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Abstract

Cadmium (Cd) treatments caused an inhibition in the net photosynthetic rate (Py) of peanut (4rachis hypogaea) plants,
due to the reduction of stomatal conductance (g;) and photosynthetic pigment contents, as well as the alteration in leaf
structure. The decrease of the transpiration rate and g, might result from the Cd-induced xerophyte anatomic features of
leaves (i.e. thick lamina, upper epidermis, palisade mesophyll, high palisade to spongy thickness ratio, as well as
abundant and small stomata). The decline of Py was independent of the impairment in photosystem 2.
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Cadmium (Cd), a non-essential element that can be
highly phytotoxic at low concentrations, has been ranked
No. 7 among the top 20 toxins (Yang et al. 2004). In
plants, exposure to Cd causes reductions of biomass pro-
duction and nutritional quality, and inhibition of photo-
synthesis (Baszynski et al. 1980, Burzyfiski and Zurek
2007), stomatal conductance (Burzynski and Zurek
2007), transpiration rate (Bazzaz et al. 1974), saccharide
metabolism (Moya et al. 1993), and other metabolic
activities (Van Assche et al. 1988, Sharma ef al. 1998).
Photosynthesis is very sensitive to heavy metals in
higher plants (Lu and Zhang 2000, Lu et al. 2000,
Tanyolac et al. 2007, Ekmekg¢i et al. 2008). Previous
studies have demonstrated that the decline of the photo-
synthetic rates under Cd stress results from the distorted
chloroplast ultrastructure, the restrained synthesis of chlo-
rophyll (Chl) and carotenoids (Car), the obstructed
electron transport, the inhibited enzyme activities of the
Calvin cycle, and CO, deficiency due to stomatal closure
(Seregin and Ivanov 2001). Little information is known
about the role of the leaf anatomic structure in photosyn-
thetic performance under Cd stress. We used seedlings of
peanut (Arachis hypogaea cv. Luhua 11) to evaluate the
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effect of Cd toxicity on photosynthetic performance and
anatomic structure of leaves, and to determine the
relationships of these characteristics.

14-d-old peanut seedlings were cultivated hydroponi-
cally in a Hoagland nutrient solution (pH =6.5) con-
taining 0, 10, 50, or 100 uM Cd (four replicates, two
uniform plants per replicate). The nutrient solution was
renewed every 2 d. After 21 d of Cd treatments, the net
photosynthetic rate (Py), transpiration rate (E), stomatal
conductance (g;), and intercellular CO, concentration (C;)
were determined using a portable photosynthesis system
(LiCor-6400; LiCor, Lincoln, NE, USA) equipped with
a LED source leaf chamber (6400-02b). This experiment
was conducted at photosynthetic photon flux density
(PPFD) of 1 000 pmol(photon) m 2 s, leaf temperature
of 25 °C, and constant [CO,] of 380+5 pumol(CO,) mol '
in the sample chamber provided with buffer volume. The
Chl a fluorescence parameters were performed using the
Mini PAM (Walz, Effeltrich, Germany). After dark-
adaptation for 30 min, the minimal fluorescence (F,), the
maximal fluorescence (F,), the variable to maximum
fluorescence ratio (F,/F,,), and the variable to initial fluo-
rescence ratio (F,/Fy) were determined.
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The youngest fully expanded mature leaflets from
each plant were sampled and a 5x10 mm section was
excised from the middle of the lamina, along with the
mid-rib, and fixed in FAA (formaldehyde : acetic acid :
50 % ethanol, 5 : 5 : 90). Samples were dehydrated in an
increasing alcohol gradient, embedded in paraffin, sec-
tioned using an ultra microtome (12 pum thick), and
stained with fast green. The density and length of stomata
for the ad- and ab-axial surfaces of each leaf were deter-
mined using prints made with nail varnish. All
anatomical characteristics were measured using the
PHMIAS 2003 software with a ME200 photomicroscope.

Mature leaves (0.2 g) were extracted in dark at 4 °C
with 5 cm® mixture of acetone and ethanol (v/v =1:1)

until colour disappeared completely. Light absorbances
at 663, 645, and 470 nm were determined by spectro-
photometry. The concentrations of Chl @ and » and Car
were calculated using adjusted extinction coefficients
(Lichtenthaler 1987). Analysis of variance (ANOVA) for
all the measured variables was performed by SPSS
version /1.5 software, and differences between means
were determined using the Duncan’s test.

The contents of Chl a, Chl b, Chl a+b, and Car
decreased significantly by Cd treatments (Fig. 14),
whereas no significant difference was observed in Chl a/b
and Chl/Car in different Cd treatments (Fig. 1B).
Elevated Cd content inhibited Py (Fig. 1C). This was
accompanied by an increase in C;, and a decrease in the
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Fig. 1. Effects of Cd on (4) pigment contents, (B) Chl a/b and Car/Chl, (C) net photosynthetic (Py) and transpiration (£) rates, (D)
stomatal conductance (g;), (£) intercellular CO, concentration (C;), (F) Fy and F,,, (G) F,/F,,, and (H) F,/F, in leaves of 4. hypogaea.
Means+S.E. n = 4 for pigment contents, n = 24 for gas exchange, n = 16 for Chl a fluorescence sharing the same letters above the bars

are not significantly different at p<0.05.
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Table 1. Leaf anatomical characteristics of 4. hypogaea exposed to different concentrations of Cd. Means£S.E. (n = 80 for stomatal
characters and n = 32 for others). Means in the same row followed by the same letter are not significantly different at p<0.05 based on

Duncan’s test.

Anatomical characteristics

Cd concentration [uM]

0 10 50 100

Stomata density in upper epidermis [mm 2] 190+3¢ 201+£3¢ 232+43b 286+7a
Stomata density in lower epidermis [mm 2] 167+2¢ 179+3b 186+3b 207+3a
Stomata length in upper epidermis [um] 26.3+0.3a 25.3+0.2b 24.3+0.2¢ 24.1+0.2¢
Stomata length in lower epidermis [um] 26.5+0.2a 25.6+0.2b 26.6+0.2a 26.3+£0.2a
Upper epidermis thickness [pum] 17.4+0.8b 18.7+0.5ab 19.2+0.6a 17.240.4b
Lower epidermis thickness [um] 17.3+£0.5a 15.0+0.4b 15.1+0.4b 15.5+0.4b
Palisade tissue thickness [um] 74.5+2.1b 100.7+2.4a 98.4+1.9a 101.9+1.8a
Spongy tissue thickness [pum] 44.0+1.9b 47.7£1.4b 47.1+1.3b 52.1+1.5a
Palisade to spongy mesophyll thickness ratio 1.85+0.11b 2.22+0.09a 2.19+0.09a 2.02+0.06ab
Lamina thickness [um] 153.7+2.6b 182.1+2.8a 179.742.2a 186.7+2.8a

gs, E, and Chl and Car contents (Fig. 14—F). The parallel
change of Py and g, showed that the photosynthetic
response of peanut leaves to Cd stress could be mainly
attributed to the alteration of the pigment contents and g;.
However, the increase of C; suggests that enzymatic dark
reaction of photosynthesis was affected (Sheoran et al.
1990, Sas et al. 2006).

Photosynthetic activity can be evaluated by Chl a
fluorescence measurements (Sayed 2003). In peanut
plants, the dramatic increase of Fy, was observed in low
Cd condition (10 uM), which could be mainly respon-
sible for the decrease of F,/F, and F,/F, (Fig. 1F—H). The
increase in F, indicates an impaired energy trapping
efficiency in the photosystem 2 (PS2) reaction centres or
a partial disconnection of the antennae from the centres
(Ralph and Burchett 1998). Decreased F,/F, and F,/F, as
well as parallel change in Chl/Car (Fig. 1B) suggest
a dislocation of the pigments in thylakoid complexes, and
this might lead to a loss in the photochemical potential of
thylakoid (Gruszecki et al. 1991). Hence the decline of
Py in peanut plants treated with Cd might be independent
of the inhibition of PS2.

We found that Cd caused an increase in the stomatal
density either in upper or lower epidermis, and a decrease
in the stomatal length in upper epidermis (Table 1). Small
but abundant stomata maximize the rate of carbon gain
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