

Mediterranean plant species at the Castelporziano Estate. – *Atmos. Environ.* **31**(SI): 51-60, 1997a.

Martínez-Ferri, E., Balaguer, L., Valladares, F., Chico, J.M., Manrique, E.: Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. – *Tree Physiol.* **20**: 131-138, 2000.

Mooney, H.A., Winner, W.E.: Carbon gain, allocation, and growth as affected by atmospheric pollutants. – In: Schulte-Hostede, S., Darral, N.M., Blank, L.W., Wellburn, A.R. (ed.): *Air Pollution and Plant Metabolism*. Pp. 272-287. Elsevier Applied Science, London – New York 1988.

Nardini, A., LoGullo, M.A., Salleo, S.: Competitive strategies for water availability in two Mediterranean *Quercus* species. – *Plant Cell Environ.* **22**: 109-116, 1999.

Nardini, A., Tyree, M.T., Salleo, S.: Xylem cavitation in the leaf of *Prunus laurocerasus* and its impact on leaf hydraulics. – *Plant Physiol.* **125**: 1700-1709, 2001.

Picon, C., Guehl, J.M., Ferhi, A.: Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (*Pinus pinaster*) and a drought-tolerant (*Quercus petraea*) species under present and elevated atmospheric CO₂ concentrations. – *Plant Cell Environ.* **19**: 182-190, 1996.

Ruehle, J.L., Marx, D.H., Muse, H.D.: Calculated nondestructive indices of growth response for young pine seedlings. – *Forest Sci.* **30**: 469-474, 1984.

Schwanz, P., Picon, C., Vivin, P., Dreyer, E., Guehl, J.-M., Polle, A.: Responses of antioxidative systems to drought stress in pedunculate oak and maritime pine as modulated by elevated CO₂. – *Plant Physiol.* **110**: 393-402, 1996.

Sharp, R.E., Davies, W.J.: Solute regulation and growth by roots and shoots of water-stressed maize plants. – *Planta* **147**: 43-49, 1979.

Sperry, J.S.: Hydraulic constraints on plant gas exchange. – *Agr. Forest Meteorol.* **104**: 13-23, 2000.

Sperry, J.S., Alder, N.N., Eastlack, S.E.: The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. – *J. exp. Bot.* **44**: 1075-1082, 1993.

Tognetti, R., Raschi, A., Béres, C., Fenyvesi, A., Ridder, H.-W.: Comparison of sap flow, cavitation and water status of *Quercus petraea* and *Quercus cerris* trees with special reference to computer tomography. – *Plant Cell Environ.* **19**: 928-938, 1996.

Turner, N.C.: Adaptation to water deficits: a changing perspective. – *Aust. J. Plant Physiol.* **13**: 175-190, 1986.

Tyree, M.T., Sperry, J.S.: Vulnerability of xylem to cavitation and embolism. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **40**: 19-38, 1989.

Govindjee, Fork, D.C.: **Charles Stacy French 1907 – 1985.** – National Academy of Sciences, Washington 2006. 28 pp.

It is not usual to publish in *Photosynthetica* reviews on tiny booklets. Nevertheless, this one presents an interesting summary of life and work of one of the greatest photosynthesis scientists of the 20th century and I would like to pay in this way a tribute to him. Another reason is that for almost a quarter of century Dr. French served on the Editorial Board of *Photosynthetica*.

Both authors of the reviewed booklet worked with Stacy French, the first one for a shorter time but the second one was staff member of the Department for many years, and both studied also some topics of the main interest of Dr. French. At least three discoveries of C.S. French will never be forgotten: of excitation energy transfer from phycobilins to chlorophyll *a*, of diverse spectral forms of chlorophyll-protein complexes, their analysis, and their functions, and of photosystems in various types of algae. Certainly, algae and photosynthetic bacteria were his favourite experimental objects. Dr. French was a master at projecting and building ingenious experimental devices, which were mostly handmade and did use mechanical principles typical of that époque. I hope that even at present every researcher of photosynthesis has ever met “French Press” and knows that this name does not mean some printers’ press produced in France. The “gadgets” of French were well known among photosynthesis researchers and they were really phantastic, *e.g.* the large derivative spectrophotometer. I learned only in this memoir that French proposed the name “Hill reaction” for the well known photosynthetic effect. In connection with the recent boom of

photosynthesis research in China it should be mentioned here that the first paper of C.S. French (with P.S. Tang) was published in the “Chinese Journal of Physiology”. For some time French taught at universities. But for a long period (1947–1973) he was a director of the Department of Plant Biology of the Carnegie Institution of Washington in Palo Alto (California). A list of 85 scientists who ever worked in this laboratory (among them many top scientists) clearly shows also this kind of contribution of French to the development of photosynthesis. And I must stress that he was a very kind, generous, pleasant, and open-minded man, which is confirmed also by the published recollections of some of his research fellows. The Palo Alto place was in his times the most free, friendly, and stimulating research laboratory I can imagine. I shall also never forget the three sunny days I spent in his house.

Reading the text of this booklet is easy and stimulating, the explanations are clearly put, there are also some interesting basic facts of life of Dr. French. An attached selected bibliography shows where to find information on his main endeavours.

The booklet is volume No. 88 of the series “Biographical Memoirs” published by the National Academy of Sciences in Washington, D.C. and is available to anyone on internet (<http://books.nap.edu/html/biomed/cfrench.pdf>). I believe that the next prepared volume on W.A. Arnold will also bring interesting information to everyone interested in history of photosynthesis research.