

Influence of irradiance on photosynthesis and PSII photochemical efficiency in maize during short-term exposure at high CO₂ concentration

C. ARENA^{*,†}, L. VITALE^{**}, and A. VIRZO DE SANTO^{*}

Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Via Cinthia 80126, Napoli, Italia^{}*
*Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (ISAFoM-CNR), Via C. Patacca 85, 80056 Ercolano, Napoli, Italia^{**}*

Abstract

This work aimed to evaluate if gas exchange and PSII photochemical activity in maize are affected by different irradiance levels during short-term exposure to elevated CO₂. For this purpose gas exchange and chlorophyll *a* fluorescence were measured on maize plants grown at ambient CO₂ concentration (control CO₂) and exposed for 4 h to short-term treatments at 800 $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$ (high CO₂) at a photosynthetic photon flux density (PPFD) of either 1,000 $\mu\text{mol m}^{-2} \text{ s}^{-1}$ (control light) or 1,900 $\mu\text{mol m}^{-2} \text{ s}^{-1}$ (high light). At control light, high-CO₂ leaves showed a significant decrease of net photosynthetic rate (P_N) and a rise in the ratio of intercellular to ambient CO₂ concentration (C_i/C_a) and water-use efficiency (WUE) compared to control CO₂ leaves. No difference between CO₂ concentrations for PSII effective photochemistry (Φ_{PSII}), photochemical quenching (q_p) and nonphotochemical quenching (NPQ) was detected. Under high light, high-CO₂ leaves did not differ in P_N , C_i/C_a , Φ_{PSII} and NPQ, but showed an increase of WUE. These results suggest that at control light photosynthetic apparatus is negatively affected by high CO₂ concentration in terms of carbon gain by limitations in photosynthetic dark reaction rather than in photochemistry. At high light, the elevated CO₂ concentration did not promote an increase of photosynthesis and photochemistry but only an improvement of water balance due to increased WUE.

Additional key words: climate change; elevated CO₂; light intensity; photosynthesis; *Zea mays* L.

Introduction

The rise in the atmospheric CO₂ concentration and the related increase in temperature and changes in precipitation will determine significant effects on terrestrial plant growth and productivity in the next future (Reddy *et al.* 2010). Most of the research about the response to elevated CO₂ has been carried out with C₃ species, where photosynthetic activity was stimulated because of Rubisco carboxylation kinetic properties. The lower attention to C₄ plants in this subject has been attributed to the assumption that the intrinsic CO₂ concentrating mechanism in C₄ plants makes these plants insensitive to atmospheric elevated CO₂ (Reddy *et al.* 2010). However

several reports suggest that C₄ photosynthesis also responds to high CO₂. The response of C₄ plants to predicted climate change will play a critical role, as they contribute between 25 and 30% of global primary productivity (Defries and Townsend 1994). Among C₄ plants, *Zea mays* L. is globally one of the most important food crops in terms of production (Young and Long 2000, Leakey *et al.* 2004).

It has been demonstrated that the saturation of C₄ photosynthesis to CO₂ is modified by temperature, irradiance, nutrient availability, and water supply (Loreto *et al.* 1995, Cousins and Bloom 2003, Leakey *et al.* 2006).

Received 8 September 2010, accepted 12 May 2011.

[†]Corresponding author; tel: +39081679173, fax: +39081679233, e-mail: c.arena@unina.it

Abbreviations: C_a – ambient CO₂ concentration; C_i – intercellular CO₂ concentration; C_i/C_a – ratio of intercellular to ambient CO₂ concentration; F – the steady-state fluorescence level in the light-adapted status; F_m – the maximal fluorescence level in the dark-adapted state; F_m' – maximal fluorescence level in the light-adapted state; F_0 – the background fluorescence signal; F_0' – the minimal fluorescence yield in light-adapted samples; F_0/F_m – maximum photochemical efficiency of PSII; g_s – stomatal conductance to water; NPQ – nonphotochemical quenching; P_N – net photosynthetic rate; PPFD – photosynthetic photon flux density; q_p – photochemical quenching; Rubisco – ribulose-1,5-bisphosphate carboxylase/oxygenase; WUE – water-use efficiency; Φ_{PSII} – the effective quantum yield of PSII photochemistry.

Acknowledgments: The authors are grateful to Maize Genetics Cooperation – Stock Center, University of Illinois, Urbana, U.S.A. for providing the 121C-D8 maize seeds.

Some C₄ plants exhibited increased photosynthetic rates in response to CO₂ rising, particularly at elevated temperature and under limiting water supply (Cousin *et al.* 2002, Sage and Kubien 2003, Leakey *et al.* 2009). Ghannoum *et al.* (2000) reported that C₄ plants grown under high irradiance showed enhanced photosynthesis under elevated CO₂ conditions, whereas there was not much response in the growth of C₄ species under low irradiance.

The major mechanisms responsible for the increase of C₄ plant growth under elevated CO₂ seem to be two ones (Ghannoum *et al.* 2000). The first mechanism operates through CO₂-induced increase in net photosynthetic rates. Although it has often been thought that C₄ species are enzymatically saturated with carbon under current atmospheric CO₂ concentrations, a number of studies have shown that it is not always true (Maroco *et al.* 1999, Ziska *et al.* 1999, Wand *et al.* 1999, Ghannoum *et al.* 2000, Cousins *et al.* 2002). The increase in rates of net photosynthesis in C₄ species could result in biomass increment under atmospheric CO₂ enrichment.

The second mechanism is the reduction in stomatal conductance that, in turn, leads to a decrease in transpirational water loss. Hence, elevated CO₂ exposure tends to enhance soil moisture conservation, which can improve overall plant water relations and facilitate greater biomass production (Ghannoum *et al.* 2000). Another aspect of the exposure to elevated CO₂ regards the regulation of photochemistry. It is less acknowledged how photochemistry can be regulated at different irradiance regimes under high CO₂ concentration. High irradiances increase the potential for photoinhibition, a process that can be reversible, playing a protective role for the photosynthetic systems, but also irreversible causing serious damages at the photosynthetic apparatus (Alves *et al.* 2002). It has been demonstrated for C₃

plants that the exposure at elevated CO₂ and high light reduces the susceptibility of photosynthetic apparatus to photoinhibition by an enhancement of photosynthetic carbon reduction cycle and the electron flow that drives it (Habash *et al.* 1995, Hogan *et al.* 1997, Griffin *et al.* 2000, Hymus *et al.* 2001). Thus if the exposure of C₄ plants to high CO₂ produces an increase of electron transport flow toward C fixation, it is likely that the exposure to elevated CO₂ could result also in C₄ plants in a beneficial effects in mitigating photoinhibitory damage risks at elevated irradiances. However this predicted increase in electron transport may not be observed if growth in elevated *p*CO₂ results in acclimation of photosynthetic apparatus (Osborne *et al.* 1997, Hymus *et al.* 2001).

Based on the observation in literature that light intensity may alter the response of photosynthetic apparatus of plants at elevated CO₂ and that the growth for long time in elevated CO₂ leads to an acclimation of photosynthesis that may offset the positive effect of the enhanced CO₂ concentration, in this study we aimed to assess how and if light intensity can modify gas exchange and photochemistry at elevated CO₂ in absence of acclimation.

For this purpose two different light intensities (moderate and high) were considered in combination with short-term exposure of 4 h to elevated CO₂. The high light intensity was selected in order to test if the exposure to CO₂ may result in an enhancement of electron flow to photosynthesis and hence in photoprotection of photosynthetic apparatus at high irradiance. In addition, we consider also the importance to test the effect of moderate irradiance in combination to elevated CO₂ because along canopy profile maize leaves receive light varying from high to low intensity throughout the day that likely influences the photosynthetic gain at elevated CO₂.

Materials and methods

Plant material: Seeds of *Zea mays* L. cultivar 121C-D8 were imbibed on rinsed blotting paper with 2 mM CaCl₂ and germinated in the dark in a small glass container. The germinated seeds were placed at 1–2 cm depth in 15 l pot filled with a mixture of 30:70 peat/garden soil. The plants were grown outdoors, at the Botanical Garden (Department of Biological Sciences) of Naples University, from late May to July 2003. During this period, plants were irrigated daily and fertilised once a week with a commercial nutritional solution (*Reckitt & Colman*, Italy; N:P:K 20:20:20 + micronutrients). In July, the five top-most fully-expanded leaves of five plants at the vegetative stage (about two meters tall, about 60 day after sowing) were selected for the gas-exchange and chlorophyll *a* fluorescence measurements. The measurements were conducted in the morning on the middle portion of the leaf lamina. The mean irradiance experienced by plants outdoor, in the time of measurement, ranging

from 800 $\mu\text{mol m}^{-2} \text{ s}^{-1}$ in the early morning to 1,800 $\mu\text{mol m}^{-2} \text{ s}^{-1}$ around midday. During maize plants growth, the monthly mean air temperature ranged between 21°C in May and 26°C in July, whereas the monthly mean relative humidity was between 54% in May and 57% in July.

Gas-exchange and fluorescence measurements: Gas-exchange and photochemistry (chlorophyll *a* fluorescence) measurements were performed simultaneously by a portable gas-exchange system (*HCM-1000*, *Walz*, Effeltrich, Germany) in a climatized cuvette equipped with a fiber optic connected with a portable pulse amplitude modulated fluorometer (*MINI-PAM*, *Walz*, Effeltrich, Germany). The fiber optic was inserted at 60° angle at the leaf plane in the cuvette lid to avoid sample darkening.

P_{N} , g_{s} , transpiration rate (E), intercellular (C_{i}) and

ambient CO₂ concentration (C_a) were calculated by the software operating in *HCM-1000* using the von Caemmerer and Farquhar equations (1981).

On 30 min dark-adapted leaves, the minimal fluorescence of dark-adapted state (F_0) was induced by light of about 0.5 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at the frequency of 0.6 kHz. Then, the maximal fluorescence of dark-adapted state (F_m) was measured at the frequency of 20 kHz by a 1-s saturating light pulse of 8,000 $\mu\text{mol m}^{-2} \text{s}^{-1}$. The saturating pulse intensity was chosen in order to saturate the fluorescence yield but avoiding photoinhibition during the pulse. The steady-state fluorescence level under light, F , was obtained setting light measure at frequency of 20 kHz while the maximal fluorescence level in light-adapted state (F_m') was measured by a 1-s saturating flash of 8,000 $\mu\text{mol m}^{-2} \text{s}^{-1}$. During the measurements in the light, the irradiance of 1,000 and 1,900 $\mu\text{mol m}^{-2} \text{s}^{-1}$ was provided by an external light source (*1050-H*, *Walz*, Effeltrich, Germany) positioned on the cuvette plane.

The effective quantum yield of PSII photochemistry (Φ_{PSII}) was expressed according to Genty *et al.* (1989) as $\Phi_{\text{PSII}} = (F_m' - F)/F_m'$.

Photochemical quenching was expressed as $q_p = (F_m' - F)/(F_m' - F_0')$. The minimal fluorescence of light-adapted samples (F_0') was determined at 0.6 kHz after turning off the actinic radiation and recording the lowest values of F .

Stern-Volmer nonphotochemical quenching was expressed as NPQ = $(F_m - F_m')/F_m'$ (Bilger and Björkman 1990); the maximum fluorescence (F_m) measured in dark-adapted control leaves was used for the NPQ calculation after each treatments.

P_N response curves to C_i and short-term treatments: P_N/C_i response curves were performed at two light intensities: control light and high light in order to determine the level of CO₂ at which P_N saturation occurred under different light intensities. The curves were carried out at 25°C and 65% RH, on five attached and fully expanded leaves of *Zea mays* L. at PPFD of 1,000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ for control light and at PPFD of 1,900 $\mu\text{mol m}^{-2} \text{s}^{-1}$ for high light.

The control light and high light intensities were obtained by means of artificial light provided by an external light source (*1050-H*, *Walz*, Effeltrich, Germany) posi-

tioned on the cuvette plane of the gas-exchange system.

The different CO₂ concentrations were obtained by a gas-mixing unit (*GMA-4*, *Walz*, Effeltrich, Germany). In order to generate P_N/C_i curves, the C_a concentrations used were: 1,000; 800, 600, 400, 200, 100, 70, 50, and 40 $\mu\text{mol mol}^{-1}$ (Long and Bernacchi 2003). Photosynthesis was first measured at ambient CO₂ concentration of 400 $\mu\text{mol mol}^{-1}$, then C_a was lowered stepwise to 200, 100, 50, 40, and 4 $\mu\text{mol mol}^{-1}$, and P_N was recorded at each level. After completing the measurements at 4 $\mu\text{mol mol}^{-1}$, C_a was returned to 400 $\mu\text{mol mol}^{-1}$ and P_N was measured again for validation. Once this was achieved, C_a was increased stepwise to 600, 800, and 1,000 $\mu\text{mol mol}^{-1}$.

The short-term treatment to elevated CO₂ was carried out at control and high light. For measurements to control light, a first leaf group was exposed to CO₂ concentration of 400 $\mu\text{mol mol}^{-1}$ (control CO₂) for 10 min adequate to obtain the P_N steady-state (control) and subsequently to 800 $\mu\text{mol mol}^{-1}$ (elevated CO₂) for 4 h. The measurements at high light were performed on a second leaf group following the same procedure. Leaves from 5 different plants were selected for measurements. Before the short-term exposure to elevated CO₂, maize leaves were initially darkened for 30 min at 25°C and relative humidity of 65% in order to measure the maximum PSII photochemical efficiency (F_v/F_m) at control CO₂. Thereafter, leaves were exposed for 4 h either at control light or high light, 25°C and relative humidity of 65% in an atmosphere containing 800 $\mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$ and 21% O₂ and the following parameters were determined: P_N , g_s , E , WUE, C_i/C_a , Φ_{PSII} , q_p and NPQ.

Statistical analysis: A paired *t*-test was used to assess the significance of the differences between the two irradiance levels for P_N/C_i and Φ_{PSII}/C_i curves at control CO₂ and high CO₂. Three plants were used, one leaf per plants, for a total of three measurements. The effects of irradiance level (control light, high light) and CO₂ concentration on gas exchange and photochemical parameters during the short-term treatment were assessed using two-way ANOVA combined with appropriate post hoc comparison tests (pairwise *Student-Newman-Keuls* test). We used five different plants, one leaf per plant, for a total of five measurements for each parameter. Computations were made with *Sigma-Stat 3.5* software and graphical displays with *SigmaPlot 11.0* software (*Jandel Scientific*, USA).

Results

P_N and Φ_{PSII} response curves to C_i : P_N measured at 1,900 PPFD (high light) was statistically higher ($p < 0.001$) compared to 1,000 PPFD (control light) starting from 50 $\mu\text{mol mol}^{-1} C_i$ and was saturated at lower C_i values ($p < 0.05$) than control light (Fig. 1A). P_N decreased significantly after the saturation in control but not in high light. Under high light, Φ_{PSII} was lower ($p < 0.001$) compared to control light but, at both

irradiances, the Φ_{PSII} activity saturated at ambient C_a concentration and no decrease in Φ_{PSII} values at elevated CO₂ was detected (Fig. 1B).

Short-term exposure to elevated CO₂: P_N measured at control light of 1,000 PPFD and elevated CO₂ concentration was statistically lower ($p < 0.001$) compared to values at control CO₂ (Fig. 2A). On the contrary,

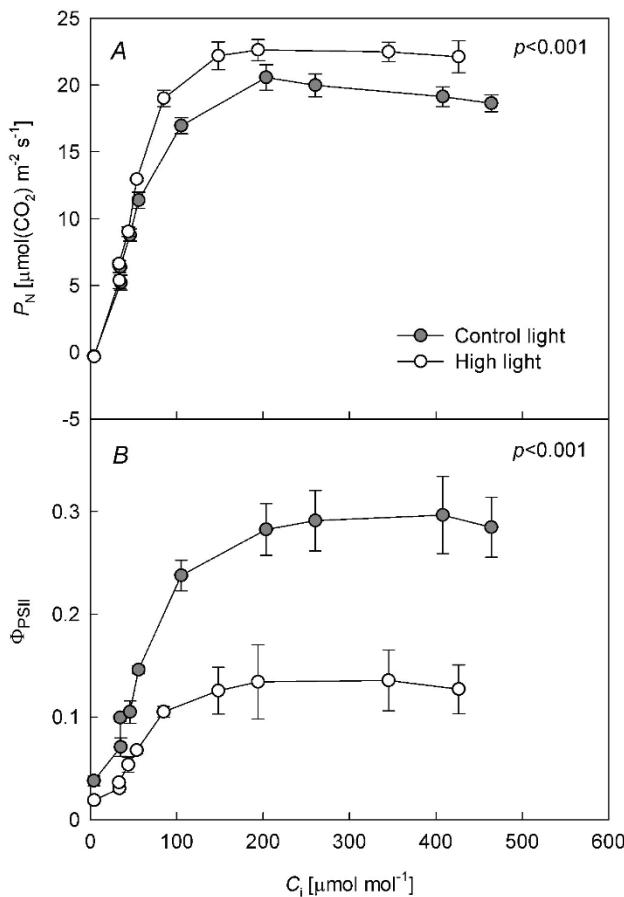


Fig. 1. Net photosynthetic rate (P_n) and effective quantum yield of PSII photochemistry (Φ_{PSII}) response curves to intercellular CO_2 concentration (C_i) at control light of $1,000 \mu\text{mol m}^{-2} \text{ s}^{-1}$ (●) and high light of $1,900 \mu\text{mol m}^{-2} \text{ s}^{-1}$ (○) $\mu\text{mol m}^{-2} \text{ s}^{-1}$. Values are means \pm SD ($n = 3$).

Discussion

In our experiment, in order to detect a possible positive effect of the enhanced CO_2 concentration on photosynthetic apparatus, we avoided the acclimation at elevated CO_2 by means of short-term exposures. The short-term treatment of maize cv. 121C-D8 to elevated CO_2 determined a different behaviour in CO_2 fixation compared to photochemistry in response to light treatments. In agreement with results found by other authors in well watered maize plants exposed to high CO_2 (Samarakoon and Gifford 1996, Ziska and Bunce 1997, Leakey *et al.* 2006, Kim *et al.* 2007) we observed the absence of a significant stimulation of P_n and no variation in C_i/C_a ratio at elevated CO_2 concentration under high irradiance compared to control CO_2 . On the contrary, under control light leaves exposed to elevated CO_2 showed a significant reduction in P_n and an increase of C_i/C_a ratio compared to control CO_2 , suggesting a limiting effect of elevated CO_2 on photosynthesis at sub-optimal irradiance level at least under short-term

at high light of $1,900 \mu\text{mol m}^{-2} \text{ s}^{-1}$ PFD, P_n measured at elevated CO_2 increased compared to control CO_2 , although the increment was not significant. At elevated CO_2 , P_n was higher ($p < 0.001$) under high light than control light.

After the short-term exposure at elevated CO_2 , g_s as well as E were lower ($p < 0.01$) compared to ambient CO_2 at both light intensities (Fig. 2B,C). Between the two irradiance levels no significant difference was detected for g_s , whereas E showed a significant increase ($p < 0.01$) only at control CO_2 . At elevated CO_2 , WUE increased ($p < 0.05$) compared to control CO_2 , at both control and high light (Fig. 2D). No difference in WUE was found between irradiance levels, irrespective of CO_2 treatments. The C_i/C_a ratio was higher under high CO_2 ($p < 0.01$) as compared to control CO_2 only at control light, whereas remained unchanged at high light (Fig. 2E). At control CO_2 concentration, no difference in C_i/C_a ratio was detected between irradiance levels (Table 1).

The measures of photochemistry showed that Φ_{PSII} was higher ($p < 0.001$) under control light compared to high light, but was not affected by exposure to elevated CO_2 (Fig. 2F). q_p and NPQ remained unaffected by CO_2 treatments under control light as well as under high light (Fig. 2G,H). At both control and high CO_2 , q_p was higher and NPQ lower ($p < 0.001$) in leaves exposed to control light compared to high light (Table 1).

The results of the two-way ANOVA evidence that the interaction between irradiance levels and CO_2 concentrations was significant only for net photosynthetic rate. For photochemistry, differences between irradiance levels were significant for all investigated parameters, whilst no difference occurred between CO_2 concentrations; no interaction was found between irradiance level and CO_2 concentrations (Table 1).

exposure. This hypothesis is corroborated by the profile of P_n/C_i response curve: the P_n/C_i curve in C_4 plants is characterized by a steep initial slope and saturation at relatively low C_i . Under high light the saturation of curve depends on the Rubisco activity, whereas under low light it depends on the capacity to regenerate phosphoenol-pyruvate (PEP) and/or ribulose-1,5-bisphosphate (RuBP) and consequently on the photosynthetic electron transport activity (Berry and Farquhar 1978, von Caemmerer and Farquhar 1999). During short-term exposures at elevated CO_2 , at both control and high irradiance, we used irradiances above the region of P_n/PPFD curve in which P_n of maize cv. 121C-D8 is limited by photosynthetic electron transport (D'Ambrosio *et al.* 2003). It has been observed that in C_3 plants the P_n reduction at elevated CO_2 is due to RuBP carboxylation limitation and/or RuBP regeneration limitation (Jacob *et al.* 1995, Rogers and Humphries 2000, Chen *et al.* 2005, Urban *et al.* 2003, Pérez *et al.* 2007). Zhang *et al.* (2009) showed that

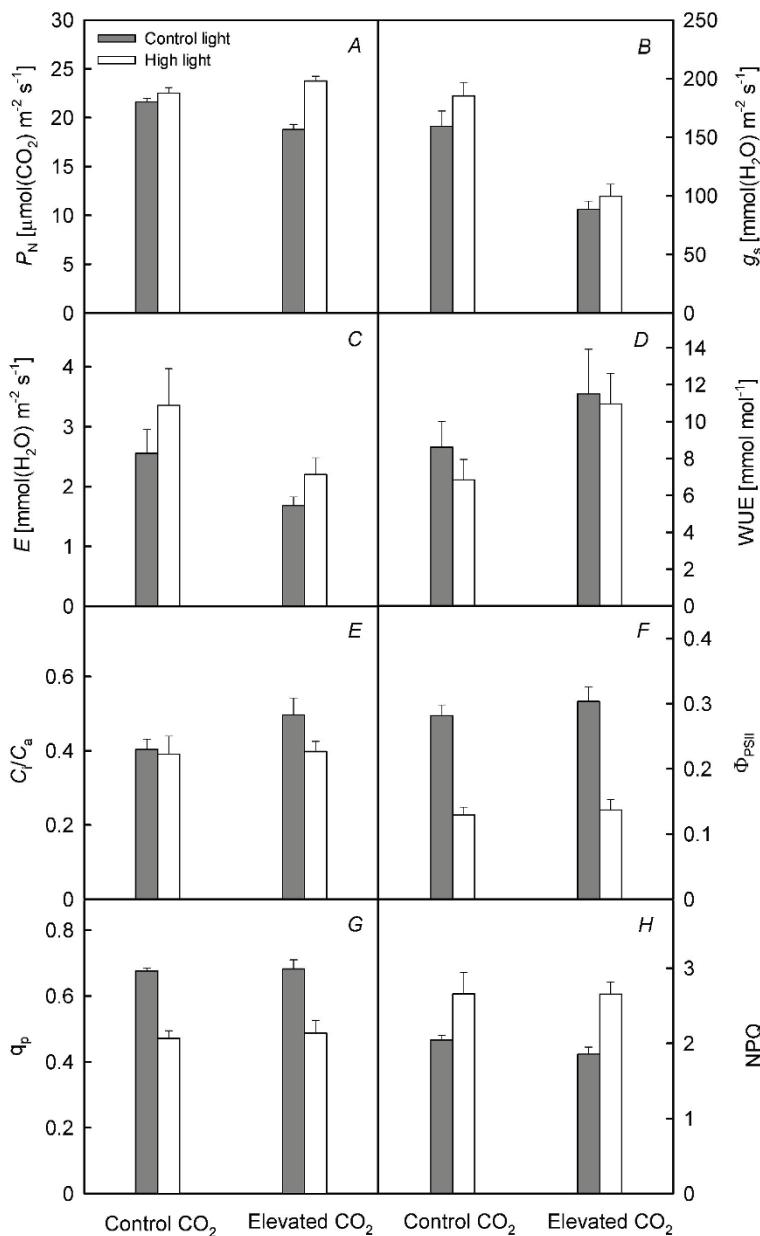


Fig. 2. A: net photosynthetic rate (P_N), B: stomatal conductance to water (g_s), C: transpiration rate (E), D: water-use efficiency (WUE), E: C_i/C_a ratio, F: effective quantum yield of PSII photochemistry (Φ_{PSII}), G: photochemical quenching (q_p), and H: nonphotochemical quenching (NPQ) at light of 1,000 (■) and 1,900 (□) $\mu\text{mol m}^{-2} \text{s}^{-1}$, under control CO₂ and elevated CO₂ concentration after 4 h of short-term exposure. Values are means \pm SD ($n = 5$).

in wheat the P_N reduction at elevated CO₂ is largely attributed to RuBP carboxylation limitation without RuBP regeneration limitation. But here, as Φ_{PSII} did not decrease during the short-term exposure to elevated CO₂, we exclude that P_N reduction at elevated CO₂ and moderate light was due to a limitation in PEP and/or RuBP regeneration, because the resulting electron transport activity was not limiting for substrate replacement (von Caemmerer and Farquhar 1999).

In our view, the higher C_i/C_a ratio at elevated CO₂/control light, as compared to control CO₂/control light, denotes a limited mesophyll capacity to CO₂ fixation likely due to a reduced PEPC activity when plants are exposed to moderate irradiances and elevated CO₂ concentrations. The higher level of CO₂ within the

cell might determine a decline in intracellular pH (Bown 1985, Siriphanch and Kader 1986). It is well known that any perturbation of intracellular pH influences the activity of many enzymes. PEPC activity is regulated by cytosolic pH and by light level (Bonugli and Davies 1977, Bassi and Passera 1982). The exposure to control light and elevated CO₂ might determine limitation in PEPC activity due both to inadequate light level and high CO₂ concentration leading to the rise in intercellular CO₂ concentration. At elevated CO₂ and high light we did not observe a decline in photosynthesis and a rise C_i/C_a ratio probably because the exposure to high light stimulates the PEPC activation favouring the intracellular CO₂ uptake by photosynthesis (Bassi and Passera 1982).

Table 1. Levels of significance (P values) from the two-way *ANOVA* for comparison between irradiance level (control light: $1,000 \mu\text{mol m}^{-2} \text{s}^{-1}$; high light: $1,900 \mu\text{mol m}^{-2} \text{s}^{-1}$) and for comparison between $[\text{CO}_2]$: control $\text{CO}_2 = 400 \mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$; high $\text{CO}_2 = 800 \mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$. Notes: Terms for *ANOVA* model (degree of freedom in parenthesis) are: irradiance level (1), CO_2 concentrations (1), irradiance level \times CO_2 concentrations (1), residual (16), total (19). Pairwise multiple comparison by *Student-Newman-Keuls* method. P_N – net photosynthetic rate; g_s – water stomatal conductance; E – transpiration rate; WUE – water-use efficiency; C_i/C_a – ratio of intercellular to ambient CO_2 concentration; Φ_{PSII} – effective quantum yield of PSII photochemistry; q_p – photochemical quenching; NPQ – nonphotochemical quenching. **Bold values** represent a statistically significant difference between conditions.

Variable	Irradiance level	$[\text{CO}_2]$	Irradiance level \times $[\text{CO}_2]$	Post hoc comparison tests			
				between irradiance level		between CO_2 concentration	
				AC	EC	ML	HL
P_N	<0.001	0.134	<0.001	0.213	<0.001	0.001	0.095
g_s	0.102	<0.001	0.494	0.104	0.474	<0.001	<0.001
E	0.003	<0.001	0.463	0.009	0.073	0.005	<0.001
WUE	0.153	<0.001	0.437	0.124	0.626	0.017	0.002
C_i/C_a	0.032	0.113	0.051	0.758	0.016	0.006	0.878
Φ_{PSII}	<0.001	0.070	0.386	<0.001	<0.001	0.063	0.468
q_p	<0.001	0.356	0.659	<0.001	<0.001	0.728	0.337
NPQ	<0.001	0.238	0.249	<0.001	<0.001	0.106	0.985

Our results indicate light level as an important factor in determining the photosynthetic response of *Z. mays* to short-term exposure at elevated CO_2 . This aspect could be considered in models that simulate the C_4 response to high CO_2 since light conditions and shading within the canopy change significantly (Larcher 2003).

The exposure to elevated CO_2 induced at both control- and high light an increase in WUE as a consequence of leaf transpiration decrease. The reduced leaf transpiration is responsible for the preservation of water status of the whole plant under atmospheric CO_2 enrichment and for the conservation of soil water content (Leakey *et al.* 2006).

This aspect may reveal important in a future scenario of climate change where a reduction in precipitation is expected (IPCC 2007). However it has also to be considered that an increase in instant WUE (P_N/g_s) does not necessarily result in an increase in integrated WUE (biomass increment/transpiration), as a decline in transpiration can lead to a decrease in growth.

Although at control light the short-term exposure to elevated CO_2 determined a reduction of P_N , Φ_{PSII} remained fairly constant as compared to ambient CO_2 . We suggest that at high light the reductive power was used mainly in photosynthetic carbon reduction cycle, while at control light, as the electron transport was not down-regulated by carbon metabolism, it was utilized in sinks other than carbon assimilation process. For instance, it has been demonstrated that Mehler reaction has a fundamental role in maize exposed at low temperature (Massacci *et al.* 1995, Fryer *et al.* 1998) and high light (D'Ambrosio *et al.* 2003). Also C_4 acid over cycling due to CO_2 leakage from bundle sheath to mesophyll cells represents a very active process in consuming electrons (Furbank *et al.* 1990, Henderson *et al.* 1992), as well as photorespiration under water stress (Lal and

Edwards 1996, Martinelli *et al.* 2007) and in old leaves (Dai *et al.* 1995, Kiirats *et al.* 2002).

In our opinion, we exclude that the slight increase of Φ_{PSII} observed at control light under elevated CO_2 could be attributable to the over cycling, since the exposure to elevated CO_2 could compensate the CO_2 leakage from bundle sheath to mesophyll cells. On the contrary, the possible reduction in PEPC activity could expose Rubisco to ambient O_2 determining an increase of photorespiration and, in turn, a reduction of photosynthetic rate. As a consequence of the increase of electron utilization in alternative sinks, the fraction of PSII open reaction centres (q_p) remained fairly constant in elevated CO_2 compared to control CO_2 leaves evidencing the positive contribution of these processes in preventing photo-inhibition. Irrespective of CO_2 concentration, the exposure to high light determines a reduction of photochemistry and a rise in NPQ compared to control light, indicating that, in this context, thermal dissipation plays a main role in preventing photodamages. The importance of thermal dissipation as safety mechanism is consistent with q_p values that are maintained under the threshold of photoinhibitory damage (Chow 1994).

Our results indicated that both control and high light in combination with elevated CO_2 did not result in a stimulatory effect on photosynthesis and the effective quantum yield of PSII photochemistry. More specifically, the exposure at moderate light under high CO_2 induced a decrease in CO_2 fixation but not in photochemistry, suggesting that the low photosynthetic rate was due to limitation in photosynthetic dark reaction rather than in PSII electron transport activity. High light together with high CO_2 exposure did not produce an increase of electron transport flow toward C fixation, thus the exposure to elevated CO_2 did not result in a beneficial effects in mitigating photoinhibitory damage risks

at elevated irradiances. However, despite no advantage on photosynthetic carbon gain, a decrease in transpirational water loss was achieved under high CO₂, at both irradiances, resulting in improving of plant water relations. The different response of maize photosynthetic

apparatus to light regime under high CO₂ has to be considered in models that simulate the maize response to CO₂ rising as the changes in light intensity within the canopy could represent an important factor in influencing the photosynthetic gain at elevated CO₂.

References

Alves, P., Magalhães, A.C.N., Barja, P.R.: The Phenomenon of photoinhibition of photosynthesis and its importance in reforestation. – *Bot. Rev.* **68**: 193-208, 2002.

Bassi, R., Passera, C.: Effect of growth conditions on carboxylating enzymes of *Zea mays* plants. – *Photosynth. Res.* **3**: 53-58, 1982.

Berry, J.A., Farquhar, G.D.: The CO₂ concentration function of C₄ photosynthesis. A biochemical model. – In: Hall, D.O., Coombs, J., Goodwin, T.W. (ed.): *Proceedings of the Fourth International Congress of Photosynthesis*. Pp. 473-507. Academic Press, San Diego 1978.

Bilger, W., Björkman, O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of *Hedera canariensis*. – *Photosynth. Res.* **25**: 173-185, 1990.

Bonugli, K.J., Davies, D.D.: The regulation of potato phosphoenolpyruvate carboxylase in relation to a metabolic pH stat. – *Planta* **133**: 281-287, 1977.

Bown, A.W.: CO₂ and intracellular pH. – *Plant Cell Environ.* **8**: 459-465, 1985.

Chen, G.Y., Yong, Z.H., Liao, Y., Zhang, D.Y., Chen, Y., Zhang, H.B., Chen, J., Zhu, J.G., Xu, D.Q.: Photosynthetic acclimation in rice leaves to free-air CO₂ enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation. – *Plant Cell Physiol.* **46**: 1036-1045, 2005.

Chow, W.S.: Photoprotection and photoinhibitory damage. – *Adv. Mol. Cell Biol.* **10**: 151-196, 1994.

Cousins, A.B., Adam, N.R., Wall, G.W., Kimball, B.A., Pinter, P.J., Ottman, M.J., Leavitt, S.W., Webber, A.: Photosystem II energy use, non-photochemical quenching and the xanthophyll cycle in *Sorghum bicolor* grown under drought and free-air CO₂ enrichment (FACE) conditions. – *Plant Cell Environ.* **25**: 1551-1559, 2002.

Cousins, A.B., Bloom, A.J.: Influence of elevated CO₂ and nitrogen nutrition on photosynthesis and nitrate photo-assimilation in maize (*Zea mays* L.). – *Plant Cell Environ.* **26**: 1525-1530, 2003.

D'Ambrosio, N., Arena, C., Virzo De Santo, A.: Different relationship between electron transport and CO₂ assimilation in two *Zea mays* cultivars as influenced by increasing irradiance. – *Photosynthetica* **41**: 489-495, 2003.

Dai, Z., Ku, M.S.B., Edwards, G.E.: C₄ photosynthesis. The effects of leaf development on the CO₂-concentrating mechanism and photorespiration in maize. – *Plant Physiol.* **107**: 815-825, 1995.

Defries, R.S., Townsend, J.R.G.: NDVI-derived land cover classifications at a global-scale. – *Int. J. Rem. Sens.* **15**: 3567-3586, 1994.

Fryer, M.J., Andrews, J.R., Oxborough, K., Blowers, D.A., Baker, N.R.: Relationship between CO₂ assimilation, photosynthetic electron transport, and active O₂ metabolism in leaves of maize in the field during periods of low temperature. – *Plant Physiol.* **116**: 571-580, 1998.

Furbank, R.T., Jenkins, C.L.D., Hatch, M.D.: C₄ photosynthesis: quantum requirement, C₄ acid over cycling and Q-cycle involvement. – *Aust. J. Plant Physiol.* **17**: 1-7, 1990.

Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – *Biochim. Biophys. Acta* **990**: 87-92, 1989.

Ghannoum, O., Von Caemmerer, S., Ziska, L.H., Conroy, J.P.: The growth response of C₄ plants to rising atmospheric CO₂ partial pressure: a reassessment. – *Plant Cell Environ.* **23**: 931-942, 2000.

Griffin, K.L., Tissue, D.T., Turnbull, M.H., Whitehead, D.: The onset of photosynthetic acclimation to elevated CO₂ partial pressure in field-grown *Pinus radiata* D. Don. after 4 years. – *Plant Cell Environ.* **23**: 1089-1098, 2000.

Habash, D.Z., Paul, M.J., Parry, M.A., Keys, A.J., Lawlor D.R.: Increased capacity for photosynthesis in wheat grown at elevated CO₂: the relationship between electron transport and carbon metabolism. – *Planta* **197**: 482-489, 1995.

Henderson, S.A., von Caemmerer, S., Farquhar, G.D.: Short term measurements of carbon isotope discrimination in several C₄ species. – *Aust. J. Plant Physiol.* **19**: 263-285, 1992.

Hogan, K.P., Fleck, I., Bungard, R., Cheeseman, J.M., Whitehead, D.: Effect of elevated CO₂ on the utilization of light energy in *Nothofagus fusca* and *Pinus radiata*. – *J. Exp. Bot.* **48**: 1289-1297, 1997.

Hymus, G.J., Baker, N.R., Long, S.P.: Growth in elevated CO₂ can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner. *Dactylis glomerata* grown in two levels of nitrogen nutrition. – *Plant Physiol.* **127**: 1204-1211, 2001.

Intergovernmental Panel on Climate Change (IPCC). Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. – Cambridge Univ. Press, Cambridge 2007.

Jacob, J., Greitner, C., Drake, B.G.: Acclimation of photosynthesis in relation to Rubisco and non-structural carbohydrate contents and *in situ* carboxylase activity in *Scirpus olneyi* grown at elevated CO₂ in the field. – *Plant Cell Environ.* **18**: 875-884, 1995.

Kirrats, O., Lea, P.J., Franceschi, V.R., Edwards, G.E.: Bundle sheath diffusive resistance to CO₂ and effectiveness of C₄ photosynthesis and refixation of photorespired CO₂ in a C₄ cycle mutant and wild-type *Amaranthus edulis*. – *Plant Physiol.* **130**: 964-976, 2002.

Kim, S.H., Gitz, D.C., Sicher, R.C., Baker, J.T., Timlin, D.J., Reddy, V.R.: Temperature dependence of growth, development, and photosynthesis in maize under elevated CO₂. – *Environ. Exp. Bot.* **61**: 224-236, 2007.

Lal, A., Edwards, G.E.: Analysis of inhibition of photosynthesis under water stress in the C₄ species *Amaranthus cruentus* and *Zea mays*: electron transport, CO₂ fixation and carboxylation

capacity. – Aust. J. Plant Physiol. **23**: 403-412, 1996.

Larcher, W.: Physiological Plant Ecology. – Springer-Verlag, Berlin 2003.

Leakey, A.D.B., Bernacchi, C.J., Dohleman, F.G., Ort, D.R., Long, S.P.: Will photosynthesis of maize (*Zea mays*) in the US Corn Belt increase in future [CO₂] rich atmospheres? An analysis of diurnal courses of CO₂ uptake under free-air concentration enrichment (FACE). – Global Change Biol. **10**: 951-962, 2004.

Leakey, A.D.B., Uribelarrea, M., Ainsworth, E.A., Naidu, S.L., Rogers, A., Ort, D.R., Long, S.P.: Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO₂ concentration in the absence of drought. – Plant Physiol. **140**: 779-790, 2006.

Leakey, A.D.B., Ainsworth, E.A., Bernacchi, C.J., Rogers, A., Long, S.P. and Ort, D.R.: Elevated CO₂ effects on plant carbon, nitrogen and water relations: six important lessons from FACE. – J. Exp. Bot. **60**: 2859-2876, 2009.

Long, S.P., Bernacchi, C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. – J. Exp. Bot. **54**: 2393-2401, 2003.

Loreto, F., Tricoli, D., Di Marco, G.: On the relationship between electron transport rate and photosynthesis in leaves of the C₄ plant *Sorghum bicolor* exposed to water stress, temperature changes and carbon metabolism inhibition. – Aust. J. Plant Physiol. **22**: 885-892, 1995.

Maroco, J.P., Edwards, G.E., Ku, M.S.B.: Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. – Planta **210**: 115-125, 1999.

Martinelli, T., Whittaker, A., Mascalaux-Daubresse, C., Farrant, J.M., Brilli, F., Loreto, F., Vanazza, C.: Evidence for the presence of photorespiration in desiccation-sensitive leaves of the C₄ ‘resurrection’ plant *Sporobolus stapfianus* during dehydration stress. – J. Exp. Bot. **58**: 3929-3939, 2007.

Massacci, A., Iannelli, M.A., Pietrini, F., Loreto, F.: The effect of growth at low temperature on photosynthetic characteristics and mechanisms of photoprotection of maize leaves. – J. Exp. Bot. **46**: 119-127, 1995.

Osborne, C.P., Drake, B.G., La Roche, J., Garcia, R.L., Long, S.P.: Does Long-term elevation of CO₂ concentration increase photosynthesis in forest floor vegetation? Indiana strawberry in a Maryland forest. – Plant Physiol. **114**: 337-344, 1997.

Pérez, P., Zita, G., Morcuende, R., Martínez-Carrasco, R.: Elevated CO₂ and temperature differentially affect photosynthesis and resource allocation in flag and penultimate leaves of wheat. – Photosynthetica **45**: 9-17, 2007.

Reddy, A. R., Rasineni, G. K., Raghavendra A.S.: The impact of global elevated CO₂ concentration on photosynthesis and plant productivity. – Curr. Sci. **99**: 46-57, 2010.

Rogers, A., Humphries, S.W.: A mechanistic evaluation of photosynthetic acclimation at elevated CO₂. – Global Change Biol. **6**: 1005-1011, 2000.

Sage, R.F., Kubien, D.S.: *Quo vadis C₄?* An ecophysiological perspective on global change and the future of C₄ plants. – Photosynth. Res. **77**: 209-225, 2003.

Samarakoon, A.B., Gifford, R.M.: Elevated CO₂ effects on water use and growth of maize in wet and drying soil. – Aust. J. Plant Physiol. **23**: 53-62, 1996.

Siriphanchit, J., Kader, A.A.: Changes in cytosolic and vacuolar pH in harvested lettuce tissue as influenced by CO₂. – J. Am. Soc. Hort. Sci. **111**: 73-77, 1986.

Urban, O., Pokorný, R., Kalina, J., Marek, M.V.: Control mechanisms of photosynthetic capacity under elevated CO₂ concentration: evidence from three experiments with Norway spruce trees. – Photosynthetica **41**: 69-75, 2003.

von Caemmerer, S., Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. – Planta **153**: 376-387, 1981.

von Caemmerer, S., Farquhar, G.D.: The modelling of C₄ photosynthesis. – In: Sage, R.F., Monson, R.K. (ed.): C₄ Plant Biology. Pp. 173-211. Academic Press, San Diego 1999.

Wand, S.J.E., Midgley, G.F., Jones, M.H., Curtis, P.S.: Responses of wild C₄ and C₃ grass (Poaceae) species to elevated atmospheric CO₂ concentration: a meta-analytic test of current theories and perceptions. – Global Change Biol. **5**: 723-741, 1999.

Young, K.J., Long, S.P.: Crop ecosystem responses to climatic change: maize and sorghum. – In: Reddy, K.R., Hodges, H.F. (ed.): Climate Change and Global Crop Productivity. Pp. 107-131. CABI International, Oxon 2000.

Zhang, D.-Y., Chen, G.-Y., Yong, Z.-H., Zhu, J.-G., Xu, D.-Q.: Photosynthetic acclimation to CO₂ enrichment related to ribulose-1,5-bisphosphate carboxylation limitation in wheat. – Photosynthetica **47**: 152-154, 2009.

Ziska, L.H., Bunce, J.A.: Influence of elevated carbon dioxide concentration on the photosynthetic and growth stimulation of selected C₄ crops and weeds. – Photosynth. Res. **54**: 199-208, 1997.

Ziska, L.H., Sicher, R.C., Bunce, J.A.: The impact of elevated carbon dioxide on the growth and gas exchange of three C₄ species differing in CO₂ leak rates. – Physiol. Plant. **105**: 74-80, 1999.