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Lantana camara L.: a weed with great light-acclimation capacity
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Abstract

Plant invasions may be limited by low radiation levels in ecosystems such as forests. Lantana camara has been
classified among the world’s 10 worst weeds since it is invading many different habitats all around the planet.
Morphological and physiological responses to different light fluxes were analyzed. L. camara was able to acclimate to
moderately shaded environments, showing a high phenotypic plasticity. Morphological acclimation to low light fluxes
was typified by increasing leaf size, leaf biomass, leaf area index and plant height and by reduced stomatal density and
leaf thickness. Plants in full sunlight produced many more inflorescences than in shaded conditions. Physiological
acclimation to low radiation levels was shown to be higher stomatal conductance, higher net photosynthetic rates and
higher efficiency of photosystem II (PSII). L. camara behaves as a facultative shade-tolerant plant, being able to grow in
moderately sheltered environments, however its invasion could be limited in very shady habitats. Control efforts in
patchy environments should be mainly directed against individuals in open areas since that is where the production of
seeds would be higher and the progress of the invasion would be faster.
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Introduction

Several features of plant form, physiology, and resource
allocation vary with the level of irradiance to which
plants are acclimated and/or ecologically restricted
(Givnish 1988); thus, plants exposed to high irradiance
levels generally have higher photosynthetic rates,
chlorophyll (Chl) a/b ratio, leaf thickness, stomatal
density and reproductive efforts, and smaller stomatal
size than plants at low light conditions (Boardman 1977,
Bjorkman 1981, Bazzaz et al. 1987, Givnish 1987).

Leaf morphology and anatomy, gas exchange, water
relations, water-use efficiency, stomatal conductance (gy),
biomass and photosynthesis of sun-adapted plants can be
altered when growing in a light-limiting environment
(Bjorkman 1981, Muthuchelian et a/. 1989). In addition,
shade diminishes reproductive potential directly by
decreasing flowering, fruit set and fruit size (Hampson
et al.1996). To avoid negative effects of low radiation
levels, some plants show a high degree of phenotypic
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plasticity in response to low light conditions, manifested
in increased leaf area and stem biomass, reduced leaf
thickness, increased specific leaf area and increased
photosynthetic pigment concentration for maximization
of light absorption (Bjorkman 1981, Turnbull 1991,
Poorter and Perez-Soba 2001, Sage and McKown 2006).

Invasive plant species may show a high tolerance to
different abiotic environmental factors (Mack 1996) but
their colonization may be limited by extreme conditions
such as low radiation levels (Dawson ef al. 2009). In this
context, the tolerance of invasive species to harsh
environments may be related to rapid evolutionary
changes (Lambrinos 2004) and high phenotypic plasticity
(Daehler 2003).

L. camara L. (Verbenaceae) has been classified among
the world’s 10 worst weeds, invading a wide variety of
habitats in tropical, subtropical and temperate regions
(Holm et al. 1977, Sharma et al. 1988, Day et al. 2003).
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Abbreviations: C; — intercellular CO, concentration; Car — carotenoids; Chl — chlorophyll; F;,, — maximal fluorescence level in the
dark-adapted state; Fy — minimal fluorescence level in the dark-adapted state; F,/F,, — maximum quantum efficiency of PSII
photochemistry; g; — stomatal conductance; LAI — leaf area index; LCP — light compensation point; LGR — leaf growth rate;
LSP — light saturation point; NPQ — nonphotochemical quenching; P,,,, — maximum photosynthetic rate; Py — net photosynthetic rate;
PPFD — photosynthetic photon flux density; PSII — photosystem II; qp — photochemical quenching; Rp — dark respiration rate;
SLA — specific leaf area; WUE; — intrinsic water-use efficiency; ®psy — quantum efficiency of PSII.
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Researchers have described L. camara as mostly
occupying open sunny places such as degraded lands,
grasslands, crops and forest edges, abandoned crops,
coastal areas or disturbed forests (Parsons and
Cuthbertson 2001, Sharma et al. 2005), and as not
developing properly in very shady habitats such as well-
conserved forests (Thakur et al. 1992, Fensham et al.
1994, Gentle and Duggin 1997). However, our field
observations of invasive populations of L. camara in the
Galapagos Islands and in the Southwest Iberian Peninsula
showed that they were able to grow in unaltered forests.

Materials and methods

Plant material and light treatments: Plant material was
collected in May 2009, consisting in stem cuttings of ten
adult individuals of L. camara (4 cuttings per individual)
collected from an invading population growing at an
open, unshaded site on the Asperillo Sea Cliff, Southwest
Iberian Peninsula (37°06°'N — 6°46°’W). Cuttings with
similar sizes (ca. 20 cm long and ca. 1 cm diameter) were
cultivated in perlite substrate until they developed
abundant roots and then were transplanted to plastic pots
(diameter: 16.5 cm; depth: 15.0 cm) in peat soil and
immediately exposed to the light treatments. Every pot
contained just one cutting that was chosen randomly from
those collected in the field.

Our experiment was conducted in the open-air area of
the greenhouse facilities of the University of Seville
(37°21°42°N — 5°59’15’W) from July to December
2009. Pots were randomly assigned to one of four light
treatments: (T1): 100% of full sunlight, (T2): 55% of full
sunlight, (T3): 37% of full sunlight and (T4): 23% of full
sunlight (n = 4 plants per treatment). Irradiance was
controlled with neutral shade cloth (Hummert
International, Earth City, MO USA). Although deep
shade (<5%) is traditionally used in shade-tolerance
studies, we used 23% of full sunlight because it
represents the deepest shade generally found in the
natural forests of Galapagos Island and coastal areas of
Southwest Iberian Peninsula where L. camara is invading
(Carrion-Tacuri, unpublished data). Maximum daily
photosynthetic photon flux density (PPFD) durlng the
experiment ranged from 1,900 pmol(photon) m? s’ in
July to 1,100 pmol(photon) m* s in December. Pots
were permanently submerged lcm deep in water and
watered gently once a day to avoid water stress.

Gas-exchange measurements were taken for the
youngest fully developed leaf of randomly chosen stems
using an infrared gas analyzer in an open system
(LI-6400, Li-COR Inc., Lincoln, NE, USA). Net photo-
synthetic rate (Py), stomatal conductance (g;) and
intercellular CO, concentration (C;) were recorded in
October 2009 within light saturation curves (n = 2 curves
per treatment, Martinez-Ferri et al. 2004). Measurements
were taken at 23°C, 380 pmol mol™! of CO, concen-
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There has been no prior research specifically studying
the responses of L. camara to different radiation
environments.

Our observations in the field led us to hypothesize
that L. camara would be able to grow in shady environ-
ments, showing high phenotypic plasticity in response to
different light environments. To test this hypothesis, this
work analyzes a series of morphological and physiolo-
gical responses of L. camara to four contrasted light
fluxes.

tration. Vapour pressure deficit (VPD) was held at
a constant range from 1-1.3 kPa. Py, g;, and C; were cal-
culated according to von Caemmerer and Farquhar
(1981). Intrinsic water-use efficiency (WUE;) was calcu-
lated as the ratio between Py and g, (Moutinho-Pereira
et al. 2004). The photosynthetic response of the leaves to
photosynthetic photon flux density (PPFD) was modelled
by a rectangular hyperbola quadratic equation presented
by Chartier and Prioul (1976), where the light compen-
sation point (LCP) and the dark respiration rate (Rp) were
estimated from axis intercepts. The light saturation point
(LSP) was defined as the lowest value of PPFD at which
maximum photosynthetic rate (Pn.x) was reached.

Chl a fluorescence parameters were also recorded in
October 2009 at predawn and at midday at the light flux
of each treatment. Measurements were taken at 23°C air
temperature with 62% air relative humidity at predawn
and at 24°C with 58% humidity at midday.

Fluorescence was measured in the adaxial leaf surface
of the youngest fully developed leaf of randomly chosen
stems (n = 4 plants per treatment; 4 leaves per plant)
using a portable modulated fluorimeter (FMS-2,
Hansatech Instruments Ltd., King's Lynn, UK). Leaves
were adapted to dark conditions for 30 min using leaf
clips. The minimal fluorescence level in the dark-adapted
state (Fy) was measured using a modulate pulse [PPFD <
0.05 pmol(photon) m = s~ for 1.8 ps] too small to induce
significant physiological changes in the plant (Schreiber
et al. 1986). The data recorded were averages taken over
a 1.6-s period. Maximal fluorescence in this state (Fy,)
was measured after applying a saturating actinic light
pulse of 15,000 pmol(photon) m? s™' for 0.7 s (Bolhar-
Nordenkampf and Oquist 1993). The value of F,, was
recorded as the highest average of two consecutive
points. Values of the variable fluorescence (F, = F, — Fy)
and the maximum quantum efficiency of PSII
photochemistry (F,/F,,) were calculated.

The same leaf section of each plant was used to
measure light-adapted parameters. Steady state fluores-
cence yield (Fs) was recorded after adapting plants to
ambient light conditions [with full sunlight of 1,150
umol(photon) m? s™']. A saturating actinic light pulse of



15,000 umol(photon) m~ s~ for 0.7 s was then used to
produce the maximum fluorescence yield (F,") by
temporarily inhibiting PSII photochemistry. With both
light- and dark-adapted states fluorescence parameters,
the following were calculated: quantum efficiency of PSII
[@ps = (Fi” — Fs)/Fi"], photochemical quenching [qp =
(Fu” — F)/(F,” — Fy)], and nonphotochemical quenching
[NPQ = (F,, — Fy)/Fi, '] (Bilger and Bjoérkman 1990).

Photosynthetic pigments of the same leaves used for
Chl fluorescence measurements (n = 4; 1 leaf per plant)
were extracted in October 2009 using 0.1 g of fresh
material in 5 ml of 80% aqueous acetone. After filtering,
0.5 ml of the suspension was diluted with a further 2 ml
of acetone and Chl a, Chl b, and carotenoids (Car)
concentrations were determined with a Hitachi U-2001
spectrophotometer (Hitachi Ltd., Japan) using three
wavelengths (663.2, 646.8, and 470.0 nm). Concentrations
of pigments [mg g '(FM)] were obtained through
calculation (Lichtenthaler 1987).

Stomatal density (SD) [number of stomata mm “(leaf
blade)] was determined for youngest fully developed
leaves in December 2009 (n = 4; 1 leaf of each plant per
treatment). From the abaxial surface of each leaf, a
sample was taken using the imprint technique (Meister
and Bolhar-Nordenkampf 2003), three random fields
(0.14 mm?) were observed and the number of stomata
was counted on each sample using an OLYMPUS BX61
Motorized System Microscope (Horanic and Gardner
1967).

Leaf growth and leaf morphology: Relative leaf growth
rate (LGR) was measured for the youngest leaf (n = 4
plants per treatment; 3 leaves per plant) using an
Electronic Digital Caliper in October 2009. Leaves were
marked with inert sealant and their length was recorded
just after marking them and again 1 week later. LGR was
calculated as the net growth in length after 1 week,
divided by the initial leaf length (Ewing et al. 1995). Leaf
area was calculated applying the ellipse formula after

Results

Gas exchange: Py for T3 was higher than for the other
treatments (Fig. 1), showing the P,y [ca. 10 pmol(CO,)
m *s '] at high light fluxes [1,750 pmol (photon) m > s ']
whereas T2 showed the lowest P, [ca. 6 pmol(CO,)
m~ s ']. LSP was much higher for the plants at shade
conditions [ca. 2,000 pmol(photon) m™ s'] than for
those at full sunlight [ca. 1,125 pmol(photon) m?s'].
LCP was the highest for T1 [ca. 12 pmol(photon) m s ']
and the lowest for T2 [ca. 4 pmol(photon) m* s '] while
the other treatments showed intermediate values [ca. 5 to
8 pmol(photon) m? s']. T1 showed the maximum Rp
[-0.80 umol(CO,) m? s'] and T2 the minimum [-0.35
umol(CO,) m* s '] with T3 and T4 showing values ca.
—0.5 t0 —0.7 pmol(CO,) m % s ' (Table 1).

LANTANA CAMARA LIGHT RESPONSES

recording maximum length and maximum width of adult
leaves (n = 4 per treatment; 5 leaves per plant).

Leaf area index and specific leaf area: To calculate the
leaf area index (LAI) at the end of the experiment we
recorded the area covered by each plant and the dry mass
of four leaf drilled circular pieces (1.3 cm diameter) per
plant (n = 4 plants). Then to calculate total leaf area and
LAI per plant, we used the mass of the circular pieces
with a known area and the recorded total leaf dry mass
per plant as reported previously. The specific leaf area
(SLA) was calculated as the ratio of leaf area to leaf dry
mass [cm” g '] pursuant to Garnier ef al. (2001).

Plant morphology, number of inflorescences and
biomass allocation: At the end of the experiment,
maximum plant height, occupied area (by measuring
maximum length and width) and the number of
inflorescences were recorded for each plant. Finally
plants were removed from the pots, carefully washed and
divided into leaves, stems and roots. The components of
each plant were dried separately in a forced-air oven
(80°C for 48 h) and dry mass was recorded.

Statistical analysis: All statistical tests were conducted
using SPSS v.17 (Statistic Inc.). The Kolmogorov-
Smirnov test was used to test for data normality and the
Levene test for homogeneity of variance. When
necessary, dependent variables were transformed using
the functions 1/x, In(x) or Vx to achieve requirements of
normality. Analysis of variance (ANOVA) was used to
detect differences between light treatments and Tukey’s
Honest Significant Difference (HSD) test was used to
detect differences between two treatments only if F-test
was significant at the 0.05 level of probability. Kruskal-
Wallis nonparametric ANOVA was used to compare
treatments when normality or homogeneity of variance
were not reached after transformations, followed by the
Mann-Whitney U-test to compare two treatments.
Deviations were calculated as standard deviation (SD).

Plants exposed to full sunlight (T1) showed the smal-
lest and almost constant g, [ca. 90 mmol(H,0) m ™ s™'].
The g values for T2 were similar to those for T1 at the
lowest light fluxes, increasing to ca. 300 mmol(H,0)
m s at higher PPFD. g, for T3 and T4 was higher than
for T1 and T2, being ca. 300 mmol(H,0) m = s at lower
radiations and increasing to ca. 550 mmol(H,0) m?* s
with PPFD (Fig. 1).

C; for T1 ranged from ca. 210-380 pmol mol ', being
lower than the C; for all treatments from 100 pmol
(photon) m? s onwards. C; for T2, T3 and T4 was
ca. 340 pmol mol'. WUE; for T1 was higher (maximum
ca. 74 mmol mol™) than for the other treatments (ca.
18 mmol mol ™) (Fig. 1).
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Fig. 1. A: Net photosynthetic rate (Py), B: stomatal conductance (g;), C: intercellular CO, concentration (C;) and D: intrinsic water-use
efficiency (WUE;) against photosynthetic photon flux density (PPFD) for Lantana camara in four light treatments (T1: 100%
sunlight; T2: 55% sunlight; T3: 37% sunlight; T4: 23% sunlight). Data are means (n = 2).

Table 1. Maximum photosynthetic rate (Pp.y), light compensation point (LCP), dark respiration rate (Rp); and light saturation point
(LSP) for Lantana camara in four light treatments (T1 — 100% sunlight; T2 — 55% sunlight; T3 — 37% sunlight; T4 — 23% sunlight).

(mean + SD, n = 2 light curves per treatment).

Variables/Treatments T1 T2 T3 T4

Poax [nmol(CO) m?2s™'] 69+ 1.4 59+19 10.4+0.1 79+ 1.4
LCP [pumol m™>s™'] 119+13 3.8+0.0 53+2.1 83+2.1
Rp [umol m>s™'] —0.8+0.1 ~0.3+0.0 -0.5+0.1 —0.7+0.1
LSP [pumol m > s™'] 1,125+530 1,750 + 354 1,750 £354 2,000+ 0

Chlorophyll fluorescence: At predawn, @pgy; (ca. 0.800),
gp (ca. 0.98), Fy (ca. 209 r.u.) and F,/F, (ca. 0.850) were
similar for every treatment. F,, F, and NPQ for T1 were
lower than for the other treatments (7Tukey’s test, p<0.01).

Dpgy; at midday for T1 (0.375 £ 0.12) was lower than
for the other treatments (ca. 0.700) (Kruskal-Wallis
ANOVA, y* = 10.147, p<0.05; Mann-Whitney U-test,
p<0.05). gp was also lower for T1 (0.78 = 0.06) than for
T4 (0.89 + 0.02), showing T2 and T3 intermediate values
(ANOVA, F = 4.738, p<0.05; Tukey’s test, p<0.05). NPQ
was much higher for T1 (1.61 £ 0.52) than for the other
three treatments (ca. 0.29) (Kruskal-Wallis ANOVA,
¥ = 9.551, p<0.05; Mann-Whitney U-test, p<0.05). T2,
T3 and T4 showed a higher F,/F, (ca. 0.825) than T1
(ca. 0.788) (Kruskal-Wallis ANOVA, ¥* = 9.288, p<0.05;
Mann-Whitney U-test, p<0.05). Lower values of F,/F,, for
T1 were due to lower F,, (Tukey’s test, p<0.05) with
similar Fy (ca. 200 r.u.; Fig. 2).

Photosynthetic pigments: T1 showed the lowest concen
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trations of every photosynthetic pigment. T3 had the
highest content of Chl a [1.67 + 0.10 mg g '(FM)]
(ANOVA, F = 7.115, p<0.01; Tukey’s test, p<0.01) and
T2 showed the highest Chl b content [0.69 + 0.12 mg g’
(FM)] (Kruskal-Wallis, x> = 5.333, p<0.05; Mann-
Whitney U-test, p<0.05). Car showed similar values for
every shade treatment [ca. 0.75 mg g '(FM)] which were
all higher than for the full sunlight treatment [ca. 0.48 mg
g '(FM)] (ANOVA, F = 4.014, p<0.05; Tukey’s test,
p<0.05). Chl a:Chl b ratio varied between 2.42 and 2.98;
T2 and T3 showed higher values than T1 (Mann-Whitney
U-test, p<0.05). Chl (a+b):Car ratio was higher for T2
[3.19 = 0.25 mg g '(FM)] than for T4 [2.38 £ 0.49 mg g '
(FM)], showing T1 and T3 intermediate values (Table 2).

Stomatal density, leaf growth rate and leaf morpho-
logy: SD was higher for T1 [283 + 23 stomata mm *(leaf
blade)] than for darker treatments [ca. 170 stomata mm >
(leaf blade)]; Kruskal-Wallis ANOVA, x2 =9.345, p<0.05;
Mann-Whitney U-test, p<0.05; Table 2).
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Fig. 2. 4: Quantum efficiency of PSII (®pgy), photochemical
quenching (qp), nonphotochemical quenching (NPQ), B: basal
fluorescence (Fy), maximum fluorescence (F,), variable fluores-
cence (F,) and C: potential photochemical efficiency (F,/Fy,) for
Lantana camara in four light treatments during midday (T1:
100% sunlight; T2: 55% sunlight; T3: 37% sunlight; T4: 23%
sunlight), (mean + SD, n = 4).

Discussion

This work reports that the invasive species L. camara is
able to acclimate to moderately shaded environments,
showing high phenotypic plasticity in the form of a wide
variety of morphological and physiologically responses,
but its reproductive effort was lower at low light fluxes.
As other plant species, morphological acclimation
of L. camara to low radiations was typified by increasing
leaf size, leaf biomass, LAI and plant height, and by
decreasing SD and leaf thickness reflected in a higher
SLA (Bjorkman 1981, Poorter and Perez-Soba 2001).
Increment of SLA at low light conditions is due to
changes in size, shape, and number of leaf mesophyll
cells that reduce leaf thickness (Bjorkman 1981).
A higher SD at more illuminated environments has been
described previously, being characterized as a xero-
morphic leaf feature (Gyorgy 2009). L. camara generally

LANTANA CAMARA LIGHT RESPONSES

LGR tended to increase at darker treatments, varying
between ca. 0.85 and 2.40 mm week ' mm'. Leaf mean
width varied between 4.5 = 0.1 cm and 7.9 £ 0.2 cm and
leaf mean length between 6.9 + 0.3 cm and 11.8 £ 0.9 cm.
Leaves were larger at darker treatments, changing
between 24.3 + 3.0 cm’ for T1 and 74.0 + 10.3 cm” for
T4 (ANOVA, F = 15.423, p<0.01; Tukey’s test, p<0.05;
Table 2).

Leaf area index and specific leaf area: T3 showed a
much higher LAI (ca. 21) than Tl and T2 (ca. 8)
(ANOVA, F =10.240, p<0.01; Tukey’s test, p<0.05). SLA
was lower for T1 (19.67 + 3.32 cm” g') than for shadier
treatments (ca. 34 cm’ g’l; ANOVA, F = 12.615, p<0.01;
Tukey’s test, p<0.01; Table 2).

Plant height, cover and number of inflorescences:
Plants were taller at darker treatments, varying between

51.0 £ 6.9 cm for T1 and 89.7 £ 3.9 cm for T3 (Kruskal-

Wallis ANOVA, y* = 8.886, p<0.05; Mann-Whitney
U-test, p<0.05). Individual plant cover was ca. 0.140 m’,
without showing any significant differences between
treatments (ANOVA, p>0.05). Tl showed much more
inflorescences (127 + 34 inflorescences m?) than the
other three treatments (ca. 20-30 inflorescences m 2
ANOVA, F = 14.658, p<0.01; Table 2). Finally, the
number of fruits per infructescence did not change
between treatments, varying between 5 and 15 fruits
infructescence .

Biomass allocation: Stem and root biomass did not vary
between treatments (ANOVA, p>0.05). Except T3 showed
higher leaf biomass [59.5 + 12.9 g(DM) m *] than T1 and
T2 [ca. 33 g(DM) m>] (ANOVA, F = 5.164, p<0.05;
Fig. 3). Above-to-belowground biomass and leaves:stems
ratios showed no significant differences between light
treatments (ANOVA, p>0.05).

grows from 2 to 4 m high (Auld and Medd 1987, Conn
1992) but to avoid shade conditions it can grow up
to 15 m supported by surrounding vegetation (Swarbrick
et al. 1998). This supports our finding of taller plants at
shadier environments with larger but thinner stems.
L. camara leaves have been reported to be 20-120 mm
long and 15-80 mm wide (Holm et al. 1977, Conn 1992,
Munir 1996, Swarbrick et al. 1998, Parsons and
Cuthbertson 2001). Our results for plants exposed to full
sunlight ranged between those intervals (50-75 mm long
and 28-53 mm wide) but our values for shaded plants
(84—137 mm long and 64-94 mm wide) were higher than
those recorded previously. Van Oosterhout (2004)
recorded changes on L. camara leaf size as a function of
moisture availability. Previous studies for different plant
species have described increases in foliar size and LAI as
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Table 2. Chlorophyll (Chl) a, Chl b; carotenoids (Car) contents; Chl a:Chl b ratio, Chl (a+b):Car ratio, stomatal density, relative leaf
growth rate, leaf area, plant height, occupied areas per plant, inflorescences, leaf area index and specific leaf area for Lantana camara
in four light treatments (T1 — 100% sunlight; T2 — 55% sunlight; T3 — 37% sunlight; T4 — 23% sunlight). Different letters indicate
significant difference between treatments. FM — fresh mass. (mean & SD, n = 4).

Variables/Treatments T1 T2 T3 T4
Chl a [mg g”'(FM)] 0.93 +£0.12° 1.65+0.25°  1.67+0.10° 1.38 £ 0.43™
Chl b [mg g '(FM)] 0.32 + 0.06° 0.69+0.12°  0.67+0.05° 0.41 +0.27%
Car [mg g (FM)] 0.48 + 0.05° 0.74+0.12°  0.77+0.07° 0.74 +0.10°
Chl a:Chl b 2.98 +0.35° 242+0.06°  2.50+0.04° 2.55+0.04%
Chl (a+b):Car 262+041"  319+£025°  3.07+£031%  238+049°
Stomatal density [stomata mm ] 283 +23° 197 + 42% 165+ 7° 181 £25°
Leaf growth rate [mm week ' mm™']  0.85 + 0.29° 1.25 £ 0.69" 233+ 1.44° 2.39 £0.62°
Leaf area [cm?] 243 +3.0° 4414116  665+167°  74.0+10.3°
Plant height [cm)] 51.0 + 6.9° 83.3+ 142"  89.8+3.9" 85.0+ 10.4°
Occupied area [m’] 0.15+0.07° 0.15+0.03*  0.14+0.03° 0.14 £ 0.06
Inflorescences [inflorescences m ] 127 + 34* 33 +£33° 23+8° 23+ 19°
Leaf area index [cm® g '] 6.4 +3.4° 10.4 + 2.0 21.4+6.0° 14.6 + 3.6™
Specific leaf area [cm” g '] 19.7 £3.3% 340+5.1° 38.5+4.9° 32.6+4.5°
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responses to shady conditions (Lichtenthaler ef al. 1981,
Meziane and Shipley 2001, McAlpine and Jesson 2007).
Above-to-belowground biomass and leaf-to-stem
biomass ratios were similar across all light environments.
This is not in keeping with optimal partitioning models
that predict that some plants optimise growth under
different environmental conditions by shifting biomass
allocation among tissue types to maximise the capture of
limiting resources (McAlpine and Jesson 2007). Thus,
L. camara seemed to respond to lower radiation levels by
changing its growth form rather than by modifying its
biomass allocation pattern. Only foliar biomass in
conditions of moderate shade was higher than for plants
growing at full sunlight. Plants at full sunlight produced a
higher number of inflorescences than the shading
treatments as reported in other studies (Hampson et al.
1996, Matsoukis et al. 2001). High temperatures and
especially high radiations act as induction stimuli for
flowering (Vasconcelos et al. 2009). Our results pointed
to the existence of an allocation trade-off among
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vegetative growth and sexual reproduction for L. camara,
capable of producing relatively large and numerous
berries, as has been reported for other species (e.g.
Thompson and Eckert 2004, Zunzunegui et al. 2006).

On the other hand, L. camara physiological acclima-
tion to low radiation levels was shown as higher ®pg;, qp,
and F./F,, reflecting higher efficiency of PSII (Bolhar-
Nordenkampf and Oquist 1993). The decrease in F,/F,, at
higher radiation levels was due to lower F,, values with
similar Fy, reflecting deactivation of PSII reaction centres
at high light (Maxwell and Johnson 2000).

In addition, plants exposed to shadier conditions
showed lower NPQ without a clear relationship with
Chl (a+b)/Car ratio, which indicates that the xanthophyll
cycle seemed to play an important role in L. camara
NPQ; this was also supported by the large differences
between predawn and midday NPQ recorded for plants
exposed to full sunlight (Szabo et al. 2005). Moreover,
Chl concentration increased at lower light fluxes as an
acclimation response to increase radiation absorption
(Turnbull 1991). In contrast, a reduction in Chl



concentration at higher radiation levels can be attributed
to a photoprotective response against adverse conditions,
by reducing the leaf photon absorption capacity, thus

preventing over—excitation of photosynthesis (Anderson

et al. 1992), as reported for invasive L. camara subjected
to extreme drought at Galapagos Islands (Castillo et al.
2007). As a result of the lower concentration of photo-
synthetic pigments, L. camara plants that grow at full
sunlight showed a faster saturation of photosynthesis with
light and a consequently lower gp and light saturation
point. Photoprotection mechanisms allowed L. camara to
avoid permanent photodamages as reflected in similar
Dpgy, gp, and F/F,, for every light treatment at predawn.

The capacity of L. camara to acclimate to shady
environments was also shown as higher Py, which could
be related to very different responses such as a highly
efficient PSII and high Chl concentrations. Nevertheless,
Py recorded for L. camara was lower than those reported
previously for sun leaves [10—15 pmol(CO,) m? s']
following Loach (1967) and Larcher (1995), except for
plants exposed to 37% of full sunlight. These plants
showed the highest Py coinciding with the highest g;. In
contrast, L. camara plants exposed to full sunlight
showed the lowest g, [ca. 100 mmol(H,0) m* s'] even
with the highest stomatal density, since stomata closure is
regulated by radiation level (Broadman 1977, Smith
1981). The low values of g; at full sunlight did not limit
Py (C; dropped just to ca. 250 pmol mol ") in relation to
plants at 55% of full sunlight with higher g,. As a result,
L. camara at full sunlight showed much higher WUE;
than those exposed to lower radiation levels.

Similar to previous studies of other shade-tolerant
species, this plant adjusted physiologically to shading by
lower light compensation points and dark respiration
rates (Sims and Pearcy 1991, Midgley et al. 1992,
Hamerlynck and Knapp 1994, Groninger et al. 1996,
Olsen et al. 2002, Aleric and Kirkman 2005), being
typified as physiological acclimation to low-light envi-
ronments (Broadman 1977, Smith 1981). Py, increased
with increasing light treatment up to intermediate light
levels (37% of full sunlight), followed by a decline in
P.x at full sunlight (Aleric and Kirkman 2005).

L. camara behaves as a facultative shade-tolerant
plant, being able to grow on moderately sheltered
environments. This result agrees with our field
observations of invasive populations in Galapagos Islands
and Southwest Iberian Peninsula that are able to colonize
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