

Mutation mechanism of chlorophyll-less barley mutant *NYB*

Z.-L. LIU, S. YUAN, W.-J. LIU, J.-B. DU, W.-J. TIAN, M.-H. LUO, and H.-H. LIN*

Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Science, Sichuan University, Chengdu, Sichuan 610064, P. R. China

Abstract

NYB is chlorophyll-less barley mutant, which is controlled by a recessive nuclear gene. The mutation mechanism is revealed. The activities of enzymes transforming 5-aminolevulinic acid into protochlorophyllide were the same in both *NYB* and the wild type (WT), but the activity of the protochlorophyllide oxidoreductase (POR) in WT was much higher than that of *NYB*. Most of the photosystem 2 apoproteins were present in both WT and *NYB*, suggesting that the capability of protein synthesis was probably fully preserved in the mutant. Thus chlorophyll (Chl) biosynthesis in *NYB* was hampered at conversion form protochlorophyllide (Pchlide) into chlorophyllide. The open reading frame of *porB* gene in *NYB* was inserted with a 95 bp fragment, which included a stop codon. The *NYB* mutant is a very useful material for studies of Chl biosynthesis, chloroplast signalling, and structure of light-harvesting POR-Pchlide complex (LHPP).

Additional key words: chlorophyll; fluorescence emission spectra; light-harvesting complex 2; Nanchong yellow barley (*NYB*); nucleotide sequences; photosystem 2; proteins; protochlorophyllide oxidoreductase (POR).

Introduction

Chlorophyll (Chl) *b*-deficient mutants have been widely used as the important material for understanding the genetic and biochemical control of Chl *b* biosynthesis and the function of Chl *b* in the assembly of light-harvesting Chl *a/b* protein complexes (Anderson *et al.* 1978, Eggink *et al.* 2001). Various Chl *b*-deficient mutants were found in several species of higher plants (Falbel *et al.* 1996).

NYB is a new Chl-deficient mutant obtained by ^{60}Co - γ ray treatment (Tang *et al.* 1994). Its phenotype is stable and not affected by irradiation or temperature. The chloroplast of *NYB* contains fewer thylakoids and grana than the wild type (WT), with a lower total Chl content and a higher Chl *a/b* ratio in old leaves (Lin *et al.* 1999). When *NYB* was hybridized with WT, the ratio of character segregation was 3 : 1, and the ratio of testcross was 1 : 1 (Cheng *et al.* 2001). Therefore, the yellowish colour of *NYB* leaves is most likely controlled by a recessive nuclear gene.

We have researched on the mutant for many years. A study by Tan *et al.* (1997) demonstrated that the *NYB*

has a higher photosystem (PS) 2 photochemical efficiency (F_v/F_m), which may be due to the lesser excitation energy transfer from PS2 to PS1. The first identification of qualitative and quantitative differences in the harvesting complexes of PS2 (LHC2) between *NYB* and its WT was done by Lin *et al.* (1998, 1999). According to Yuan *et al.* (2007), this mutant is insensitive to osmotic stress. However, the mechanism of mutation in *NYB* remains unclear so far.

In the present study, the biosynthetic system to perform the transformations from 5-aminolevulinic acid (ALA) to protochlorophyllide (Pchlide), and Pchlide to chlorophyllide (Chlde) was analyzed. The apoprotein accumulation in the early period of greening of etiolated leaves was also investigated. The method we used is suitable for other Chl-less mutants as well. In addition, the prospective studies of the light-harvesting POR-Pchlde complex (LHPP) and chloroplast signalling with this mutant were analysed.

Received 20 March 2007, accepted 3 September 2007.

*Corresponding author; fax: +86-028-85412571; e-mail: honghuilin@hotmail.com

Abbreviations: ALA – 5-aminolevulinic acid; Chl – chlorophyll; Chlde – chlorophyllide; Coprogen III – coproporphyrinogen III; LHC2 – light-harvesting complex of photosystem 2; LHPP – light-harvesting POR-Pchlde complex; Mg-proto – Mg-protoporphyrin IX; *NYB* – Nanchong Yellow Barley; ORF – open reading frame; PBG – porphobilinogen; Pchlde – protochlorophyllide; POR – protochlorophyllide oxidoreductase; Proto IX – protoporphyrin IX; PS – photosystem; Urogen III – uroporphyrinogen; WT – wild type.

Acknowledgements: This research was supported by the National Nature Science Foundation of China (30571119), The Doctoral Foundation of the Ministry of Education (20040610015), Sichuan Science and Technology Foundation (04ZQ026-036), and Program for New Century Excellent Talents in University (NCET-05-0786). We thank Dr. Yun Zhao and Dr. Mao-Lin Wang for planting and collecting the seeds of *NYB*, Master Rui Tang and Dr. Hou-Guo Liang for technical support and stimulating discussion during this work, and Dr. Eva-Mari Aro (University of Turku, Finland) for providing the antibodies against D1 and D2 proteins.

Materials and methods

Plants: The experiments were performed with the Chl *b*-less barley (*Hordeum vulgare* L.) mutant *NYB* and its WT. Seeds were soaked overnight, and seedlings were grown in vermiculite in a greenhouse at 25 °C for 7 d under complete darkness and, if necessary, were subsequently continuously irradiated for times specified.

Chl contents were estimated as described by Lichtenchaler and Wellburn (1983). 7-d-old etiolated seedlings were continuously irradiated for 1 h. Chls were extracted with 80 % acetone and spectrophotometrically evaluated.

Contents of Chl synthesis precursors: Leaves selected for analysis were weighed. 5-aminolevulinic acid (ALA) was extracted as described by Dei (1985). Isolations of porphobilinogen (PBG) and of uroporphyrinogen (Urogen III) were performed using the method of Bogorad (1962); coproporphyrinogen III (Coprogen III), protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-proto), and protochlorophyllide (Pchlido) were determined according to the methods of Rebeiz *et al.* (1975).

Introduction of exogenous ALA: According to Rudoi and Shcherbakov (1998), etiolated leaves were cut off under water and placed in darkness with the cut side immersed in an ALA solution in phosphate buffer (0.067 M, pH 7.7). After fixed time intervals the samples were taken for determination of pigment contents.

Efficiency of conversion of Pchlido to Chlide was determined as described by Lay *et al.* (2000) with some modifications. The non-irradiated leaves were ground on ice in 80 % acetone saturated with NaHCO₃. The suspension was passed through a filter, and then one-half volume of hexane was added to extract the acetone phase. After vigorous shaking, Chlide concentration in the acetone phase was measured by the fluorescence intensity

Results

Conversion of ALA into Chl *a*: In order to evaluate the potential of the enzyme system for transformation from ALA to Chl *a*, it is necessary to estimate the precursors of Chl *a*. As shown in Fig. 1, contents of porphobilinogen (PBG), uroporphyrinogen (Urogen III), coproporphyrinogen III (Coprogen III), protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-proto), and protochlorophyllide (Pchlido) were close to or higher in the mutant than in the WT (Student's *t*-test was used for comparison between *NYB* and WT; statistically significant differences at *p*<0.05). In addition, feeding of exogenous ALA (data not shown) revealed that activities of the enzymes converting ALA to Pchlido in *NYB* were almost the same

excited at 400 nm and scanned at 600–720 nm. The seedlings were transferred to incandescent light for 60 s [100 μmol(photon) m⁻² s⁻¹]. The treated leaves were extracted immediately and then scanned according to the above method. Subsequently, the treated seedlings were darkened for 90 min, and then extracted and scanned again. All the procedures were done under darkness.

Isolation of thylakoid membranes, fully-denaturing SDS-PAGE, and Western blot analysis: Thylakoid membranes were isolated as described by Lin *et al.* (2003). Polypeptide composition of isolated thylakoids was fractionated using the gel system of Laemmli (1970). For Western blotting, electrophoresed proteins without staining were immediately electro-transferred onto nitrocellulose films according to Mohanty *et al.* (2006). Membranes were blocked with non-fat milk for 1 h at room temperature before applying antisera to D1/D2 (gifts from Dr. Eva-Mari Aro), CP43/CP47 (gift from Dr. Hong-Guo Liang), and LHC2s (*AgriSera Comp.*, Sweden). Then signals were revealed by using alkaline phosphatase-conjugated goat-anti-rabbit secondary antibodies.

Reverse transcription and PCR: Preparation of total RNA from barley seedlings was carried out by the method of Zhang *et al.* (2004). PolyA-containing RNA was transcribed into single-stranded DNA (Krawetz *et al.* 1989), which was then amplified by PCR using the primers 1 (5'-AATTCCGCAGCACAGTGCAC-3' and 5'-ACGACAAGTTGAGCATCGGC-3') and 2 (5'-GCG CTATCTGATACGCTCAC-3' and 5'-GCACAAAATT CGCAACTTG-3') for *porA* and *porB* Open Reading Frame (ORF), respectively. PCR was performed in a *Bio-Rad* thermocycler as follows: 2-min denaturation at 94 °C, 1 min annealing at 55 °C, and 3-min extension at 72 °C for 40 cycles. Elution of PCR fragments, subcloning into the PMB18 vector, and sequence analysis were performed according to Sambrook *et al.* (1989).

as they were in the WT. However, compared to WT, the *NYB* leaf contained about one-half of Chl *a* or Chl *b*. This result at least means that some enzyme converting Pchlido to Chl *a* was inhibited in *NYB*.

Etiolated *NYB* and WT seedlings had no difference in the content of Pchlido (Fig. 2A). Pchlido content decreased markedly, and Chlide content increased swiftly 1 min after a flash. However, the decline of Pchlido in WT was more significant than that in *NYB*, while the content of Chlide in WT was higher than that in the mutant. Therefore, the synthesis rate of Chlide in the mutant was no more than one-half of the WT (Fig. 2B). We conclude that protochlorophyllide oxidoreductase

(POR) was most likely damaged. Chlide could be transformed into Chl *a* about 90 min after the first flash and then in darkness (Lay *et al.* 2000). Fig. 2C shows that

the efficiency of converting Chlide into Chl *a* in the mutant was close to that in the WT.

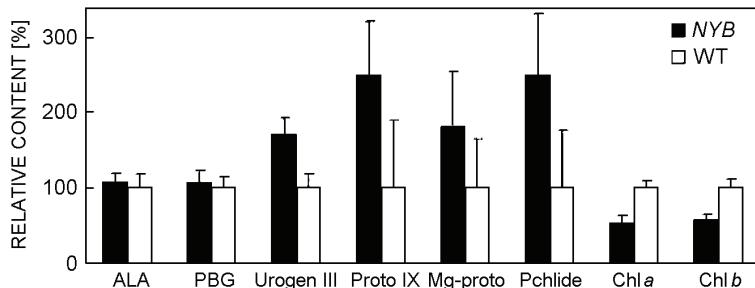


Fig. 1. Comparison of chlorophyll precursors between *NYB* and *WT*. Means \pm standard deviations of three independent experiments.

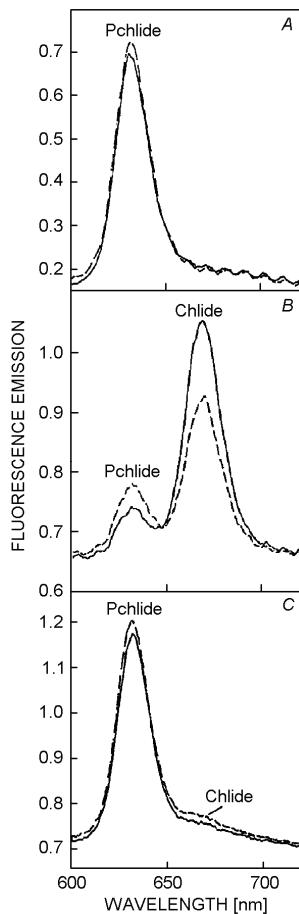


Fig. 2. Fluorescence emission spectra in acetone of Pchlido and Chlide extracted from etiolated leaves of *NYB* (dotted lines) and wild type, *WT* (solid lines): (A) etiolated seedlings grown in dark; (B) exposed to a flash for 1 min; (C) 90 min in dark after 1 min irradiation. The excitation wavelength was 440 nm.

Accumulation of LHC apoproteins: Thylakoid membranes of 6-d-old etiolated *NYB* and *WT* seedlings

Discussion

We first studied the mutation principle of the important barley mutant *NYB*. Considering that the yellowish leaves of *NYB* are controlled by a recessive nuclear gene, we deduce that the mutation must happen either in PS protein synthesis or in Chl synthesis. In spite of the low contents of major PS proteins in *NYB*, the capability of their synthesis in the mutant is probably fully preserved. The

were continuously irradiated for 0–48 h. Thylakoids were isolated and fractionated by SDS-PAGE. Appearance of the PS proteins started after 6 h of irradiation, and their content increased dramatically both in *NYB* and *WT* as the irradiation time passed by (Fig. 3). However, the content of PS proteins in *NYB* was much lower than that in *WT*. Western blots with LHC2b1 and LHC2b2 antibodies showed a similar trend (Fig. 4). It seemed that no PS protein was lost in *NYB*, and the low content of PS proteins in the mutant was largely due to the decreased Chl contents and the subsequently declined stabilities of pigment-binding proteins. To make further confirmation, major PS2 proteins from mature leaves were also compared. Fig. 5 shows that all PS2 proteins that we detected were expressed in thylakoid extracts of both *NYB* and *WT*, although the contents in *NYB* were much lower. *In vivo* ^{35}S labelling of PS proteins (data not shown) also suggested that most PS proteins were synthesized in the mutant. Here, the capability of PS protein synthesis was probably fully preserved in the mutant, and the yellowish appearance of *NYB* could not be attributed to deficiency in PS protein synthesis.

por genes amplified by RT-PCR: PolyA-containing RNAs were isolated from 6-d-old etiolated barley seedlings under darkness. PCR fragments about 1.3 kb could be amplified from both *NYB* and *WT*. Then the sequences were identified to *porA* and *porB* cDNAs. No difference of *porA* was found between *NYB* and *WT*. However, the ORF of *porB* in the mutant was inserted with a 95 bp fragment, which contained a stop codon (TAA) at the beginning (Fig. 6). Therefore, we assume that the *PORB* protein in *NYB* was truncated and partly disfunctioned.

mutant exhibits a normal content of the respective PS mRNAs and is capable of forming the protein precursors and importing them into chloroplasts (Lin *et al.* 1999). Alternatively, the mutant *NYB* should have a defect in Chl biosynthesis, while PS polypeptides do not accumulate to the normal levels because of the absence of Chls that stabilizes them (Rudoi and Shcherbakov 1998,

Hoober and Eggink 1999).

In etiolated seedlings irradiated for 1 h, a lag phase of Chl accumulation is not completed yet and all Chl is formed from initial Pchlde of etiolated leaves. In this period the complexes of reaction centres of both photosystems only begin to form, while LHCs do not appear yet. Therefore, Chl contents in this time point represent the initial Chl synthesis rates (Rudoi and Shcherbakov 1998). After greening for 1 h, both Chl *a* and Chl *b* were synthesized in *NYB*, but both at about half the levels in WT (data not shown), also suggesting that Chl synthesis was inhibited in the mutant.

Chl is assembled in chloroplast from eight molecules of ALA, and the mainly next-to-last precursors in angiosperms are PBG, Urogen III, Coprogen III, Proto IX, Mg-proto IX, Pchlde, and Chlide (Wettstein *et al.* 1995). If one step of Chl biosynthesis is blocked, the former precursors should accumulate, and the latter precursors should decrease. According to our experiments about Chl precursors, the mutation can be attributed to a blockage in conversion from Pchlde to Chl *a*. The investigation of transformation from Pchlde to Chlide provided detailed information that the enzymes catalyzing Pchlde were most likely damaged.

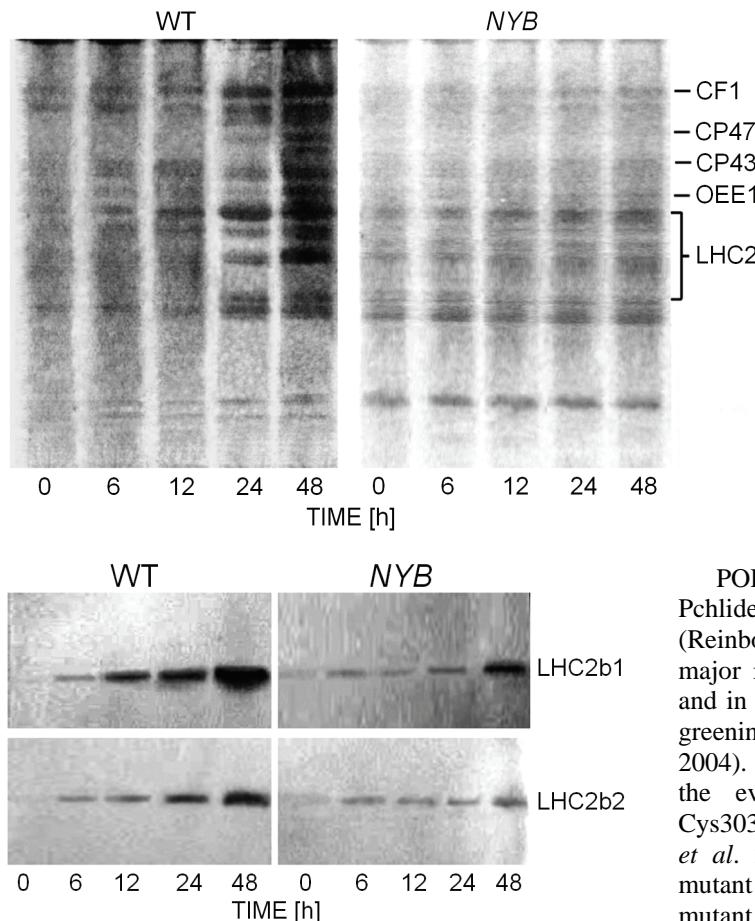


Fig. 3. SDS-PAGE of solubilized thylakoid membranes in etiolated seedlings after irradiation for 0–48 h. Gels were stained with Coomassie blue. The locations of PS proteins are marked. OEE1 – oxygen-enhancer protein 1.

NYB was less sensitive to water stress than WT. Although the amounts of Chls and PS2 proteins were less in the mutant, the remaining Chls in *NYB* bound apoproteins more effectively, and PS2 in the mutant adjusted its formation to contain less LHCs (Yuan *et al.* 2007). Tan *et al.* (1997) demonstrated that the *NYB* had a higher PS2 photochemical efficiency (F_v/F_m), which may be due to the lesser excitation energy transfer from PS2 to PS1. Therefore, the precise structures of PS proteins in *NYB* require further studies.

PORA and PORB form a stable light-harvesting POR-Pchlde complex in a ratio of 5 : 1, named LHPP (Reinbothe *et al.* 1999). Functionally, LHPP may play major role in establishing the photosynthetic apparatus and in protecting against photo-oxidative damage during greening (Masuda and Takamiya 2004, Reinbothe *et al.* 2004). PORB protein in our mutant was truncated before the evolutionarily conserved residues Cys276 and Cys303, which constitute Pchlde binding sites (Reinbothe *et al.* 2006). PORB protein may be truncated in our mutant *NYB*. Consequently, configuration of LHPP in the mutant may be altered, and it may be exposed to oxidative stress during greening, which needs further investigation.

Furthermore, the mutant *NYB* is a useful material for plastid signal researches. Plant cells store genetic information in the genomes of three organelles: the nucleus, plastid, and mitochondrion. In turn, organelles send signals to the nucleus to control nuclear gene expression, such as chloroplast redox signals (Pfannschmidt 2003) and tetrapyrrole-mediated signals (Nott *et al.* 2006). Mg-proto, the Chl biosynthetic precursor, is a key inducer of tetrapyrroles' mediated plastid signals (Kropat *et al.* 2000, Strand *et al.* 2003). Our experiments showed that the content of Mg-proto was much higher in the mutant than in the WT.

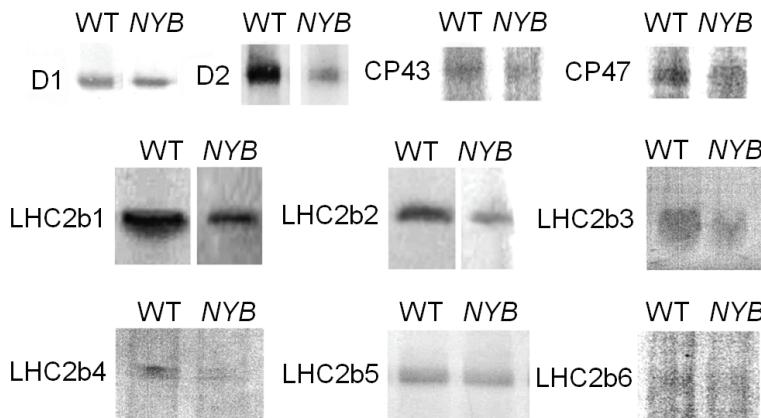


Fig. 5. Western blot analysis of PS2 proteins in mature *NYB* and WT seedlings. Antibodies for D1, D2, CP43, CP47, and LHC2b1-b6 were used.

	1	10	20	30	40	54
WT	(1) ATGGCTCTTCAGGGGCCACTTCCTCTCCGTGGCCCTCTCGCGCGCAAG					
NYB	(1) ATGGCTCTTCAGGGGCCACTTCCTCTCCGTGGCCCTCTCGCGCGCAAG					
WT	(55) GAGGGAGCGGGCAAGGACTCGGCTTCTCGGCACGGCTACGCTCTCGCCGATGGCCCTC					
NYB	(55) GAGGGAGCGGGCAAGGACTCGGCTTCTCGGCATACGCTCTCGCCGATGGCCCTC					
WT	(109) AAATTGGACGCCACCTCCCTCGGCCCTGCGCACCAAGAGAGTGAAACACGTCGTCG					
NYB	(109) AAATTGGACGCCACCTCCCTCGGCCCTGCGCACCAAGAGAGTGAAACACGTCGTCG					
WT	(153) GTGGCCATCCGGCGCAGGGCGGGCTGCGCACCAAGAGAGTGAAACACGTCGTCG					
NYB	(163) GTGGCCATCCGGCGCAGGGCGGGCTGCGCACCAAGAGAGTGAAACACGTCGTCG					
WT	(217) TCGCCGGCGGGCAAGGAAAGACTGTCGGCACGGCAACGGCGATCATCACGGGCGG					
NYB	(217) TCGCCGGCGGGCAAGGAAAGACTGTCGGCACGGCAACGGCGATCATCACGGGC					
WT	(271) TCGTCGGGCGCTCGGCCACGGCCAAGGCCCTGGCGGAGTCAGGAAGTGG					
NYB	(271) TCGTCGGGCGCTCGGCCACGGCCAAGGCCCTGGCGGAGTCAGGAAGTGG					
WT	(325) CACGCTCATCGCCGTGCGCGACTACCTCAAGAACGGCGGGGGGGCAAGGGGG					
NYB	(325) CACGCTCATCGCCGTGCGCGACTACCTCAAGAACGGCGGGGGCAAGGGGG					
WT	(379) GCGGGCATGCCCAAGGGCAGCTACACCATCGTGCACCTTGATCTGGCTCCCTC					
NYB	(379) GCGGGCATGCCCAAGGGCAGCTACACCATCGTGCACCTTGATCTGGCTCCCTC					
WT	(433) GACAGCGTCCGCCAGTCGTCAGAAGCTCGGCCAGCTCGACATGCCATCGAC					
NYB	(433) GACAGCGTCCGCCAGTCGTCAGAAGCTCGGCCAGCTCGACATGCCATCGAC					
WT	(487) GTCTCGTCTCGCAAGGCCGCGTGTACCGAGCCCACCGCCAAGGGGCCCTCC					
NYB	(487) GTCTCGTCTCGCAAGGCCGCGTGTACCGAGCCCACCGCCAAGGGGCCCTCC					
WT	(541) ACCGGGGACGGCTTCGAGATGAGCTCGGCCCTCAACACACTCGGCCACTTC					
NYB	(541) ACCGGGGACGGCTTCGAGATGAGCTCGGCCCTCAACACACTCGGCCACTTC					
WT	(595) CTGCCCCCGAGCTCTCGAGGGACCTCAAGGCCCTCCGACTACCCCTCAAGCGC					
NYB	(595) CTGCCCCCGAGCTCTCGAGGGACCTCAAGGCCCTCCGACTACCCCTCAAGCGC					
WT	(649) CTCATCATCGTCGGCTCCATTACCGG					
NYB	(649) CTCATCATCGTCGGCTCCATTACCGGATATGAAACATGTCAATGACGATCCTC					
WT	(675) -----GAACACGAAACACGCTTGGCGGGAAACGTGCCGCCGAAGGCCA					
NYB	(675) -----TCTCTCGCTGCAAGGAAACACGAAACACGCTTGGCGGGAAACGTGCCGCCGAAGGCCA					
WT	(716) ACCTGGGGGGACTCGAGGGGCTCGCGGGGGCTGAACGGCGTGGGGCAGCGCCG					
NYB	(811) ACCTGGGGGGACTCGAGGGGCTCGCGGGGGCTGAACGGCGTGGGGCAGCGCCG					
WT	(770) CCATGATCGACGGCGCGGAGTTGACGGCGCCAAGGCTTACAAGGACAGCAAGG					
NYB	(865) CCATGATCGACGGCGCGGAGTTGACGGCGCCAAGGCTTACAAGGACAGCAAGG					
WT	(824) TGTGCAACATGCTGACCATGCAAGGATTCCACCGGGTACACAGGGAGACCG					
NYB	(891) TGTGCAACATGCTGACCATGCAAGGATTCCACCGGGTACACAGGGAGACCG					

Fig. 6. Nucleotide sequences of *porB* ORFs in *NYB* and WT. The start codon is marked by “pane” and the stop codon is marked by a square frame.

Moreover, we found that *NYB* is more sensitive to norflurazon (a plastid signal inducer) than the WT (unpublished data), but it contains similar levels of *cab* mRNA compared with normal seedlings (Lin *et al.* 1998, 1999). The most likely explanation is that the amount of

Mg-proto is higher in the mutant, but lower than the threshold for repression of *cab* gene. When *NYB* was treated with norflurazon, it was easier to produce plastid signals.

References

Anderson, J.M., Waldron, J.C., Thorne, S.W.: Chlorophyll protein complexes of spinach and barley thylakoids. Spectral characterization of six complexes resolved by an improved electrophoretic procedure. – *FEBS Lett.* **92**: 227-233, 1978.

Bogorad, L.: Porphyrin synthesis. – *Methods Enzymol.* **5**: 885-891, 1962.

Cheng, Y., Tang, Z.S., Wang, Z.X., Yang, F.: Research of physiology and heredity on barley of chlorophyll-deficient mutant. – *J. Sichuan Teachers Coll. (nat. Sci.)* **22**: 131-133, 2001.

Dei, M.: Benzyladenine-induced stimulation of 5-amino-levulinic acid accumulation under various light intensities in levulinic acid-treated cotyledons of etiolated cucumber. – *Physiol. Plant.* **64**: 153-160, 1985.

Eggink, L.L., Park, H., Hooyer, J.K.: The role of chlorophyll *b* in photosynthesis: Hypothesis. – *BMC Plant Biol.* **1**(2): <http://www.biomedcentral.com/1471-2229/1/2>, 2001.

Falbel, T.G., Meehl, J.B., Staehelin, L.A.: Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in

chlorophyll synthesis. – *Plant Physiol.* **112**: 821-832, 1996.

Hoover, J.K., Eggink, L.L.: Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts. – *Photosynth. Res.* **61**: 197-215, 1999.

Krawetz, S.A., Pon, R.T., Dixon, G.H.: Increased efficiency of the Taq polymerase catalyzed polymerase chain reaction. – *Nucleic Acids Res.* **17**: 819, 1989.

Kropat, J., Oster, U., Rudiger, W., Beck, C.F.: Chloroplast signaling in the light induction of nuclear *HSP70* genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. – *Plant J.* **24**: 523-531, 2000.

Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. – *Nature* **227**: 680-685, 1970.

Lay, P.L., Eullaffroy, P., Juneau, P., Popovic, R.: Evidence of chlorophyll synthesis pathway alteration in desiccated barley leaves. – *Plant Cell Physiol.* **41**: 565-570, 2000.

Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophylls *a* and *b* of leaf extracts in different solvents. – *Biochem. Soc. Trans.* **603**: 591-592, 1983.

Lin, H.H., He, J.X., Liang, H.G., Du, L.F.: Studies on light harvesting complexes of photosystem II in a chlorophyll-deficient barley mutant *NYB*. – *Acta biochim. biophys. sin.* **30**: 530-532, 1998.

Lin, H.H., He, J.X., Liang, H.G., Du, L.F.: Qualitative and quantitative differences in the light harvesting complexes of photosystem II (LHC II) between a chlorophyll-less barley mutant and its wild type. – *J. Plant Physiol.* **154**: 152-156, 1999.

Lin, Z.-F., Peng, C.-L., Lin, G.-Z., Zhang, J.-L.: Alteration of components of chlorophyll-protein complexes and distribution of excitation energy between the two photosystems in two new rice chlorophyll *b*-less mutants. – *Photosynthetica* **41**: 589-595, 2003.

Masuda, T., Takamiya, K.: Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. – *Photosynth. Res.* **81**: 1-29, 2004.

Mohanty, S., Grimm, B., Tripathy, B.C.: Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. – *Planta* **224**: 692-699, 2006.

Nott, A., Jung, H.-S., Koussevitzky, S., Chory, J.: Plastid-to-nucleus retrograde signalling. – *Annu. Rev. Plant Biol.* **57**: 739-759, 2006.

Pfannschmidt, T.: Chloroplast redox signals: how photosynthesis controls its own genes. – *Trends Plant Sci.* **8**: 33-41, 2003.

Rebeiz, C.A., Mattheis, J.R., Smith, B.B., Rebeiz, C.C., Dayton, D.F.: Chloroplast biogenesis. Biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts. – *Arch. Biochem. Biophys.* **171**: 549-567, 1975.

Reinbothe, C., Buhr, F., Bartsch, S., Desvignes, C., Quigley, F., Pesey, H., Reinbothe, S.: In vitro-mutagenesis of NADPH:protochlorophyllide oxidoreductase B: two distinctive protochlorophyllide binding sites participate in enzyme catalysis and assembly. – *Mol. gen. Genomics* **275**: 540-552, 2006.

Reinbothe, C., Lebedev, N., Reinbothe, S.: A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. – *Nature* **397**: 80-84, 1999.

Reinbothe, C., Pollmann, S., Desvignes, C., Weigle, M., Beck, E., Reinbothe, S.: LHPP, the light-harvesting NADPH:protochlorophyllide (Pchlde) oxidoreductase:Pchlde complex of etiolated plants, is developmentally expressed across the barley leaf gradient. – *Plant Sci.* **167**: 1027-1041, 2004.

Rudoj, A.B., Shcherbakov, R.A.: Analysis of the chlorophyll biosynthetic system in a chlorophyll *b*-less barley mutant. – *Photosynth. Res.* **58**: 71-80, 1998.

Sambrook, J., Fritsch, E.F., Maniatis, T.: *Molecular Cloning. A Laboratory Manual.* 2nd Ed. – Cold Spring Harbor Laboratory, Cold Spring Harbor 1989.

Strand, A., Asami, T., Alonso, J., Ecker, J.R., Chory, J.: Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. – *Nature* **421**: 79-83, 2003.

Tan, X.X., Xu, D.Q., Tang, Z.S.: A cause of higher photochemical efficiency of photosystem II in a chlorophyll-deficient barley mutant. – *Acta phytophysiol. sin.* **23**: 251-256, 1997.

Tang, Z.S., Tang, Y.: *The Golden Champaign of Nangchong Yellow Barley.* – Sichuan Science & Technology Press, Chengdu 1994.

Wettstein, D. von, Gough, S., Kannangara, C.G.: Chlorophyll biosynthesis. – *Plant Cell* **7**: 1039-1057, 1995.

Yuan, S., Liu, Z.L., Liu, W.J., Lei, T., Luo, M.H., Du, J.B., Wang, J.H., Lin, H.H.: A chlorophyll-less barley mutant “NYB” is insensitive to water stress. – *Z. Naturforsch.* **62c**: 403-409, 2007.

Zhang, N.H., Wei, Z.Q., He, J.X., Du, L.F., Liang, H.G.: An efficient and economic method for preparation of high quality plant RNA. – *Progr. Biochem. Biophys.* **31**: 947-950, 2004.