, accepted 16 December 2004.

*Fax: +90-312-2122279, e-mail: mkaracan@gazi.edu.tr

Acknowledgements: We thank to Suleyman I. Allakhverdiev for informative advices in our studies.

MES-NaOH, pH = 6.5 (Ananyev *et al.* 1992). After centrifugation at 20 000×*g*, the pellet was washed twice in a buffer solution of 35 mM NaCl and 20 mM Tris-HCl, pH = 8.0.

Photoactivation of the DT-20 samples deprived of their oxygen-evolving complexes was performed in the presence of manganese complex and using three or four cycles of continuous irradiation ($\lambda > 600$ nm, 55 W m⁻², 30–60 s periods of irradiation separated by 30–40 s of dark). The details of this procedure are described in Allakhverdiev and Klimov (1992). The Chl content of the samples was determined according to Arnon (1949). The Mn content was determined using a *Philips PU 9285* flame atomic absorption spectrophotometer.

A single-beam differential spectrophotometer with a phosphoroscope similar to that described previously (Klimov *et al.* 1982b, Allakhverdiev *et al.* 1992) was used for monitoring the light-induced changes of the fluorescence quantum yield at 682 nm. The suspension for fluorescence measurements contained differently treated DT-20 samples of 10 mg(Chl) m⁻³, 10 mM NaCl, 2 mM MgCl₂, and 20 mM Tris-HCl, pH = 7.8.

The rate of oxygen evolution was measured in a 3-cm³ cell with a hand-made Clark-type electrode. The sample was irradiated by red beam (*KC 11* filtre) passing through a heat filter formed by a 5 % (m/v) CuSO₄ solution (irradiance at the cell surface ~ 100 W m⁻²). The assay mixture consisted of DT-20 preparations suspended

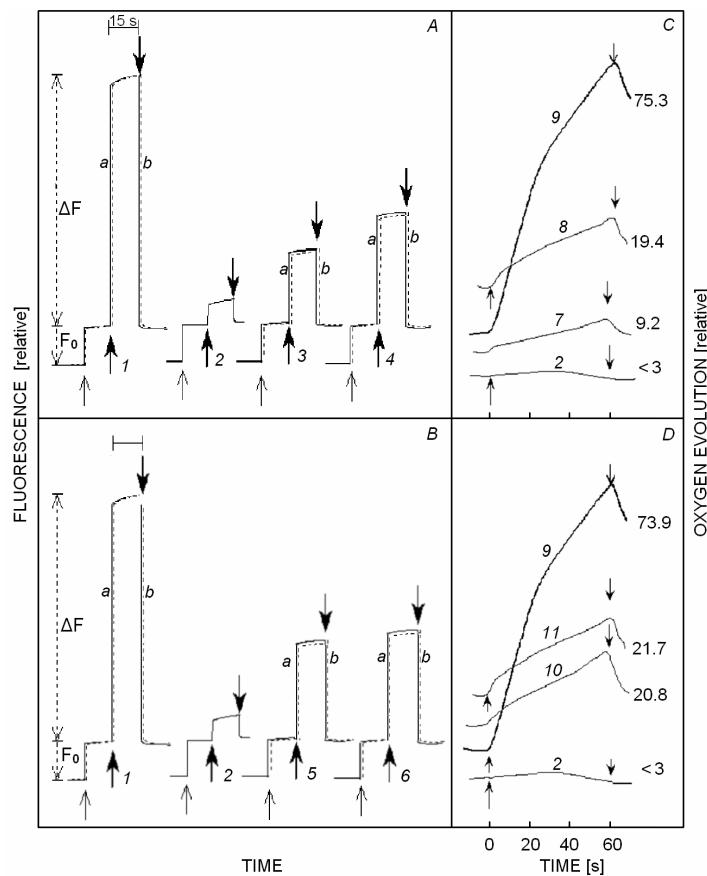


Fig. 1. Changes in fluorescence after “actinic light” irradiation (A, B) and oxygen evolution (C, D) in DT-20 preparations induced by addition of manganese complexes. The suspension contained PS2 preparations (A, B): [10 kg(Chl) m⁻³], 35 mM MgCl₂, and 25 mM Tris-HCl, pH = 7.8; (C, D): [20 kg(Chl) m⁻³], 10 mM NaCl, 5 mM CaCl₂, 300 mM sucrose, 50 μ M EDTA, 25 mM MES-NaOH, pH = 6.5, 0.2 mM Ph-p-BQ, and 0.3 mM K₃[Fe(CN)₆]. (A, B): The arrows at the bottom indicate the switching on of the modulated measuring beam ($\lambda \approx 480$ nm, irradiance ≈ 0.15 W m⁻²), bold arrows symbolize the switching on and off of the “actinic light”, respectively ($\lambda > 600$ nm, irradiance ≈ 100 W m⁻²). 1a, control DT-20 (solid line); 1b, presence of 50 μ M EDTA (dashed line); 2, manganese-depleted DT-20; 3a, addition of 0.2 μ M monomeric Mn(im)₆Cl₂ complexes to 2 (solid line) (2 Mn/PS2); 3b, presence of 50 μ M EDTA (dashed line); 4a, 0.2 μ M polymeric Mn(im)₄Cl₂ complexes added to 2 (solid line) (2 Mn/PS2); 4b, presence of 50 μ M EDTA (dashed line); 5a, 0.1 μ M dimeric Mn(5-Cl salgy)₂ complexes added to 2 (solid line) (2 Mn/PS2); 5b, presence of 50 μ M EDTA (dashed line); 6a, 0.1 μ M dimeric Mn(salgy)₂ complexes added to 2 (solid line) (2 Mn/PS2); 6b, presence of 50 μ M EDTA (dashed line); 7, Mn-depleted DT20 sample reconstituted with 0.8 μ M monomeric Mn(im)₆Cl₂ (4 Mn/PS2); 8, Mn-depleted DT20 sample reconstituted with 0.8 μ M polymeric Mn(im)₂Cl₂ (4 Mn/PS2); 9, PS2; 10, Mn-depleted DT20 reconstituted with 0.4 μ M dimeric Mn(5-Cl salgy)₂ (4 Mn/PS2); 11, Mn-depleted DT20 reconstituted with 0.4 μ M dimeric Mn(salgy)₂ (4 Mn/PS2). Figures at curves in C and D give oxygen evolution [mmol(O₂) kg⁻¹(Chl) s⁻¹].

Table 1. Reconstruction of photosystem 2 (PS2) fluorescence ability and oxygen evolution capacity with manganese complexes. Maximum recovery is given for all complexes.^a taken from Allakhverdiev *et al.* (1994); ^b taken from Karacan and Somer (2004); im: imidazole; salgy: salisilidenglisinato; 5Cl-salgy: 5-chloro salisilidenglisinato, salpn: [N,N-propylenbis(salisilideneaminato)]; L: 2-hydroxy-1,4-naphthoquinone monoxime.

Manganese complexes		Approximate reconstruction of PS2 fluorescence [%]	oxygen evolution [%]
dimeric (M-3) ^a	[LMn(III)-O-Mn(III)L(OAc) ₂ (H ₂ O) ₂]	95	78
	MnCl ₂	86	21
dimeric (M-2) ^a	L ₂ Mn(III)Mn(III) L ₂ (OAc) ₂	73	47
dimeric	μ -oxo Mn(III) salpn ^b [salpn Mn(III)-O-Mn(III) salpn]	61	52
polymeric	Mn(II)(im) ₂ Cl ₂	46	26
dimeric	Mn(II)(salgy) ₂	45	29
dimeric	Mn(III)salpn ^b , [(salpn)Mn(III)-Mn(III)(salpn)]ClO ₄	40	37
dimeric	Mn(II)(5Cl-salgy) ₂	40	28
monomeric	Mn(II)(im) ₆ Cl ₂	30	12
monomeric	Mn(II)salpn ^b , Mn(II)(salpn)	25	20

in a buffer solution of 10 mM NaCl, 5 mM CaCl₂, 300 mM sucrose, 25 mM MES-NaOH, pH = 6.5, and 200 μ M Ph-*p*-BQ and 300 μ M K₃[Fe(CN)₆] as electron acceptor. Oxygen evolution capacity was calculated from the recorder calibration which was obtained under the same conditions when oxygen was present or absent.

In control samples (Fig. 1A,B, traces 1), fluorescence yield increased due to the light-induced reduction of Q_A (primary plastoquinone acceptor of PS2). ΔF remained unchanged after addition of 50 μ M EDTA to the control sample (see *dotted curve*). This and previous findings confirm that EDTA does not influence the electron transport at the donor side of PS2 as a chelator with manganese (Allakhverdiev *et al.* 1994, Karacan and Somer 2004). Mn-depleted DT-20 sample (Fig. 1A,B, trace 2) showed only a negligible electron transport. When monomeric Mn(im)₆Cl₂ complex was used for reconstitution of electron transport in Mn-depleted DT-20 preparation, an almost 1/3 extent of ΔF was found (Fig. 1, trace 3). Polymeric Mn(im)₂Cl₂ complex induced an approximately 46 % recovery of electron transfer (Fig. 1A, trace 4). Other dimeric Mn (5Cl-salgy)₂ and dimeric Mn(salgy)₂ complexes showed a 40 or 45 % recovery of electron transfer, respectively (Fig. 1B, traces 8 and 9). Addition of EDTA did not affect the ΔF increase due to addition of Mn complexes (*dotted curves* in Fig. 1B, traces 5 and 6). Accordingly, Mn compounds bind as Mn cluster to Mn-depleted DT-20 preparations thereby permitting an electron transport without getting disrupted by the exogenous chelator EDTA. More additions of the complexes to Mn depleted DT-20 did not cause an increase in ΔF . Two Mn atoms per PS2 were sufficient for photoinduced electron transfer (Fig. 1A, traces 3 and 4) as also found in previous works (Klimov *et al.* 1982a,b, Allakhverdiev *et al.* 1994, Karacan and Somer 2004).

In Mn-depleted DT-20 preparations, the oxygen evolution capacity was eliminated (Fig. 1C,D, trace 2). Monomeric Mn(im)₆Cl₂ and polymeric Mn(im)₂Cl₂

complexes induced an approximately 12 or 26 % recovery of O₂ evolution capacity of PS2, respectively (Fig. 1C, traces 7 and 8). The rate of O₂ evolution for polymeric Mn(im)₂Cl₂ complex was higher than that for the monomeric complex, but both of them showed lower recovery of PS2. Restoration of the activity with dimeric Mn(5-Cl(salgy)₂ and Mn(salgy)₂ complexes showed 28 or 29 % recovery of O₂ evolution, respectively (Fig. 1D, traces 10 and 11). Hence these compounds exhibited a similar recovery of O₂ evolution. All complexes showed maximum effect for four Mn atoms per PS2 and addition of further complexes did not increase the O₂ evolution capacity.

Reconstruction of PS2 fluorescence yield and oxygen evolution capacity of Mn complexes is given in Table 1. The comparison of reconstitution efficiency of the Mn complexes led to following results: (a) Bi-nuclear Mn complexes were more efficient than monomeric complexes in electron donation for PS2 and reconstitution of O₂ evolution. (b) Manganese(III) complexes were more efficient than Mn(II) complexes and the μ -oxo dimeric Mn(III) complexes were more efficient than the dimeric Mn(II) complexes. (c) Manganese complexes forming bulky ligands such as M-2, M-3, dimeric μ -O-Mn(III) salpn, Mn(III)salpn, and polymeric Mn(II)(im)₄Cl₂ were more efficient than Mn⁺² (Mn aqua complex) and the others in electron donation for PS2 and restoring of O₂ evolution.

The OEC is a cube-like Mn₃CaO₄ cluster with each metal ion having three μ -oxo bridges connected to the fourth Mn ion by a mono- μ -oxo bridge in the extended region (Ferreira *et al.* 2004). This model explains the high efficiency of the dimeric μ -oxo Mn(III) complexes for the reconstitution of Mn-depleted PS2. According to this model, μ ₃-oxo bridged Mn trimer (Limburg *et al.* 2001, Li *et al.* 2002, Yan 2003) plus Mn monomer complexes will be used in further studies.

References

Allakhverdiev, S.I., Karacan, M.S., Somer, G., Karacan, N., Khan, E.M., Rane, S.Y., Padhye, S., Klimov, V.V., Renger, G.: Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II complexes by using synthetic binuclear manganese complexes. – *Biochemistry* **33**: 12210-12214, 1994.

Allakhverdiev, S.I., Klimov, V.V.: Photoreduction of NADP⁺ in photosystem II of higher plants: Requirement for manganese. – *Z. Naturforsch.* **47C**: 57-62, 1992.

Allakhverdiev, S.I., Kozlov, Y.N., El-Sheekh, M.M., Demeter, S., Klimov, V.V.: Effect of the chemical modification of tyrosine and histidine residues in isolated PS II reaction centers on thermoluminescence band TL-55. – *Biol. Membr.* **9**: 904-914, 1992.

Allakhverdiev, S.I., Shafiev, M.A., Klimov, V.V.: Effect of reversible extraction of manganese on photooxidation of chlorophyll P₆₈₀ in Photosystem II preparations. – *Photo-biochem. Photobiophys.* **12**: 61-65, 1986.

Ananyev, G., Wydrzynski, T., Renger, G., Klimov, V.: Transient peroxide formation by the manganese containing redox active donor side of Photosystem II upon inhibition of O₂ evolution with lauroylcholine chloride. – *Biochim. biophys. Acta* **1100**: 303-311, 1992.

Armstrong, W.H.: Polynuclear manganese complexes as models for the photosystem II water oxidation catalyst. – In: Pecoraro, V.L. (ed.): *Manganese Redox Enzymes*. Pp. 261-286. VCH Publishers, New York 1992.

Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in *Beta vulgaris*. – *Plant Physiol.* **24**: 1-15, 1949.

Brudwig, G.W., de Paula, J.C.: On the mechanism of photosynthetic water oxidation. – In: Biggins, J. (ed.): *Progress in Photosynthetic Research*. Vol. 1. Pp. 491-498. Martinus Nijhoff, Dordrecht – Boston – Lancaster 1986.

Bossek, U., Weyhermüller, T., Wieghardt, K., Nuber, B., Weiss, J.: [L₂Mn₂(μ-O)₂(μ-O₂)] (ClO₄)₂: The first binuclear (μ-peroxo)dimanganese(IV) complex (L=1,4,7-trimethyl-1,4,7-triazacyclononane). A model for the S₄ to S₀ transformation in the oxygen-evolving complex in photosynthesis. – *J. amer. chem. Soc.* **112**: 6387-6388, 1990.

Carrell, T.G., Tyryshkin, A., Dismukes, G.C.: An evaluation of structural models for the photosynthetic water-oxidizing complex derived from spectroscopic and X-ray diffraction signatures. – *J. biol. inorg. Chem.* **7**: 2-22, 2002.

Chaudhury, G.R., Dash, K.C.: Spectral, magnetic and biological studies of Mn(II) complexes with 4-methylimidazole. – *J. inorg. nucl. Chem.* **43**: 2189-2190, 1981.

Cheniae, G.M., Martin, I.F.: Sites of function of manganese within photosystem II. Roles in O₂ evolution and system II. – *Biochim. biophys. Acta* **197**: 219-239, 1970.

Christou, G., Vincent, J.B.: The molecular 'double-pivot' mechanism for water oxidation. – *Biochim. biophys. Acta* **895**: 259-274, 1987.

Debus, R.J.: The manganese and calcium ions of photosynthetic oxygen evolution. – *Biochim. biophys. Acta* **1102**: 269-352, 1992.

Dutta, R.L., Ray, R.K.: Manganese(II) complexes of Salicylidene amino acids. – *J. inorg. nucl. Chem.* **39**: 1848-1850, 1977.

Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J., Iwata, S.: Architecture of the photosynthetic oxygen-evolving center. – *Science* **303**: 1831-1838, 2004.

Karacan, M.S., Somer, G.: Reconstruction of the water-oxidizing complex in manganese-depleted Photosystem II by using Schiff base manganese complexes. – *J. Photochem. Photobiol. A* **163**: 307-310, 2004.

Klimov, V.V., Allakhverdiev, S.I., Shuvalov, V.A., Krasnovsky, A.A.: Effect of extraction and readdition of manganese on light reactions of photosystem II preparations. – *FEBS Lett.* **148**: 307-312, 1982a.

Klimov, V.V., Allakhverdiev, S.I., Shuvalov, V.A., Krasnovskii, A.A.: [Effect of reversible extraction of manganese on light reactions of photosystem II preparations.] – *Dokl. Akad. Nauk SSSR* **263**: 1001-1005, 1982b. [In R.]

Li, J., Zhang, F.X., Shi, Q., Wang, J., Wang, Y., Zhou, Z.: Synthesis, structure and magnetic property of a new oxo-centered mixed-valent trinuclear manganese complex. – *Inorg. Chem. Commun.* **5**: 51-55, 2002.

Limburg, J., Vrettos, J.S., Chen, H.Y., de Paula, J.C., Crabtree, R.H., Brudvig, G.W.: Characterization of the O₂-evolving reaction catalyzed by [(terpy)(H₂O)Mn^{III}(O)₂Mn^{IV}(OH₂)(terpy)](NO₃) (terpy = 2,2':6,2"-terpyridine). – *J. amer. chem. Soc.* **123**: 423-430, 2001.

Pecoraro, V.L.: Structurally diverse manganese coordination complexes; from voodoo to oxygenic photosynthesis. – In: Pecoraro, V.L. (ed.): *Manganese Redox Enzymes*. Pp. 197-231. VCH Publishers, New York 1992.

Peloquin, J.M., Britt, R.D.: EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn cluster. – *Biochim. biophys. Acta* **1503**: 96-111, 2001.

Renger, G.: Water cleavage by solar radiation – an inspiring challenge of photosynthesis research. – *Photosynth. Res.* **38**: 229-247, 1993.

Renger, G., Völker, M., Eckert, H.J., Fromme, R., Hohm-Veit, S., Gruber, P.: On the mechanism of photosystem II deterioration by UV-B irradiation. – *Photochem. Photobiol.* **49**: 97-105, 1989.

Robblee, J.H., Cinco, R.M., Yachandra, V.K.: X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. – *Biochim. biophys. Acta* **1503**: 7-23, 2001.

Vincent, J.B., Christou, G.: Higher oxidation state manganese biomolecules. – *Adv. inorg. Chem.* **33**: 197-257, 1989.

Whatley, F.R., Arnon, D.I.: Photosynthetic phosphorylation in plants. – *Methods Enzymol.* **6**: 308-313, 1963.

Wieghardt, K.: The active sites in manganese-containing metalloproteins and inorganic model complexes. – *Angew. Chem. int. Ed. Engl.* **28**: 1153-1172, 1989.

Yan, B.: Synthesis, crystal structure, and magnetic properties of a novel trinuclear mixed-valence oxo-bridged manganese complex formed by ligand-substituted reaction. Mn₃O(C₆H₅CO₂)₂(CH₃C₆H₅CO₂)₄(3-methylpyridine)0.5CH₃CN. – *Chem. Papers* **57**: 102-107, 2003.

Yocum, C.F., Yerkes, C.T., Blankenship, R.E., Sharp, R.R., Babcock, G.T.: Stoichiometry, inhibitor sensitivity, and organization of manganese associated with photosynthetic oxygen evolution. – *Proc. nat. Acad. Sci. USA* **78**: 7507-7512, 1981.