

$\delta^{13}\text{C}$ values, photosynthetic pathways, and plant functional types for some plants from saline meadows, Northeastern China

R.Z. WANG

Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China

Abstract

Based on stable carbon isotope ratio ($\delta^{13}\text{C}$) measurements, photosynthetic pathway types were determined for 61 species in 54 genera and 24 families of flowering plants from the saline meadows of Northeastern China. Of these total vascular plants, 18 species in 17 genera from 6 families were found to have C_4 photosynthesis; 43 species in 38 genera from 20 families had C_3 photosynthesis. Six dicotyledonous species exhibited C_4 pathway, 12 monocotyledonous species were found with C_4 photosynthesis. The dicotyledonous C_4 species had relative greater mean $\delta^{13}\text{C}$ value and less total carbon content than both monocotyledonous C_4 and C_3 species. Most dicotyledonous C_4 species were annual forbs and halophytes. Some C_4 species had been previously documented, but their $\delta^{13}\text{C}$ values varied remarkably from those of the present study. Even though there are some fluctuations for the $\delta^{13}\text{C}$ values of some C_4 species, $\delta^{13}\text{C}$ value was still more reliable for C_3 and C_4 identification than the use of the enzyme ratio method and of low CO_2 compensation concentration.

Additional key words: C_4 photosynthetic pathway; saline meadow species; stable carbon isotope ratio ($\delta^{13}\text{C}$); total carbon content.

Introduction

The C_4 photosynthetic pathway is present in plants from a wide range of genera and families of both the monocotyledonous plants (hereafter monocots) and dicotyledonous plants (hereafter dicots) (Black 1971, Downton 1975, Raghavendra and Das 1978, Mateu Andrés 1992, Li 1993). The species known to have C_4 photosynthesis are predominantly found in hot and/or arid ecosystems, especially in deserts and grasslands (Winter 1981, Ziegler *et al.* 1981, Wang 2002b), while C_4 plants do occur in cool and moist ecosystems, *e.g.* salt meadows, alpine and wet forests. It is estimated that approximately only 1/3 of the 6 000 C_4 species were identified worldwide and the other 2/3 remains unclear (Hattersley and Watson 1992, Ehleringer *et al.* 1997, Wang 2006). Even though this number has increased since this date, it is still very low when compared with about 220 000 known species of angiosperms (Kennedy *et al.* 1980, Mateu Andrés 1992). The knowledge of photosynthetic pathway classifications is fundamental for a true understanding of the evolution and eco-physiology of C_4 plants, hence for their taxonomic and geographical distribution under global changes

(Teeri and Stowe 1976, Raghavendra and Das 1978, Teeri *et al.* 1980, Redmann *et al.* 1995, Collatz *et al.* 1998, Pyankov *et al.* 2000, Wang 2004).

Saline meadows, one of the main vegetation types, cover a large area in the central part of Northeastern China, including Inner Mongolia, Jilin, and Heilongjiang provinces. This type of ecosystem is the eastern end of the Eurasian steppe zone, on average 140 m above sea level. Most of the meadow regions have meadow chernozem soil, with 3.5 to 6.0 % organic matter in the surface layer and relatively high soil pH (ranging from 7 to 10). More than 820 vascular plant species in 344 genera and 89 families have been identified, while the $\delta^{13}\text{C}$ values for the species from the meadows have not been studied in detail. The objective of the present study was to determine $\delta^{13}\text{C}$ values in the species from the meadow ecosystems, Northeastern China, and to relate $\delta^{13}\text{C}$ to their plant functional types and total carbon content. The results will be important for studying changes in photosynthetic pathways with climate.

Received 24 April 2006, accepted 22 June 2006.

Fax: 0086-01-82591781, e-mail: wangrenzh@sohu.com

Acknowledgments: The author thanks the funding provided by the National Key Basic Research Special Foundation Project (NKBRSF Project 2007CB106800) and National Science Foundation of China (30570166).

Materials and methods

Plant samples were collected from species growing in nature meadows and adjacent farm fields located near the Grassland Ecology Field Station of Northeast Normal University, on the Changling Horse Breeding Farm ($44^{\circ}42' - 44^{\circ}50'$ N, $123^{\circ}42' - 123^{\circ}51'$ E), Jilin, China. Shoot and leaf tissues were collected from growing plants, dried at 80°C for 48 h, and ground. Stable carbon isotope ratio ($\delta^{13}\text{C}$) in the plant tissue was determined by using

Delta^{plus} XP mass spectrograph. Plants with $\delta^{13}\text{C}$ values above -19‰ were considered to have C_4 photosynthesis, and those with $\delta^{13}\text{C}$ values lower than -21‰ to have C_3 photosynthesis (Redmann *et al.* 1995). Plants identified in Table 1 were classified into 5 plant functional types, *i.e.* shrubs (SHR), high perennial grasses (HPG), annual grasses (ANG), annual forbs (ANF), and perennial forbs (PEF) by morphological attributes.

Results

Sixty-one species in 54 genera and 24 families from saline meadows of Northeastern China were examined (Table 1). The $\delta^{13}\text{C}$ values of all species examined fall into two distinct groups, those of more than -15.01‰ (C_4 photosynthesis) and those of less than -24.74‰ (C_3 photosynthesis). Of the total 61 species, carbon isotope ratios indicative of C_4 photosynthesis were found in 18 species (30 % of 61 species) from 17 genera and 6 families; 43 species (70 % of 61 species) from 38 genera from 20 families had C_3 photosynthesis. 1/3 of the C_4 species was weed dicots, *e.g.* *Amaranthus retroflexus* L., *Kochia sieversiana* (Pall.) C.A. Mey., *Salsola collina* Pall., *Euphorbia humifusa* Willd., *Portulaca oleracea* L., and *Tribulus terrestris* L. C_4 monocots species were mainly grasses [*e.g.* *Arundinella hirta* (Thunb.) Tanaka, *Chloris virgata* Sw., *Digitaria ciliaris* (Rotz.)]. Generally, the dicotyledonous C_4 species had relative higher mean $\delta^{13}\text{C}$ value (ranging from -11.40‰

to -12.93‰) than the monocotyledonous C_4 species (ranging from -10.86‰ to -15.01‰). But the mean $\delta^{13}\text{C}$ value for C_3 dicots (-28.63‰) was less than for C_3 monocots (-26.75‰). The photosynthetic pathways for 36 species (*Apocynum lancifolium* Russan., *Cynanchum amplexicule* Hemsley, *Eurotia ceratoides* (L.) L.A.M.) were not reported in recent studies, and 2 species [*Euphorbia humifusa* Willd. and *Misanthus sacchariflorus* (Maxim.) Hack.] were not included in the recent list of C_4 species in China. The $\delta^{13}\text{C}$ values for some C_4 monocots [*e.g.* *Arundinella hirta* (Thunb.) Tanaka, *Hemarthria sibirica* (Gand.) Ohwi, *Setaria viridis* (L.) Beauv.] were much greater than those in earlier references. The mean total carbon contents for C_4 dicots (38.0 %) was significantly less than that for C_4 monocots (43.5 %), C_3 dicots (43.8 %), and C_3 monocots (44.1 %), respectively.

Table 1. $\delta^{13}\text{C}$ values, photosynthetic pathways (C_3 or C_4), carbon content, CC [% of dry mass], and plant functional types (PFTs) in species from saline meadows of Northeast China. PFTs: SHR = shrubs, HPG = high perennial grass, ANG = annual grass, ANF = annual forbs and perennial forbs (PEF).

Family	Species	$\delta^{13}\text{C}$ [%]	C_3/C_4	CC [%]	PFTs
Dicotyledoneae					
Amaranthaceae	<i>Amaranthus retroflexus</i> L.	-11.92	C_4	36.91	ANF
Apocynaceae	<i>Apocynum lancifolium</i> Russan.	-26.96	C_3	47.06	SHR
Asclepiadaceae	<i>Cynanchum amplexicule</i> Hemsley	-26.41	C_3	44.44	PEF
	<i>Metaplexis japonica</i> Makino	-27.60	C_3	40.45	PEF
Bignoniaceae	<i>Incarvillea sinensis</i> Lamark.	-29.37	C_3	42.16	ANF
Campanulaceae	<i>Adenophora stenophylla</i> Hemsley	-27.16	C_3	45.62	PEF
Chenopodiaceae	<i>Chenopodium acuminatum</i> Willd.	-29.82	C_3	38.62	ANF
	<i>Eurotia ceratoides</i> (L.) L.A.M.	-28.22	C_3	39.27	SHR
	<i>Kochia sieversiana</i> (Pall.) C.A. Mey.	-11.42	C_4	40.37	SHR
	<i>Salsola collina</i> Pall.	-11.98	C_4	35.89	ANF
	<i>Suaeda corniculata</i> (C.A. Mey.) Bunge	-27.96	C_3	37.03	ANF
	<i>S. glauca</i> Bunge	-27.01	C_3	36.70	ANF
Compositae	<i>Artemisia anethifolia</i> Weber	-27.57	C_3	46.27	SHR
	<i>A. anethoides</i> Mattf.	-27.60	C_3	40.45	PEF
	<i>A. mongolica</i> Fisch.	-24.54	C_3	47.91	SHR
	<i>Heteropappus altaicus</i> (Willd.) Novopokr.	-27.80	C_3	45.16	PEF

Table 1 (continued)

Family	Species	$\delta^{13}\text{C}$ [‰]	C3/C4	CC [%]	PFTs
Compositae (cont.)	<i>Inula japonica</i> Thunb.	-28.83	C ₃	41.49	PEF
	<i>Saussurea glomerata</i> Poir.	-29.28	C ₃	35.78	PEF
	<i>S. runcinata</i> DC.	-28.46	C ₃	43.28	PEF
	<i>Taraxacum mongolicum</i> Hand.	-28.47	C ₃	39.55	PEF
	<i>Xanthium strumarium</i> L.	-27.63	C ₃	42.08	ANF
Convolvulaceae	<i>Calystegia hederacea</i> Wallich	-28.13	C ₃	41.53	ANF
Euphorbiaceae	<i>Euphorbia humifusa</i> Willd.	-12.93	C ₄	41.70	ANF
Fabaceae	<i>Astragalus adsurgens</i> Pall.	-28.37	C ₃	40.18	PEF
	<i>Glycyrrhiza uralensis</i> Fisch.	-27.59	C ₃	46.71	PEF
	<i>Lathyrus quinquenervius</i> (Miq.) Litv.	-27.94	C ₃	44.42	PEF
	<i>Lespedeza davurica</i> Schindler	-26.99	C ₃	45.41	SHR
Labiatae	<i>Dracocephalum moldavica</i> L.	-28.50	C ₃	41.84	ANF
	<i>Leonurus japonica</i> Houtt	-25.65	C ₃	41.71	ANF
	<i>Lycopus lucidus</i> Turcz.	-28.46	C ₃	39.38	ANF
	<i>Stachys chinensis</i> Bunge	-28.05	C ₃	42.23	PEF
Linaceae	<i>Linum stellatum</i> Planchon	-28.70	C ₃	43.79	ANF
Plantaginaceae	<i>Plantago asiatica</i> L.	-28.54	C ₃	41.96	PEF
Plumbaginaceae	<i>Limonium bicolor</i> O. Kuntze	-29.78	C ₃	46.03	PEF
Polygonaceae	<i>Polygonum sibiricum</i> Laxm.	-27.99	C ₃	42.96	AEF
Portulacaceae	<i>Portulaca oleracea</i> L.	-11.40	C ₄	34.97	ANF
Ranunculaceae	<i>Thalictrum simplex</i> L.	-26.29	C ₃	45.61	PEF
Rosaceae	<i>Potentilla flagellaris</i> Willd.	-28.07	C ₃	43.56	PEF
	<i>Sanguisorba officinalis</i> L.	-26.76	C ₃	46.72	PEF
Ulmaceae	<i>Ulmus pumila</i> L.	-28.40	C ₃	44.05	SHR
Umbelliferae	<i>Siler divaricatum</i> Benth. et Hook.	-27.21	C ₃	42.35	PEF
Zygophyllaceae	<i>Tribulus terrestris</i> L.	-11.71	C ₄	38.31	ANF
Monocotyledonae					
Gramineae	<i>Arundinella hirta</i> (Thunb.) Tanaka	-11.10	C ₄	43.18	HPG
	<i>Calamagrostis epigeios</i> (L.) Roth	-28.86	C ₃	42.27	HPG
	<i>Chloris virgata</i> Sw.	-15.01	C ₄	44.28	ANG
	<i>Digitaria ciliaris</i> (Retz.) Koel	-14.10	C ₄	42.25	ANG
	<i>Echinochloa crus galli</i> (L.) Beauv.	-11.59	C ₄	41.84	ANG
	<i>Eragrostis poaeoides</i> Beauv.	-12.42	C ₄	43.61	ANG
	<i>Hemarthria sibirica</i> (Gand.) Ohwi	-10.86	C ₄	45.98	HPG
	<i>Leymus dasystachys</i> (Trin.) Nevski	-25.50	C ₃	44.64	HPG
	<i>Misanthus sacchariflorus</i> (Maxim.) Hack.	-12.23	C ₄	45.31	HPG
	<i>Panicum miliaceum</i> L.	-12.98	C ₄	44.38	ANG
	<i>Pennisetum flaecidum</i> Griseb.	-11.71	C ₄	42.87	HPG
	<i>Phragmites communis</i> Trin.	-24.74	C ₃	42.86	HPG
	<i>Puccinellia chinampensis</i> Ohwi	-25.90	C ₃	45.44	HPG
	<i>P. tenuiflora</i> (Turcz.) Scrib. et Merr.	-25.58	C ₃	44.90	HPG
	<i>Setaria italica</i> (L.) Beauv.	-11.61	C ₄	41.47	ANG
	<i>S. viridis</i> (L.) Beauv.	-13.22	C ₄	42.67	ANG
	<i>Spodiopogon sibiricus</i> Trin.	-11.54	C ₄	44.34	HPG
Liliaceae	<i>Allium odorum</i> L.	-27.01	C ₃	42.01	PEF
Typhaceae	<i>Typha minima</i> Funk	-29.66	C ₃	46.34	PEF

In the saline meadow regions, the total 61 species fall within 5 plant functional types, *e.g.* 33.4 % (21 of 61) in PEF, 26.2 % (16 of 61) in AEF, 16.4 % (10 of 61) in HPG, and 11.5 % (7 of 61) in each of SHR and ANG, respectively (Table 1). No C₄ species was found in PEF, but all ANG species, 50 % of HPG, 31.3 % of ANF, and 14.3 % SHR were identified with C₄ photosynthesis,

suggesting that the occurrence of C₄ photosynthesis was very common in ANG, HPG, and ANF functional types in the saline meadows. The mean total carbon contents for both ANF (39.7 %) and ANG (42.9 %) were less than for PEF (43.1 %), HPG (44.2 %), and SHR (44.3 %), but there were no significant differences among the PEF, HPG, and SHR types.

Discussion

Classifications of plant species into photosynthetic pathway types are the fundamental knowledge for a true understanding of the differences in evolution and eco-physiology between C₃ and C₄ plants, C₄ species geographical distribution, as well as C₃ and C₄ responses to global changes. The $\delta^{13}\text{C}$ value of plant tissue is diagnostic for photosynthetic pathways and is widely used as a criterion for C₃ and C₄ classifications (Downton 1975, Redmann *et al.* 1995, Pyankov *et al.* 2000). 61 species from saline meadows were classified to their types of photosynthesis (Table 1), 18 species were found with C₄ photosynthesis, and the other species with C₃ photosynthesis. Relatively more C₄ species were identified in this study, indicating that the occurrence of C₄ species was most common in the saline meadow regions. This proved that C₄ species have greater capacity to tolerate saline stresses in the regions, for many C₄ species were C₄ halophytes, *e.g.* *Chloris virgata* Sw., *Hemarthria sibirica* (Gand.) Ohwi, and *Kochia sieversiana* (Pall.) C.A. Mey., and some can form large patches of consociations. Unlike in deserts and steppes (Winter 1981, Pyankov *et al.* 2000, Wang 2002b, 2003), two thirds of C₄ species identified in Table 1 were grasses (12 of 18), suggesting that high salinity and moisture of the saline meadows favour the presence of the C₄ grasses. This explanation is also supported by the observations that Gramineae was the leading family with C₄ photosynthesis in the grasslands of Northeast China (Wang 2004). Studies of Winter (1981), Pyankov *et al.* (2000), and other authors proved that deserts (especially the Middle East deserts) represent centres for the evolution of Chenopodiaceae C₄ flora, for Chenopodiaceae C₄ species have higher tolerances to drought, high temperature, and high irradiance than the other types of plants. The $\delta^{13}\text{C}$ values for some C₄ monocots [*e.g.* *Arundinella hirta* (Thunb.) Tanaka, *Hemarthria sibirica* (Gand.) Ohwi, *Setaria viridis* (L.) Beauv.] were about 41.5, 37.6, and

26.1 % greater than those in earlier measurements by Redmann *et al.* (1995). There is no direct evidence to explain the significant differences in $\delta^{13}\text{C}$ values for these C₄ monocots between the present study and the earlier measurements (Redmann *et al.* 1995), but the variations may reflect the responses of C₄ species to the differences in sample sites, geographical distribution, and climatic changes. Even though there are some fluctuations for the $\delta^{13}\text{C}$ values with conditions (*e.g.* sites, moisture, and temperature), $\delta^{13}\text{C}$ was still more reliable for C₃ and C₄ identification than the use of the enzyme ratio method and low CO₂ compensation concentration.

Of the 5 plant functional types, more than 1/3 of the 61 species was found in PEF, but no C₄ species was identified in this type (Table 1). Two thirds of C₄ species was annuals (*e.g.* 5 ANF and 7 ANG), 50 % of HPG, was identified with C₄ photosynthesis, indicating that the occurrence of C₄ photosynthesis was very common in ANG, HPG, and ANF types in the saline meadows. Annual plant species can use seasonal precipitation efficiently in the saline meadow regions where the precipitation mainly falls between middle-June and middle-August (70 % of total rain fall), and these species can withstand severe spring droughts (from early May to middle June) as seeds (Wang 2004). Few SHR C₄ species (*Kochia sieversiana*) from the saline meadow regions indicated the C₄ flora was significantly different from that from steppes and deserts (Wang 2002a,b). More abundance of annual C₄ species in the saline meadows suggested that this kind of ecosystem was not stable, for most of these species grow only in the rainy seasons, but their occurrences may improve the soil conditions at salinity stages (Wang 2004). Therefore, the rangeland management in the regions must take into account occurrence of C₄ species and their dynamics, which are closely related to land conditions and climate variations.

References

Black, C.C.: Ecological implications of dividing plants into groups with distinct photosynthetic production capacities. – In: Cragg, J.B. (ed.): Advances in Ecological Research. Vol. 7. Pp. 87-114. Academic Press, New York – London 1971.

Collatz, G.J., Berry, J.A., Clark, J.S.: Effects of climate and atmospheric CO₂ partial pressure on the global distribution of C₄ grasses: present, past, and future. – *Oecologia* **114**: 441-454, 1998.

Downton, W.J.S.: The occurrence of C₄ photosynthesis among plants. – *Photosynthetica* **9**: 96-105, 1975.

Ehleringer, J.R., Cerling, T.E., Helliker, B.R.: C₄ photosynthesis, atmospheric CO₂, and climate. – *Oecologia* **112**: 285-299, 1997.

Hattersley, P.W., Watson, L.: Diversification of photosynthesis.

– In: Chapman, G.P. (ed.): *Grass Evolution and Domestication*. Pp. 38-116. Cambridge University Press, Cambridge 1992.

Li, M.: [List of plants with C₄ photosynthesis.] – *Plant Physiol. Commun.* **29**: 148-159, 221-240, 1993. [In Chin.]

Kennedy, R.A., Eastburn, J.L., Jensen, K.G.: C₃-C₄ photosynthesis in the genus *Mollugo*: structure, physiology and evolution of intermediate characteristics. – *Amer. J. Bot.* **67**: 1207-1217, 1980.

Mateu Andrés, I.: A revised list of the European C₄ plants. – *Photosynthetica* **26**: 323-331, 1992.

Pyankov, V.I., Gunin, P.D., Tsoog, S., Black, C.C.: C₄ plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. – *Oecologia* **123**: 15-31, 2000.

Raghavendra, A.S., Das, V.S.R.: The occurrence of C₄ photosynthesis: A supplementary list of C₄ plants reported during late 1974-mid 1977. – *Photosynthetica* **12**: 200-208, 1978.

Redmann, R.E., Yin, L., Wang, P.: Photosynthetic pathway types in grassland plant species from Northeast China. – *Photosynthetica* **31**: 251-255, 1995.

Teeri, J.A., Stowe, L.G.: Climatic patterns and the distribution of C₄ grasses in North America. – *Oecologia* **23**: 1-12, 1976.

Teeri, J.A., Stowe, L.G., Livingstone, D.A.: The distribution of C₄ species of the Cyperaceae in North America in relation to climate. – *Oecologia* **47**: 307-310, 1980.

Wang, R.Z.: The C₄ photosynthetic pathway and life forms in grassland species from North China. – *Photosynthetica* **40**: 97-102, 2002a.

Wang, R.Z.: Photosynthetic pathways, life forms, and reproductive types for forage species along the desertification gradient on Hunshandake desert, North China. – *Photosynthetica* **40**: 321-329, 2002b.

Wang, R.Z.: Photosynthetic pathway and morphological functional types in the steppe vegetation from Inner Mongolia, North China. – *Photosynthetica* **41**: 143-150, 2003.

Wang, R.Z.: C₄ species and their response to large-scale longitudinal climate variables along the Northeast China Transect (NECT). – *Photosynthetica* **42**: 71-79, 2004.

Wang, R.Z.: The occurrence of C₄ plants and their morphological functional types in the vegetation of Xinjiang, China. – *Photosynthetica* **44**: 293-298, 2006.

Winter, K.: C₄ plants of high biomass in arid regions of Asia – occurrence of C₄ photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR. – *Oecologia* **48**: 100-106, 1981.

Ziegler, H., Batanouny, K.H., Sankhla, N., Vyas, O.P., Stichler, W.: The photosynthetic pathway types of some desert plants from India, Saudi Arabia, Egypt and Iraq. – *Oecologia* **48**: 93-99, 1981.