

Photon-harvesting efficiency and arbuscular mycorrhiza in amphibious plants

N. ŠRAJ-KRŽIČ*, P. PONGRAC, M. REGVAR, and A. GABERŠČIK

Department of Biology, Biotechnical Faculty, Večna pot 111, SI-1000 Ljubljana, Slovenia

Abstract

The amphibious plant species of intermittent aquatic habitats thrive both submerged and emerged. In order to outline the adaptive characters of these two life forms photochemical efficiency of photosystem 2, leaf contents of chlorophyll (Chl) *a* and *b*, carotenoids (Car), anthocyanins (Ant), and UV-B absorbing compounds (UV-B abs), and root aerenchyma and arbuscular mycorrhizal (AM) colonisation were studied in *Glyceria fluitans*, *Gratiola officinalis*, *Ranunculus lingua*, *Teucrium scordium*, *Sium latifolium*, *Sparganium emersum*, and *Veronica anagallis-aquatica*. Water level fluctuations did not exert a severe effect on photon harvesting efficiency. Submerged specimens had higher contents of Car and Ant whereas higher contents of UV-B abs were found in emerged specimens indicating efficient protection against the harmful effects of solar radiation. Roots of all species studied had extensive aerenchyma and were colonised by AM fungi, which were significantly more abundant in emerged specimens. This is the first report on AM symbiosis in *S. latifolium* and *S. emersum*.

Additional key words: aerenchyma; anthocyanins; carotenoids; chlorophylls; intermittent aquatic habitats; photochemical efficiency; photosystem 2; species differences; symbiosis.

Introduction

Alternation of floods and dry periods in intermittent aquatic habitats results in a unique flora, dominated by plants that are able to thrive submerged and emerged, the so called amphibious plants (Braendle and Crawford 1999, Gaberščik *et al.* 2003, Šraj-Kržič and Gaberščik 2005, Šraj-Kržič *et al.* 2006a). Their survival in ecosystem with frequent water level fluctuations depends on several adaptations such as heterophyly that can be induced by several environmental factors (Kuwabara and Nagata 2002). Submerged leaves are thinner, longer, and finely dissected, with higher specific leaf area (SLA), thinner cuticle and mesophyll, with no or few stomata, and lower contents of more efficient photosynthetic pigments than emerged leaves (Rascio *et al.* 1999, Rascio 2002, Kuwabara and Nagata 2002, Enríquez and Sand-Jensen 2003). Submergence affects photosynthetic parameters even in crop plants, *e.g.* rice seedlings (Panda *et al.* 2006).

The majority of amphibious plants depend exclusively on CO₂ as a source of carbon for photosynthesis, only a few utilize HCO₃⁻ or possess C₄ or CAM strategies (Maberly and Madsen 2002). Lower photosynthesis observed in submerged than in emerged specimens is a result of limited CO₂ availability in water, oxygen saturated aerenchyma, and less efficient nutrient acquisition due to lack of transpiration (Nilsen and Orcutt 1996, Rascio 2002, Boeger and Poulson 2003) even though the so called acropetal water transport takes place in submersed plants (Pedersen and Sand-Jensen 1993). The supply of gases and nutrients can be improved by aerenchyma, supporting respiration of plant organs, oxygenation of rhizosphere, and thus mineralization and providing photosynthetic tissues with CO₂ during submergence (Braendle and Crawford 1999, Rascio 2002, Voesenek *et al.* 2006). Water level fluctuations also affect radiation environment of amphibious plants.

Received 30 April 2008, accepted 2 September 2008.

*Fax: +386 1 25 73 390, e-mail: nina.sray@gmail.com

Abbreviations: A% – arbuscular density; AM – arbuscular mycorrhiza; Ant – anthocyanins; Car – carotenoids; Chl – chlorophyll; DM – dry mass; F% – mycorrhizal frequency; F_v/F_m of PS2 – potential photochemical efficiency; M% – mycorrhizal intensity; PS – photosystem; SLA – specific leaf area; Y – actual photochemical efficiency of PS2.

Acknowledgements: This research was financed by the Ministry of Education, Science and Sport, Republic of Slovenia, through the programmes “Biology of plants” (P1-0212) and “Young researchers” (3311-03-831202 and 3311-04-831248). The authors thank undergraduate students U. Godec, U. Kačar, M. Klemenc, P. Maurič, and M. Pociecha for help with analyses, and to Dr Roger Pain for revising the English writing.

During intermittence they are exposed to higher radiation than during flooding (Sand-Jensen in Jacobsen 2002). We presume that adaptations at the biochemical level beside variable plant architecture and life forms optimise photon use efficiency.

Symbiotic relationships, such as arbuscular mycorrhiza (AM), have been reported to enhance tolerance to water excess and improve nutrient acquisition in plants (Wigand *et al.* 1998, Andersen and Andersen 2006, Fougnies *et al.* 2007) in exchange for oxygen and organic carbon in aquatic environments. The presence of AM in wetland ecosystems is spatially (Wolfe *et al.* 2007) and temporally (Bohrer *et al.* 2004, Escudero and Mendoza 2005) dependent. Functional importance of AM for growth and improved nutrient acquisitions in such ecosystems was demonstrated (Stevens *et al.* 2002, Dunham

et al. 2003). However, very little information is known on presence, dynamics, and functionality of AM fungi in amphibious plants that are in contrast to wetland plant species at times completely submerged (Miller 2000, Beck-Nielsen and Madsen 2001, Kai and Zhiwei 2006, Šraj-Kržič *et al.* 2006b, Radhika and Rodrigues 2007).

The knowledge on amphibious plants is very important from the aspect of climate changes and more pronounced water level fluctuations in different water bodies, since they are possible candidates for colonisation of disturbed riparian zones. The aim of this study was to delineate (1) biochemical and physiological response regarding photon use efficiency, and (2) AM colonisation differences between submerged and emerged specimens of selected amphibious plants from an intermittent lake Cerkniško jezero in Slovenia.

Materials and methods

Site description and plant species: This study was undertaken in the summers of 2005 and 2006 at intermittent aquatic habitats of karstic SW Slovenia (Europe). Habitats surveyed are characterised by great water level fluctuations, which are the result of high evapotranspiration rate and water drainage into an extensive underground system in carbonate rocks. Periods of flood lead to complete submergence of plants. During the summer dry period, plants grow on dry land. Due to water level fluctuations amphibious plant species prevail (Gaberščik *et al.* 2003, Šraj-Kržič *et al.* 2006a).

Emerged and submerged specimens of 7 common amphibious plant species were studied: *Glyceria fluitans*, *Gratiola officinalis*, *Ranunculus lingua*, *Teucrium scordium*, *Sium latifolium*, *Sparganium emersum*, and *Veronica anagallis-aquatica*. Emerged specimens grew on land, while submerged specimens were completely flooded (water depth to max. 1 m) with exception of *G. fluitans* and *S. emersum*.

Photochemical efficiency was estimated by measuring chlorophyll (Chl) a fluorescence of photosystem 2 (PS2) using the modulated fluorometer OS-500 (Opti-Sciences, Tyngsboro, MA, USA). Potential photochemical efficiency (F_v/F_m) and actual photochemical efficiency (Y) were determined (Schreiber *et al.* 1995). F_v/F_m was measured in dark-adapted samples after 10 minutes of darkness, provided by dark-adaptation clips. Y was determined by providing a saturating pulse of white light to the leaf surface using the standard 60° angle clip. The Y coefficient was defined as $F_v'/F_m' = (F_m' - F_o')/F_m'$, where F_m' represents maximal and F_o' minimal fluorescence of an illuminated sample. Measurements of photochemical efficiency of PS2 were carried out on clear days at noontime. Photosynthetic photon flux density (PPFD) was greater than 1 500 $\mu\text{mol m}^{-2} \text{s}^{-1}$, relative humidity about 45 %, and temperature of 25–30 °C.

Leaf tissue analysis: SLA was calculated as ratio between sample area and dry mass (105 °C, 24 h). Chls and carotenoids (Car) were analysed according to Lichtenthaler and Buschmann (2001a,b) and anthocyanins (Ant) according to Khare and Guruprasad (1993). Total methanol soluble UV-B absorbing compounds (UV-B abs) were determined according to Caldwell (1968). Samples were extracted [methanol : distilled water : HCl (37 %) = 79 : 20 : 1 (v/v)] and absorbances measured by 1 nm step in the spectral range of 280–320 nm and integrated (UV/VIS spectrometer *Lambda 12*, *Perkin-Elmer*, Norwalk, CT, USA). UV-B abs were expressed in relative units per leaf area, as they are synthesised mainly in upper epidermis (Day *et al.* 1996).

Assessments of AM colonisation were done using washed fresh roots that were cleared with 10 % KOH, and stained in 0.05 % *Trypan* blue (Philips and Hayman 1970). The parameters of AM were determined on fifteen 1-cm long fine root segments. Mycorrhizal frequency (F%) describes the percentage of root segments with fungal colonisation, while mycorrhizal intensity (M%) describes the abundance of colonisation of the root system. Root segments were ranked into six classes of mycorrhizal colonisation [%] (0, <1, 1–10, 11–50, 51–90, >90). $M\% = (95 n_{>90} + 70 n_{51-90} + 30 n_{11-50} + 5 n_{1-10} + n_{<1})/n$ (n – number of root segments). Arbuscular density (A%) describes the abundance of arbuscules in the root system. The colonised root segments were additionally ranked into four classes of abundance of arbuscules [%]: none (0), low (~10), medium (~50), and high (~100). The calculations of A% also take into account the mycorrhizal intensity (Trouvelot *et al.* 1986).

Root aerenchyma assessment and rhizosphere soil analyses: Root aerenchyma ratios were assessed on cross sections ($\varnothing = 300\text{--}1\,000 \mu\text{m}$) of ethanol-fixed roots (Fig 3). The images of cross sections were obtained with

an *Axioscop 2 MOT* microscope (Carl Zeiss, Goettingen, Germany), equipped with *Axiocam MRc* colour digital camera using *AxioVision 3.1* software, and analysed by *KS400* image analysis software (Carl Zeiss Vision, Halbergmoos, Germany).

The rhizosphere soil (soil in close contact with plant roots) of each parallel sample (~200 g) was dried (48 h, 48 °C), sieved (<1 mm), and pooled into a composite sample. The organic matter content was determined according to Kandeler (1995) and plant available phosphorus following the protocol of ÖNORM L1087 (1993).

Results

Distinctive differences were observed between submerged and emerged specimens of studied amphibious plants. The SLA was significantly higher in submerged leaves than in emerged ones ($p \leq 0.001$) with the exception of *G. fluitans*. Due to the highly dissected submerged leaves of *S. latifolium* specific leaf area was not measured, but it was noticeably higher than in emerged.

The potential photochemical efficiency of PS2 (F_v/F_m) was similar in submerged and emerged specimens, reaching a maximal value of 0.83 (no figure). The actual photochemical efficiency of PS2 (Y) was relatively low but significantly higher in emerged than in submerged specimens, with the exception of *S. latifolium* in which no difference was observed (Fig. 1A). The content of Chls *a+b* varied greatly and no general difference between submerged and emerged specimens could be outlined (Fig. 1B); the ratio Chl *a/b* did not vary significantly (no figure). The contents of Car and Ant were significantly higher in submerged than in emerged specimens (Fig. 1C,D). In contrast, the contents of UV-B abs expressed per leaf area were significantly higher in emerged specimens of the majority of species (Fig. 1E).

AM colonisation was found in all studied species, except in submerged specimens of *G. fluitans* and *S. emersum*. F% and M% were significantly higher in

Statistical analyses: Measurements and analyses were carried out on 10 parallel samples. The significance of differences between submerged and emerged specimens of each plant species was tested using the analysis of variance (one-way ANOVA) for parametric data, and Mann-Whitney U-test for non-parametric data. Relationships between two parameters were tested using Spearman's rank-order correlation (r_s). Statistical analyses were performed using *SPSS for Windows 13.0*.

Discussion

Submerged leaves had higher SLA than emerged, which is advantageous for the underwater acquisition of gases, nutrients, and photons (Rascio *et al.* 1999, Enríquez and Sand-Jensen 2003, Mommer *et al.* 2006). The high F_v/F_m of submerged and emerged leaves of amphibious plants is indicative of undisturbed photon harvesting, which is in line with previous reports (Šraj-Kržič and Gaberščik 2005, Panda *et al.* 2008). The Y of submerged specimens was lower than that of emerged specimens, indicating temporarily unfavourable conditions (Schreiber *et al.* 1995). Observed variability in leaf contents of Chls *a* and *b* is attributed to species-specific characteristics (Enríquez and Sand-Jensen 2003, Germ and Gaberščik 2003, Mommer *et al.* 2005). Car, which were found in larger amounts in submerged than in emerged specimens,

emerged than in submerged specimens, with the exception of *G. officinalis* and *V. anagallis-aquatica* (Fig. 2A,B). Arbuscules were observed in emerged specimens of all species, whereas they were not found in submerged specimens of *G. fluitans*, *S. latifolium*, and *S. emersum*. In general, significantly higher A% was observed in emerged specimens (Fig. 2C). Only in *G. fluitans* higher aerenchyma ratio in submerged than in emerged specimens was observed (Fig. 2D). Parameters of AM and aerenchyma ratio in roots were significantly negatively correlated in *G. fluitans* ($r_s < -0.579$, $p \leq 0.01$) and *S. latifolium* ($r_s < -0.500$, $p \leq 0.05$), and positively correlated in *R. lingua* ($r_s > 0.460$, $p \leq 0.05$).

The rhizosphere soil of amphibious species had low plant available phosphorous which was in general significantly lower during submergence of plants (Fig. 1F). AM parameters correlated positively with plant available phosphorous ($r_s > 0.602$, $p \leq 0.001$). Organic matter content was on average lower in submerged (2.25 ± 1.4) than in emerged (5.05 ± 3.5) plant species.

Data analysis revealed only significantly negative correlation between Y and Ant content but only positive between Y and AM parameters in studied amphibious plants (Table 1). There were no significant correlations for *G. officinalis* and *S. latifolium*.

function as accessory pigments under radiant energy limitation that occur when plants grow under water (Demmig-Adams and Adams 1996). Furthermore, Car prevent photodamage *via* non-photochemical quenching of the Chl *a* fluorescence of PS2 (Adams and Demmig-Adams 2004) although their contents are negatively related to photochemical efficiency of PS2 in some species. Photoinhibition in submerged plants can, besides high irradiances, be a result of nutrient shortage and limited CO₂ availability in water (Steyn *et al.* 2002, Nielsen and Nielsen 2006).

The relatively high contents of UV-B abs in the studied plants are believed to give efficient protection against harmful effects of UV-B radiation (Germ and Gaberščik 2003). The majority of emerged specimens had

Fig. 1. Physiological and biochemical characteristics of leaf submerged (■) and emerged (□) specimens of amphibious plants: (A) actual photochemical efficiency of photosystem 2 (Y), contents of (B) chlorophyll (Chl), (C) carotenoids (Car), and (D) anthocyanins (Ant) calculated per sample dry mass, (E) content of total methanol soluble UV-B absorbing compounds (UV-B abs) calculated per sample area, and (F) available plant phosphorus. Means \pm SD, $n = 10$. One-way ANOVA: * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, nd – no data.

Table 1. Correlations between actual photochemical efficiency of photosystem 2 (Y) and leaf carotenoids (Car), anthocyanins (Ant), and parameters of arbuscular mycorrhiza: mycorrhizal frequency (F%), mycorrhizal intensity (M%), and the density of arbuscules (A%). Two-way Spearman correlation (r_s): ns $p > 0.05$, * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$.

Y	Car		Ant		F%		M%		A%	
	p	r_s	p	r_s	p	r_s	p	r_s	p	r_s
<i>G. fluitans</i>	**	-0.630	***	-0.713	***	0.745	***	0.717	ns	
<i>G. officinalis</i>	ns		ns		ns		ns		ns	
<i>R. lingua</i>	ns		*	-0.448	**	0.578	*	0.465	ns	
<i>S. latifolium</i>	*	-0.394	ns		ns		ns		ns	
<i>S. emersum</i>	*	0.549	**	-0.675	*	0.564	*	0.589	ns	
<i>T. scordium</i>	ns		ns		*	0.458	*	0.534	**	0.599
<i>V. anagallis-aquatica</i>	**	-0.634	***	-0.649	ns		*	0.474	ns	

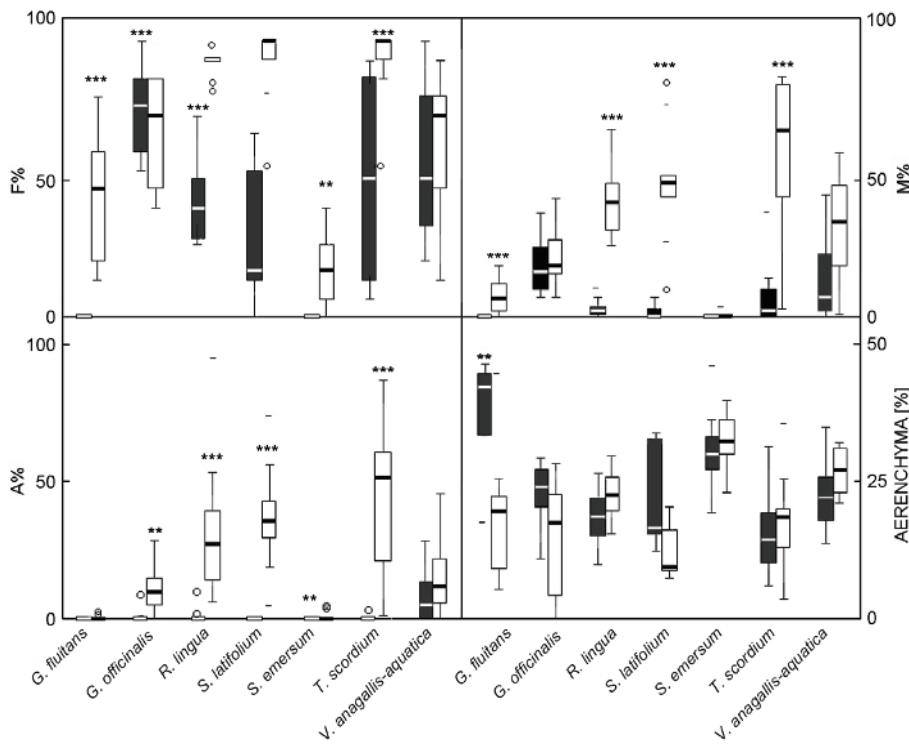


Fig. 2. Parameters of arbuscular mycorrhizal colonisation [mycorrhizal frequency (F%), mycorrhizal intensity (M%), and density of arbuscules (A%)] and aerenchyma ratio [%] in roots of submerged (■) and emerged (□) specimens of amphibious plants. Box-plots represent boxes with 1st quartile, median, and 3rd quartile, whiskers with non-outlier range of data, outliers (○) and extremes (—). $n = 10$. Mann-Whitney U test: * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$.



Fig. 3. Cross section of *Sparganium emersum* root.

higher contents of UV-B absorbing compounds than submerged, which is consistent with the higher levels of UV-B radiation on land than in water (Rozema *et al.* 2002). Štroch *et al.* (2008) proposed that photoprotection

by xanthophyll cycle reduced the demand for UV-B absorbing compounds' synthesis that might be the case in submerged specimens. Ant absorb excess radiant energy, substituting for the protective role of the xanthophyll cycle in some species (Manetas *et al.* 2002), which may have contributed to the observed higher Ant contents in submerged specimens. Metabolically costly Ant are believed to be indirectly beneficial for plant survival under nutrient shortage (Steyn *et al.* 2002) as nutrient uptake *via* roots of amphibious plants under submergence is diminished (Nilsen and Orcutt 1996, Rascio 2002). This leads to reduced growth, excess of saccharides, and consequently depressed photosynthesis. In such conditions synthesis of Ant can act as a sink of saccharides (Sand-Jensen and Jacobsen 2002, Steyn *et al.* 2002).

AM colonisation of roots was established in all seven species confirming that AM is abundant in plants of aquatic environments (Kai and Zhiwei 2006, Šraj-Kržič *et al.* 2006b, Radhika and Rodrigues 2007). To our knowledge this is the first report on AM in species *S. latifolium* and *S. emersum*. Only submerged specimens of *G. fluitans* and *S. emersum* lacked arbuscules, although Šraj-Kržič *et al.* (2006b) found them in *G. fluitans*. Other factors than water fluctuation may have affected AM colonisation in this species, for instance phenological rhythm which influences AM presence in some wetland species (Bohrer *et al.* 2004).

Lower AM levels in submerged than in emerged

specimens were observed in studied plant species which is in line with the reports on AM colonisation decrease with water depth or flood duration due to shortage of oxygen (Stevens and Peterson 1996, Miller 2000). Similarly, arbuscule formation decreases in *Lotus tenuis* under water excess compared to control treatment more strongly than in water deficit (García *et al.* 2008). During submergence plants supply rhizosphere soil and thus AM fungi with oxygen (Wigand *et al.* 1998, Karjalainen *et al.* 2001, Voesenek *et al.* 2006) via extensive aerenchyma (Karjalainen *et al.* 2001, Mendoza *et al.* 2005), even though the conditions that induce the development of aerenchyma, *i.e.* inundation, and thus oxygen shortage, are otherwise a reason for decreased AM colonisation (Stevens and Peterson 1996, Braendle and Crawford 1999, Miller 2000, Rascio 2002). Therefore significant correlations between AM parameters and aerenchyma were observed in *R. lingua* only.

References

Adams, W.W., Demmig-Adams, B.: Chlorophyll fluorescence as a tool to monitor plant response to environment. V: Chlorophyll fluorescence: a signature of photosynthesis. – In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll *a* Fluorescence: A Signature of Photosynthesis. Pp. 583-604. Springer, Dordrecht 2004.

Andersen, F.Ø., Andersen, T.: Effects of arbuscular mycorrhiza on biomass and nutrients in the aquatic plant *Littorella uniflora*. – Freshwater Biol. **51**: 1623-1633, 2006.

Beck-Nielsen, D., Madsen, T.V.: Occurrence of vesicular-arbuscular mycorrhiza in aquatic macrophytes from lakes and streams. – Aquat. Bot. **71**: 141-148, 2001.

Boeger, M.R.T., Poulson, M.E.: Morphological adaptations and photosynthetic rates of amphibious *Veronica anagallis-aquatica* L. (Scrophulariaceae) under different flow regimes. – Aquat. Bot. **75**: 123-135, 2003.

Bohrer, K.E., Fries, C.F., Amon, J.P.: Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. – Mycorrhiza **14**: 329-337, 2004.

Braendle, R., Crawford, R.M.M.: Plants as amphibians. – Perspect. Plant Ecol. **2/1**: 56-78, 1999.

Caldwell, M.M.: Solar ultraviolet radiation as an ecological factor for alpine plants. – Ecol. Monogr. **38**: 243-268, 1968.

Day, T.A., Howells, B.W., Ruhland, C.T.: Changes in growth and pigment concentrations with leaf age in pea under modulated UV-B radiation field treatments. – Plant Cell Environ. **19**: 101-108, 1996.

Demmig-Adams, B., Adams, W.W., III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis. – Trends Plant Sci. **1**: 21-26, 1996.

Dunham, R.M., Ray, A.M., Inouye, R.S.: Growth, physiology, and chemistry of mycorrhizal and nonmycorrhizal *Typha latifolia* seedlings. – Wetlands **23**: 890-896, 2003.

Enriquez, S., Sand-Jensen, K.: Variation in light absorption properties of *Mentha aquatica* L. as function of leaf form: Implications for plant growth. – Int. J. Plant Sci. **164**: 125-136, 2003.

Escudero, V., Mendoza, R.: Seasonal variation of arbuscular mycorrhizal fungi in temperate grassland along a wide hydrologic gradient. – Mycorrhiza **15**: 291-299, 2005.

Fougnies, L., Renciot, S., Muller, F., Plenquette, C., Prin, Y., de Faria, S.M., Bouvet, J.M., Sylla, S.Nd., Dreyfus, B., Bâ, A.M.: Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in *Pterocarpus officinalis* Jacq. seedlings. – Mycorrhiza **17**: 159-166, 2007.

Gaberščik, A., Urbanc-Berčič, O., Kržič, N., Kosi, G., Brancelj, A.: The intermittent lake Cerknica: Various faces of the same ecosystem. – Lake Reserv. Manage. **8**: 159-168, 2003.

García, I., Mendoza, R., Pomar, M.C.: Deficit and excess of soil water impact on plant growth of *Lotus tenuis* by affecting nutrient uptake and arbuscular mycorrhizal symbiosis. – Plant Soil **304**: 117-131, 2008.

Germ, M., Gaberščik, A.: Comparison of aerial and submerged leaves in two amphibious species, *Myosotis scorpioides* and *Ranunculus trichophyllus*. – Photosynthetica **41**: 91-96, 2003.

Kai, W., Zhiwei, Z.W.: Occurrence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in Southwest China. – Int. Rev. Hydrobiol. **91**: 29-37, 2006.

Kandeler, E.: Organic matter by wet combustion. – In: Schinner F., Kandeler E., Margesin R. (ed.): Methods in Soil Biology. Pp. 397-398. Springer Verlag, Berlin 1995.

Karjalainen, H., Stefansdóttir, G., Touminen, L., Kairesalo, T.: Do submerged plants enhance microbial activity in sediment? – Aquat. Bot. **69**: 1-13, 2001.

Khare, M., Guruprasad, K.N.: UV-B induced anthocyanin synthesis in maize regulated by FMN and inhibitors of FMN photoreactions. – Plant Sci. **91**: 1-5, 1993.

Kuwabara, A., Nagata, T.: Views on developmental plasticity of plants through heterophylly. – Recent Res. Dev. Plant Physiol. **3**: 45-59, 2002.

Lichtenthaler, H.K., Buschmann, C.: Extraction of photosynthetic tissues: Chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, F4.2.1 - F 4.2.6. – John Wiley & Sons Inc., New York 2001a.

Lichtenthaler, H.K., Buschmann, C.: Chlorophylls and carotenoids: Measurement and characterisation by UV-VIS. Current Protocols in Food Analytical Chemistry, F4.3.1 - F 4.3.8. – John Wiley & Sons, New York 2001b.

Maberly, S.C., Madsen, T.V.: Freshwater angiosperm carbon

In general, higher content of plant available P was measured in the rhizosphere soil of emerged specimens and a positive correlation between plant available P and AM colonisation contradict well accepted fact of the AM importance in nutrient poor environment in terms of improved nutrient acquisition. Our results are thus in line with previous suggestions that AM colonisation is not principally related to plant available phosphorous in aquatic habitat (Miller 2000).

In conclusion, submerged and emerged specimens of amphibious plants maintained high photochemical efficiency of PS2 under contrasting environment. The protection of leaves against the harmful effects of solar radiation was attributed to high contents of Car and Ant in most of submerged specimens, and high contents of UV-B abs in emerged specimens. Roots of studied species had extensive aerenchyma and were colonised by AM fungi.

concentrating mechanisms: processes and patterns. – *Funct. Plant Biol.* **29**: 393-405, 2002.

Manetas, Y., Drinia, A., Petropopoulou, Y.: High contents of anthocyanins in young leaves are correlated with low pools of xanthophyll cycle components and low risk of photo-inhibition. – *Photosynthetica* **40**: 349-354, 2002.

Mendoza, R., Escudero, V., García, I.: Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (*Lotus glaber* Mill.) in a saline-sodic soil. – *Plant Soil* **275**: 305-315, 2005.

Miller, S.P.: Arbuscular mycorrhizal colonisation of semi-aquatic grasses along a wide hydrologic gradient. – *New Phytol.* **145**: 145-155, 2000.

Mommert, L., Lenssen, J.P.M., Huber, H., Visser, E.J.W., De Kroon, H.: Ecophysiological determinants of plant performance under flooding: a comparative study of seven plant families. – *J. Ecol.* **94**: 1117-1129, 2006.

Mommert, L., Pons, T.L., Wolters-Arts, M., Venema, J.H., Visser, E.J.W.: Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. – *Plant Physiol.* **139**: 497-508, 2005.

Nielsen, S.L., Nielsen, H.D.: Pigments, photosynthesis and photoinhibition in two amphibious plants: consequences of varying carbon availability. – *New Phytol.* **170**: 311-319, 2006.

Nilsen, E.T., Orcutt, D.M.: The Physiology of Plants under Stress. Abiotic factors. – John Wiley & Sons, New York 1996.

ÖNORM L 1087: [Measurement of plant-available phosphate and potassium after that calcium acetate calcium-Acetat-Lactat (CAL) method]. – Österreichisches Normungsinstitut, Wien 1993. [In German.]

Panda, D., Rao, D.N., Sharma, S.G., Strasser, R.J., Sarkar, R.K.: Submergence effects on rice genotypes during seedling stage: Probing of submergence driven changes of photosystem 2 by chlorophyll *a* fluorescence induction O-J-I-P transients. – *Photosynthetica* **44**: 69-75, 2006.

Panda, D., Sharma, S. G., Sarkar, R.K.: Chlorophyll fluorescence parameters, CO₂ photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (*Oryza sativa* L.). – *Aquat. Bot.* **44**: 127-133, 2008.

Pedersen, O., Sand-Jensen, K.: Water transport in submerged macrophytes. – *Aquat. Bot.* **44**: 385-406, 1993.

Philips, J.M., Hayman, D.S.: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. – *Trans. brit. mycol. Soc.* **55**: 158-160, 1970.

Radhika, K.P., Rodrigues, B.F.: Arbuscular Mycorrhizae in association with aquatic and marshy plant species in Goa, India. – *Aquat. Bot.* **86**: 291-294, 2007.

Rascio, N.: The underwater life of secondarily aquatic plants: Some problems and solutions. – *Crit. Rev. Plant Sci.* **21**: 401-427, 2002.

Rascio, N., Cuccato, F., Dalla Vechia, F., La Rocca, N., Larcher, W.: Structural and functional features of the leaves of *Ranunculus trichophyllus* Chaix., a freshwater submerged macrophyte. – *Plant Cell Environ.* **22**: 205-212, 1999.

Rozema, J., Bjorn, L.O., Bornman, J.F., Gaberščik, A., Hader, D.P., Trošt, T., Germ, M., Klisch, M., Groniger, A., Sinha, R.P., Lebert, M., He, Y.Y., Buffoni-Hall, R., de Bakker, N.V.J., van de Staaij, J., Meijkamp, B.B.: The role of UV-B radiation in aquatic and terrestrial ecosystems - an experimental and functional analysis of the evolution of UV-absorbing compounds. – *J. Photochem. Photobiol. B* **66**: 2-12, 2002.

Sand-Jensen, K., Jacobsen, D.: Herbivory and growth in terrestrial and aquatic populations of amphibious stream plants. – *Freshw. Biol.* **47**: 1475-1487, 2002.

Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a noninvasive indicator for rapid assessment of *in vivo* photosynthesis. – In: Schulze, E.D., Caldwell, M.M. (ed.): *Ecophysiology of Photosynthesis*. Pp. 49-61. Springer Verlag, Berlin – Heidelberg – New York 1995.

Šraj-Kržič, N., Gaberščik, A.: Photochemical efficiency of amphibious plants in an intermittent lake. – *Aquat. Bot.* **83**: 281-288, 2005.

Šraj-Kržič, N., Germ, M., Urbanc-Berčič, O., Kuhar, U., Janauer, G.A., Gaberščik, A.: The quality of the aquatic environment and macrophytes of karstic watercourses. – *Plant Ecol.* **192**: 107-118, 2006a.

Šraj-Kržič, N., Pongrac, P., Klemenc, M., Kladnik, A., Regvar, M., Gaberščik, A.: Mycorrhizal colonisation in plants from intermittent aquatic habitats. – *Aquat. Bot.* **85**: 333-338, 2006b.

Stevens, K.J., Peterson, R.L.: The effect of a water gradient on the vesicular-arbuscular mycorrhizal status of *Lythrum salicaria* L. (purple loosestrife). *Mycorrhiza* **6**: 99-104, 1996.

Stevens, K.J., Spender, S.W., Petersen, R.L.: Phosphorous, arbuscular mycorrhizal fungi and performance of the wetland plant *Lythrum salicaria* L. under inundated conditions. *Mycorrhiza*, **12**: 277-283, 2002.

Steyn, W.J., Wand, S.J.E., Holcroft, D.M., Jacobs, G.: Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. – *New Phytol.* **155**: 349-361, 2002.

Štroc, M., Lenk, S., Navrátil, M., Špunda, V., Buschmann, C.: Epidermal UV-shielding and photosystem II adjustment in wild type and *chlorina* f2 mutant of barley during exposure to increased PAR and UV radiation. – *Environ. exp. Bot.* doi: 10.1016/j.envexpbot.2008.05.007, 2008.

Trouvelot, A., Kough, J.L., Gianinazzi-Pearson, V.: [Estimation of VA mycorrhizal infection levels. Research for methods having a functional significance]. – In: Gianinazzi-Pearson, V., Gianinazzi, S. (ed.): *Physiological and Genetical Aspects of Mycorrhizae*. Pp. 217-221. Service des Publications INRA, Paris 1986. [In French.]

Voesenek, L.A.C.J., Colmer, T.D., Pierik, R., Millenaar, F.F., Peeters, A.J.M.: How plants cope with complete submergence. – *New Phytol.* **170**: 213-226, 2006.

Wigand, C., Andersen, F.Ø., Christensen, K.K., Holmer, M., Jensen, H.S.: Endomycorrhizae of isoetids along a biogeochemical gradient. – *Limnol. Oceanogr.* **43**: 508-515, 1998.

Wolfe, B.E., Weishampel, P.A., Klironomos, J.N.: Arbuscular mycorrhizal fungi and water table affect wetland plant community composition. *J. Ecol.* **94**: 905-914, 2007.