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Abstract

We studied the effects of 15-months of elevated (700 pmol mol ') CO, concentration (EC) on the CO, assimilation rate,
saccharide content, and the activity of key enzymes in the regulation of saccharide metabolism (glycolysis and
gluconeogenesis) of four C; perennial temperate grassland species, the dicots Filipendula vulgaris and Salvia nemorosa
and the monocots Festuca rupicola and Dactylis glomerata. The acclimation of photosynthesis to EC was downward in
F. rupicola and D. glomerata whereas it was upward in F. vulgaris and S. nemorosa. At EC, F. rupicola and F. vulgaris
leaves accumulated starch while soluble sugar contents were higher in F. vulgaris and D. glomerata. EC decreased
pyrophosphate-D-fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) activity assayed with Fru-2,6-P, in
F. vulgaris and D. glomerata and increased it in F. rupicola and S. nemorosa. Growth in EC decreased
phosphofructokinase (PFK, EC 2.7.1.11) activity in all four species, the decrease being smallest in S. nemorosa and
greatest in F. rupicola. With Fru-2,6-P, in the assay medium, EC increased the PFP/PFK ratio, except in F. vulgaris.
Cytosolic fructose-1,6-bisphosphatase (Fru-1,6-Pase, EC 3.1.3.11) was inhibited by EC, the effect being greatest in
F. vulgaris and smallest in F. rupicola. Glucose-6-phosphate dehydrogenase (G6PDH EC 1.1.1.49) activity was
decreased by growth EC in the four species. Activity ratios of Fru-1,6-P,ase to PFP and PFK suggest that EC may shift
sugar metabolism towards glycolysis in the dicots.

Additional key words: acclimation; CO, assimilation; fructose-1,6-bisphosphatase; gluconeogenesis; glucose-6-phosphate
dehydrogenase; glycolysis; oxidative pentose phosphate pathway; phosphofructokinase; pyrophosphate D-fructose-6-phosphate
I-phosphotransferase; starch.

Introduction

Photosynthetic acclimation of C; plants to elevated More than 70 % of this increase is due to sucrose accu-

atmospheric CO, concentration (EC) is often attributed to mulation, indicating that excess assimilate is being
soluble saccharide accumulation. Upon changes from rapidly exported to vegetative sinks (Gesch et al. 2002).
ambient to elevated CO,, contents of non-structural sac- Plants grown under EC for a long term produce more
charides in stems and leaf sheaths increased significantly. saccharides than those grown under ambient CO,,
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AC (Korner and Miglietta 1994). The amount of saccha-
rides produced in high CO, is strongly dependent on the
photosynthetic and overall physiological acclimation of
the plant (Jarvis 1993). An upward regulation of photo-
synthesis results in an increase of net photosynthetic rate,
Py (Arp and Drake 1991, Chen et al. 2000). The in-
creased Py is usually accompanied by accumulation of
soluble sugars in the upward acclimated plants (Tuba
et al. 1996). In the case of downward acclimation,
accumulation of starch is often observed (e.g. Peet ef al.
1986, Stitt 1993, Tuba et al. 1996). Starch accumulating
in chloroplasts reduces Py through negative feedback
(Azcon-Bieto 1983, Lea ef al. 2001). Plants in high CO,
optimize the carbon source/sink ratio, and through this
the carbon acquisition, with the aid of down regulation of
photosynthesis, since they would be unable to utilize the
excessive amount of saccharides beside unchanged levels
of N and P (Jarvis 1993, Ceulemans and Mousseau 1994,
Bassirirad et al. 1996, Bowes et al. 1996). The primary
factor in the downward acclimation of photosynthesis is
the decrease of ribulose-1,5-bisphosphate carboxylase/
oxygenase (RuBPCO) capacity (Sage et al. 1989). The
acclimation and its consequences will affect the cellular
structure, stomatal regulation, water use, allocation
pattern, and chemical composition (Newton 1991, Jarvis
1993).

Thus saccharides must play a significant role in the
physiological acclimation to EC (Stitt 1993). This was
also indicated by our previous study (Nadas et al. 1997).
Such role of the saccharides cannot be explained without
a precise knowledge of regulation of saccharide meta-
bolism. Therefore it is surprising that information on this
regulation in plants under EC is difficult to find or rather
sparse (Stitt 1991, 1993, van Oosten ef al. 1992, Vu et al.
2001). The role of enzymes of sugar synthesis and break-
down, namely the key enzymes of glycolysis and gluco-
neogenesis are very important in saccharide regulation.
The PFP/PFK enzyme system plays a crucial role in the
regulation of glycolysis and gluconeogenesis in plants
(Lea et al. 2001, Widodo et al. 2003).

The Fru-6-P — Fru-1,6-P, transformation has a stra-
tegic role in regulation of glycolysis. This transformation
in different tissues is catalyzed by two enzymes: an ATP
dependent phosphofructokinase (PFK) found both in the

Materials and methods

Plants and CO, exposure: We studied a xeric temperate
loess steppe (Salvio-Festucetum rupicolac pannonicum)
situated at the border of the Hungarian Great Plain
(Albertirsa, Monor-Irsa hills, 48 km south east of
Budapest) at 160 m altitude a.s.l. The parent rock is sandy
loess and loess with thick humus-and nutrient-rich A
layer (humus layer: 100 cm, humus content: 6.1 %, and
available nitrogen: 14.2 g m ). The original grassland is
made up of more than 90 species. The open air CO, fumi-
gation experiment was carried out in the Botanical
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cytoplasm and chloroplasts catalyzing a one-way process
(Fru-6-P — Fru-1,6-P,) and the PPi dependent phospho-
fructotransferase (PFP) which is a cytoplasmic enzyme
(Uyeda and Furuya 1982, Carnal and Black 1983, Cséke
et al. 1984, Stitt 1985) catalyzing the above reaction
reversibly. PFP is often more active than PFK (ap Rees
1988) and, unlike this, is activated by the important
regulator metabolite, Fru-2,6-P, (Stitt 1990). At the same
time, the Fru-2,6-P, inhibits the cytoplasmic Fru-1,6-
P,ase and so reduces gluconeogenesis (Cheng et al. 1998,
Vu et al. 2001, Widodo et al. 2003). Diverse roles have
been proposed for PFP, including a role in glycolysis,
gluconeogenesis, or general adaptability to stress (Paul
et al. 1995), although dramatic decreases in PFP protein
had little effect on overall fluxes or growth of potato
tubers (Hajirezaei et al. 1994).

Glucose-6-phosphate dehydrogenases (G6PDHs, EC
1.1.1.49) catalyze the oxidation of glucose-6-phosphate
(G6P) to 6-phosphogluconolactone concomitant with
reduction of NADP to NADPH. The product 6-phospho-
gluconolactone is then converted to 6-phosphogluconate
by 6-phosphogluconolactonase (EC 3.1.1.31) and finally
decarboxylated by 6-phosphogluconate dehydrogenase
(G6PDH, EC 1.1.1.44) yielding another mole of NADPH
and ribulose-5-phosphate. The first enzyme, G6PDH,
controls the flux through this non-reversible limb of the
oxidative pentose phosphate pathway (OPPP) (Hauschild
and Schaewen 2003). Reducing power (NADPH) gene-
rated by the OPPP sustains reductive biosynthesis (e.g.
fatty acids, isoprenoids, and aromatic amino acids) in the
dark and nitrogen assimilation in heterotrophic tissues. In
addition, OPPP intermediates are continuously withdrawn
to fuel other metabolic pathways. For example, erythrose-
4-phosphate is produced by Calvin cycle in the light and
by the OPPP in the dark (Hauschild and Schaewen 2003).

Effects of 15-months’ exposure to elevated (700 umol
mol ') CO, on four perennial C; temperate grassland
species, the dicotyledons Filipendula vulgaris and Salvia
nemorosa and the monocotyledons Festuca rupicola and
Dactylis glomerata, were examined. Our main purpose
was to determine the effects of high CO, exposure on Py,
starch and soluble sugar contents, activities of PFP, PFK,
and Fru-1,6-P,ase, and how this may affect saccharide
metabolism.

Garden of the Agricultural University at Godollé (28 km
east of Budapest). The climate of the two locations did
not differ: temperate continental with hot dry summers;
mean annual precipitation 500 mm or less; annual mean
temperature of 11 °C; and large annual amplitude of tem-
perature changes (22 °C).

The CO, exposure was carried out in the Global
Climate Change and Plants Long-Term Experimental
Ecological Research Station (G6dollo) for 15 months
using open top chambers (Tuba et al. 1996). Monoliths
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(50x50%30 cm) were extracted from the grassland and
transplanted into the open top chambers described by
Tuba et al. (1996). The soil in the chambers was removed
and it was replaced by soil from the profiles the
monoliths had been collected from. Four weeks after the
transplantation of the monoliths the grass was cut.
Following a two-month adaptation period, the monoliths
were exposed gradually, over a 4-week period, to 700
pmol mol ™! CO,. The air CO, concentrations in the EC
(700 umol mol™) and AC (350 pmol mol™) chambers
were maintained as described by Tuba ef al. (1996).

The measurements were made on Festuca rupicola
Heuff., Dactylis glomerata L., Filipendula vulgaris
Monch., and Salvia nemorosa L. after 15 months’
exposure to 700 and 350 pmol mol ' CO,. F. rupicola,
the dominant species of the grassland, has sclerophyllous
erect leaves of waxy surface, while the others are
frequent characteristic species of the grassland with dif-
ferent leaf characteristics: D. glomerata has flat blades;
F. vulgaris has soft, large incised leaves; and S. nemorosa
has broad, entirely waxy, abaxially hairy rosette and
stem-leaves. All species are perennial and have C;
photosynthesis.

Measurements: Photon-saturated Py was calculated
according to Caemmerer and Farquhar (1981) and
measured on single leaves using an IRGA system (type
LCA4, ADC Co., Hoddesdon, UK), operated in differen-
tial mode at a photosynthetic photon flux density (PPFD)
of 1 200 umol m ?s™" as described by Tuba et al. (1996).

Saccharides: The soluble sugar content of the leaves was
measured by a colorimetric method using the phenol-

Results

At 350 pmol mol' CO, concentration, Py of plants
grown at EC was lower in F. rupicola and higher in the
other three species than in plants grown under AC
(Table 1). However, when Py was measured at 700 pmol

2 -1

sulfuric acid reaction according to Dubois et al. (1956).
The starch content was determined according to
McCready et al. (1950), after solubilisation of starch with
perchloric acid in vitro, using the sugar anthrone-sulfuric
acid reaction.

Enzymes: The samples were frozen in liquid N, and
homogenized with 50 mM TRIS-HCI buffer, pH 8.0
containing 5.0 mM MgCl,, 1| mM EDTA, 10 % (M/m)
glycerine, and 0.1 % (M/m) 2-mercaptoethanol (Cséke et
al. 1982, Wong et al. 1988). The homogenate was centri-
fuged at 20 000xg for 20 min. The enzymes were partial-
ly purified by Fast Protein Liquid Chromatography with
DEAE-52 columns. All procedures were performed below
+4 °C.

For measuring PFK and PFP activities in the glyco-
lytic direction, the reaction mixture contained in 500 mm?®
final volume the following [mM]: TRIS-HCI buffer (pH
7.5) 50; MgCl, 5; EDTA 1; NADH 0.1; Fru-6-P 2; ATP
(for PFK) 0.2; PPi (for PFP) 0.2; Fru-2,6-P, (activator)
none or 1 uM; coupling enzymes [unit]: aldolase 0.5;
a-glycerophosphate dehydrogenase 0.5; triosephosphate
isomerase 5.0. Fru-1,6-P,ase activity was assayed in
500 mm’ total volume of reaction mixture as follows
[mM]: TRIS-HCI buffer (pH 7.5) 50; MgCl, 5; EDTA 1,
Fru-1,6-P, 0.4; NADP 0.5; Fru-2,6-P, none or 1 uM; and
the coupling enzymes [unit]: glucose-6-phosphate dehy-
drogenase 1, phosphohexose isomerase 1 (Cséke et al.
1982, Wong et al. 1988). Protein was determined by the
method of Bradford (1976). Enzyme activities were
determined by computer using FEnzfitt softwares.
Activation of enzymes was estimated as the relative
change in activity with and without F-2,6-P,.

mol ™' CO, concentration, the plants grown at EC had a
higher rate in F. rupicola, F. vulgaris, and S. nemorosa,
but a slightly lower one in D. glomerata than in plants
grown at AC.

Table 1. Net photosynthetic rate, Py [umol m~ s™'] and starch and soluble sugar contents [g kg '(d.m.)] in the leaves of F. rupicola,
F. vulgaris, D. glomerata, and S. nemorosa grown at ambient, AC (350 umol mol™) and elevated, EC (700 pmol mol™) air CO,
concentration were measured all at AC and EC. Py was measured at 1200 pmol(photon) m> s~ irradiance and 23+0.5 °C leaf
temperature after 15 months of exposure. Meanststandard deviation. “significant difference (p<0.05) between means at both growth

CO, concentrations.

Species Growth  Measurement CO, [umol mol™'] Starch Soluble sugars
CO, 350 700

F. rupicola AC 8.90+0.37 10.80+0.19 156.30+1.80 161.20+£2.67
EC 6.51+0.61 12.60+0.39 196.50+3.40°  111.70+3.91"

F. vulgaris AC 8.554+0.38 11.27+0.71 90.69+9.01 76.29+5.34
EC 10.80+0.55  15.89+0.33  114.83x7.53"  96.56+7.35"

D. glomerata  AC 5.35+0.43 12.89+0.46 56.55+8.06 49.15+2.06
EC 7.32+0.58 8.04+0.60 55.40+£3.64 99.74+12.81

S. nemorosa AC 8.75+0.16 15.26+0.24 92.19+1.30 58.01+1.30
EC 11.14+0.30 17.43+£0.29 92.60+5.21 56.58+2.81
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The leaf starch content of F. rupicola and F. vulgaris
was higher at EC than AC (Table 1). There was no
significant difference in the starch content of D. glome-
rata and S. nemorosa grown at the two CO, concen-
trations (Table 1). EC increased soluble sugar content in
F. vulgaris and, non-significantly, in D. glomerata,
decreased it in F. rupicola, and left it almost unchanged
in S. nemorosa (Table 1).

PFP activity was higher in the monocots F. rupicola
and D. glomerata than in the dicots F. vulgaris and
S. nemorosa (Table 2). Growth under EC decreased the
Fru-2,6-P,-free activity of PFP in F. vulgaris,
S. nemorosa, and D. glomerata, while it increased it in
F. rupicola. In the presence of Fru-2,6-P,, EC decreased
this activity in F. vulgaris and D. glomerata, while
increased it in F. rupicola and S. nemorosa.

Table 2. Activity [mkat kg '(protein)] of PFP, PFK, G-6-PDH, and Fru-1,6-Pase in the leaves of F. rupicola, F. vulgaris,
D. glomerata, and S. nemorosa grown at ambient, AC (350 pmol mol™") and elevated, EC (700 pmol mol™") CO, concentration, after
15 months’ exposure. PFP and Fru-1,6-P,ase were assayed without (—) and with (+) F2,6-P,.

Species Growth PFP PFK G-6-PDH  Fru-1,6-P,ase
CO, -F2,6-P, +F2,6-P, -F2,6-P, +F2,6-P,

F. rupicola AC 21.12 28.23 83.15 31.48 241.35 199.46
EC 41.51 47.46 43.22 16.29 209.21 159.67
% change 96.5 68.1 —48.0 —48.3 -13.3 -19.9

F. vulgaris AC 4.17 8.03 1.83 2.15 26.48 17.63
EC 1.78 3.52 1.15 0.93 12.76 5.73
% change -333 -56.2 -37.2 -56.7 -51.8 -67.5

D. glomerata  AC 15.26 19.43 18.35 37.71 185.19 143.35
EC 10.97 16.86 12.39 14.43 116.27 102.47
% change -28.1 -13.2 -32.5 -61.7 -37.2 -28.5

S. nemorosa AC 8.66 9.10 14.45 3.16 18.57 12.45
EC 6.32 11.37 12.28 2.23 12.85 6.29
% change -27.0 24.9 -15.0 -29.4 -30.8 -49.5

PFK activity was highest in F. rupicola and lowest in
F. vulgaris (Table 2). Growth in EC decreased PFK
activity in all four species; the decrease was greatest in
F. rupicola and smallest in S. nemorosa. Consequently, in
the Fru-2,6-P,-free assay EC caused a large increase in
the PFP/PFK ratio in F. rupicola (284 %), a relatively
small (14 %) decrease of this ratio in S. nemorosa, and no
major change (+6 %) in the other two species. With Fru-
2,6-P, in the assay medium, EC increased the PFP/PFK
ratio, noticeably in F. rupicola (223 %), and to a lesser
extent in S. nemorosa (47 %) and D. glomerata (28%),
but decreased this ratio in F. vulgaris (30 %).

Among species, Fru-1,6-P,ase activity was higher in
the monocots than the dicots (Table 2). Growth at EC

Discussion

The gas exchange measured at AC shows that under
growth EC there was a downward regulation of RuBPCO
capacity in F. rupicola and increase in this capacity in the
other three species, similarly to our former results (Tuba
et al. 1996). In contrast, measurements at EC showed an
upward acclimation of ribulose-1,5-bisphosphate regene-
ration or inorganic phosphate (P;)-recycling capacities in
all species, except D. glomerata. Obviously, in EC there
was an increase in capacity of the whole regulatory
control of photosynthesis in the dicots. The upward and
downward acclimation of the investigated species is also
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decreased Fru-1,6-P,ase activity, the effect being greatest
in F. vulgaris and smallest in F. rupicola. The F-1,6-
P,ase/(PFP+PFK) ratio (assay with no Fru-2,6-P,) was
hardly changed in F. rupicola, but decreased in the other
species. When the ratio was computed with the F-2,6-P,-
affected activities, a large (31-50 %) relative decrease
was observed in the dicots, and no or a small decrease in
the monocots.

The activity of G-6-PDH, as that of most of the
enzymes analyzed in this work, was higher in monocots
than dicots. There was a decrease in this activity under
EC in all four species, which was relatively smaller in
D. glomerata.

reflected in their P\/C; response curves (Tuba et al.
1996). Species differences in response to growth at EC
have been described, with reduction or removal of P;-
regeneration limitation of photosynthesis being associated
with increased rates of starch or sucrose synthesis (Sage
et al. 1989). In our experiment, however, there was no
simple relationship between photosynthetic acclimation
and changes in saccharide contents which could indicate
increased rates of their synthesis. Thus, although starch
accumulation is often associated with down-regulation of
photosynthesis under EC (Peet et al. 1986, Stitt 1993,
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Tuba et al. 1996), starch build-up was associated with
decreased RuBPCO capacity in F. rupicola but not in
F. vulgaris. Moreover, with a high nitrogen supply sugar
contents increase at EC but no acclimation of photo-
synthesis or decreased transcripts for Calvin cycle
enzymes is observed (Geiger et al. 1999). Similarly
at high measurement CO,, enhanced photosynthetic
capacity in S. nemorosa plants grown at EC was not asso-
ciated with higher saccharide content and photosynthesis
was not enhanced along with soluble sugar accumulation
in D. glomerata.

Responses of enzyme activities to growth in EC were
observed when expressed on a protein basis and therefore
are not a consequence of the decrease in N content
frequently caused by EC (Nakano et al. 1997). Most of
the enzymes of gluconeogenesis/glycolysis analyzed here
displayed higher activities in monocotyledonous than
dicotyledonous species, suggesting this is a specific
difference between plant groups. F. rupicola was the only
species in this study with increased PFP activity in
response to EC, both in presence and absence of the
activator Fru-2,6-P,. With this metabolite, which may be
expected to occur in the cytosol of irradiated leaves
(Theodorou and Kruger 2001), PFP activity was also
increased in S. nemorosa. This response contrasts with
the decrease in activity caused by EC in the other two
species. PFP activity increases in response to saccharide
accumulation (Spilatro and Anderson 1988, Stitt et al.
1991, Krapp et al. 1993, Krapp and Stitt 1994). However,
we found no relation between saccharide content and PFP
activity responses to EC. Van Oosten et al. (1992) found
no change in this activity after long-term CO,
enrichment.

Although PFP has often been found as more active
than PFK (ap Rees 1988), the plants in our experiment,
with the exception of F. vulgaris, displayed lower PFP
than PFK activities. Without Fru-1,6-P, in the assay
medium, only in F. rupicola there was an increase in
PFP/PFK ratio under EC, but in the assay with this
metabolite, which is closer to in vivo conditions, CO,
enrichment increased this ratio in all species but not in
F. vulgaris. An increase in this ratio is usually observed
under stress (e.g. shortage of nitrogen and phosphorus),
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Now and then, Photosynthetica publishes reviews on
textbooks dealing with scientific communication, it is
how to lecture and write papers in science. The topic
books are always useful for teachers and their students in
photosynthesis or related fields of natural science. The
two books I mention this time are a pure exception: they
deal with research done mainly in social science that is
usually based on interviewing people, making qualitative
observations of people in their native environment, efc.
The only border field accessible also to natural science
students may be some questions connected with ecology,
environment, and sustainable development of life where
collection of views of individual inhabitants may be the
basis of conclusions of scientific or political importance.
A very significant field of research the preparation of
which and realization is explained in detail in the
reviewed books is critical ethnography.

In the first textbook, the author shows how to select
the topic, how to work with literature, prepare and arti-
culate appropriate questions, articulate a good question
checklist, how to make sampling, explore populations,
how to argue, filter observations, manage and analyse
data, what is the ethics of such research, efc. The basic in-
formation on statistics, selection of proper methods,
recognition what the reached information means in
Chapter 12 (interesting Table 12.2) might certainly be
used even by some natural science students. And the text

ends with information how to prepare an article or thesis
based on the results of the research (I like especially the
sequence of preparing and reworking drafts till the pro-
duction of a final one (pp. 210-213). Boxes bring
important steps of doing research, selected examples, and
references for further reading. Each chapter ends with a
clear summary of most important facts. From the quota-
tions presented in chapters I prefer these three: “Next
week there can’t be any crisis. My schedule is already
full. — Henry Kissinger.” “USA Today has come out with
a new survey — apparently, three out of every four people
make up 75% of the population. — David Letterman.”
“The pure and simple truth is rarely pure and never
simple. — Oscar Wilde.”

The second textbook shows research based on
questioning people, observing situation in various
countries and cultural surroundings, the description of
which is based not only on interviews but also on photo-
graphs, films, radio and TV news, and other materials.
Some examples are given, e.g. of shopkeeper research in
an Iranian carpet shop (p. 142). A good idea is a list of
topics for discussion (pp. 183-186) that enables repetition
of all important facts.

Both books bring ample lists of references and
carefully prepared indexes.
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