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Abstract

Leaf area is one of the most important parameter for plant growth. Reliable equations were offered to predict leaf area
for Zea mays L. cultivars. All equations produced for leaf areca were derived as affected by leaf length and leaf width. As
a result of ANOVA and multiregression analysis, it was found that there was a close relationship between actual and
predicted growth parameters. The produced leaf-area prediction model in the present study is LA=a+bL+cW+dLZ
where LA is leaf area, L is leaf length, W is maximum leaf width, LZ is leaf zone and a, b, c, d are coefficients.
R’ values were between 0.88—0.97 and standard errors were found to be significant at the p<0.001 significance level.
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Leaf area is routinely measured in experiments of
interesting crops where some physiological phenomenon
such as light, photosynthesis, respiration, water
consumption and transpiration are being studied
(Gottschalk 1994, Kerstiens and Hawes 1994, Picchioni
and Weinbaum 1995, Centritto et al. 2000, Cirak et al.
2008). Leaf-area estimation is an important biometrical
observation for evaluating plant growth in field and pot
experiments (Kumar and Sharma 2010). In addition, leaf
number and area of a plant are important in terms of
cultural practices such as training, pruning, irrigation,
fertilization, efc. The leaf-area estimation models that aim
to predict leaf area nondestructively can provide
researchers with many advantages in the agricultural
experiments. Moreover, these kinds of models enable
researchers to carry out leaf-area measurements on the
same plants over the course of the study (Gamiely et al.
1991, NeSmith 1991, 1992, Williams and Martinson
2003). Leaf area can be determined by using expensive
instruments and/or prediction models. Recently, new
instruments, tools, and machines such as hand scanners
and laser optic apparatuses have been developed for leaf-
area and fruit measurements. These are very expensive
and complex devices for both basic and simple studies.
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Furthermore, nondestructive estimation of leaf area saves
time as compared with geometric measurements. Leaf
area can be also measured quickly, accurately, and
nondestructively using a portable scanning planimeter
(Rouphael et al. 2010). For this reason, several leaf-area
prediction models have been produced for certain plant
species in the previous studies (Odabas et al. 2005).
Reports concerning leaf-area prediction model for Zea
mays L. have not been published yet. Due to the lack of
such information, we aimed to develop reliable equations
that allow for the nondestructive estimation of leaf area
through linear measurements on this plant.

Ten dent corn cultivars were sown in May 2009
according to a randomized complete block design with 3
replications. Plot size was 22.4 m’ and every plot
consisted of 4 ear-to-row progenies 70 cm apart and 8 m
long. Fertilizer equivalent to 60-120-150 kg ha' of N-
P,05-K,0, was applied according to cultivars. A total of
10 Zea mays L. cultivars, namely Helen, Semal, P32WS§6,
0OSSK602, DK6610, P6137, Simon, Tieber, Bolson, and
ADAS23 were used as the plant material. The cultivars
which were used in the research are between FAO 600 —
FAO 700 maturity groups.

Leaf samples (50 leaves for each cultivars) were
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Abbreviations: L — leaf length; LA — leaf area; LZ — leaf zone; R? - regression coefficiency; W — maximum leaf width;
x; — independent variable; y; — dependent variable; 8 — p-dimensional parameter.
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collected. Thus, total of 500 leaves were processed at the
same day as they were collected in the following manner.
At first, they were placed on the photocopier desktop by
holding flat and secure and copied on A3 sheet (at 1:1
ratio). Then, Placom Digital Planimeter (Sokkisha
Planimeter Inc., model KP-90, Japan) was used to
measure actual leaf area of the copy. Selection of leaf
dimensions for measurement was governed by variation
in leaf characteristics (e.g., size, shape, and symmetry)
and practical constraints (e.g., ease and accuracy of
measurements under field conditions). Considering these
factors, maximum leaf width (W) and length (L) were
selected to correlate with leaf area. W was measured from
tip to tip at the widest part of the lamina and L from
lamina tip to the point of petiole intersection along the
midrib. The leaf positions were selected with regard to
points that could be easily identified and used to facilitate
the measurement of L and W.

The general purpose of multiple regression is to learn
more about the relationship between several independent
or predictor variables and a dependent or criterion
variable.

Given a data set {yi,xil,---,xip }?—1 of n statistical

units, a linear regression model assumes that the relation-
ship between the dependent variable y; and the p-vector
of regressor’s x; is linear. This relationship is modelled
through a so-called “disturbance term” g; — an unobserved
random variable that adds noise to the linear relationship
between the dependent variable and regressors. Thus the
model takes form

, .
Vi =Byx B X, g =xipreg i=1n,

where ' denotes the transpose, so that xiB is the inner
product between vectors x; and B. Often these n equations
are stacked together and written in vector form as
y =X B + & where

’
Y1 X X Xy B &
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Some remarks on terminology and general use: y; is
called the regressand, endogenous variable, response
variable, measured variable, or dependent variable. The
decision as to which variable in a data set is modelled as
the dependent variable and which are modelled as the
independent variables may be based on a presumption
that the value of one of the variables is caused
by, or directly influenced by the other variables.
Alternatively, there may be an operational reason to
model one of the variables in terms of the others, in
which case there needs be no presumption of causality.
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x; values are called regressors, exogenous variables,
explanatory variables, covariates, input variables, pre-
dictor wvariables, or independent variables. Usually
a constant is included as one of the regressors. The
corresponding element of B is called the intercept. Many
statistical inference procedures for linear models require
an intercept to be present, so it is often included even if
theoretical considerations suggest that its value should be
zero. Sometimes one of the regressors can be a nonlinear
function of another regressor or of the data, as in
polynomial regression. The model remains linear as long
as it is linear in the parameter vector 3. The regressors x;
may be viewed either as random variables, which we
simply observe, or they can be considered as predeter-
mined fixed wvalues, which we can choose. Both
interpretations may be appropriate in different cases, and
they generally lead to the same estimation procedures;
however different approaches to asymptotic analysis are
used in these two situations. P is a p-dimensional
parameter vector. Its elements are also called effects, or
regression  coefficients. Statistical estimation and
inference in linear regression focuses on . g; is called the
error term, disturbance term, or noise. This variable
captures all other factors, which influence the dependent
variable y; other than the regressors x;. The relationship
between the error term and the regressors, for example
whether they are correlated is a crucial step in
formulating a linear regression model, as it will determine
the method to use for estimation (Erper et al. 2011).
Multiple regression analysis of the data was performed
for each plant separately. A search for the best model for
predicting LA was conducted with various subsets of the
independent variables, namely L, W, and LZ. LZ is leaf
area according to on the corncob or under the corncob.
Statistical significance of the results was tested by one-
way analysis of variance (ANOVA). The best estimating
equations for the leaf area (LA) of the plants tested were
determined with the R-program. Multiple regression
analysis was carried out until the least sum of square was
obtained (Cirak et al. 2005). Leaf area is associated with
many agronomic and physiological processes including
growth, photosynthesis, transpiration, photon inter-
ception, and energy balance (Rouphael et al. 2007).
Multiple regression analysis was used for determination
of the best fitting equation for estimation of the leaf area
in maize. It was found that most of the variations in leaf
area values were explained by the selected parameters,
which are L, W, and LZ (Table 1).

The variation in the parameters was between 88% for
Semal, 97% for Simon and Bolson. Means + standard
deviations, minimum and maximum values for the actual
and estimated leaf area of the cultivars. The produced leaf
area prediction models in the present study are shown in
Table 1.

Although correlations among L and W with LA have
been widely used (Elsner and Jubb 1988), some studies
also include petiole length and leaf mass (Montero et al.



LEAF AREA PREDICTION FOR CORN CULTIVARS

Table 1. Fitted coefficients (b, ¢, d) and constant (@) values of the model used to estimate the plant leafarea (LA=a+bL+c W +dLZ)
[LA in cm?] of single leaves from length (L), width (W) and leaf zone (LZ) measurements. Coefficient of determination (R?), mean

square errors (MSE), n = 50.

Cultivar Fitted coefficients with MSE and constant R?
a [cm?] b [cm] ¢ [cm] d
Helen —-935.11 £ 63.24 8.63 +£0.37 71.41 £ 8.85 107.21 £27.56 0.93
Semal —738.43 +£ 67.48 6.83 +£0.34 4032 +7.77 175.00 + 28.85 0.88
P32W86 53.76 + 109.48 7.74 +£0.30 49.35 +7.96 —345.80 = 30.64 0.96
OSSK602 -517.83 £52.35 6.58 £0.26 47.46 £ 6.62 22.51+17.71 0.94
DK6610 —434.92 +53.45 421+0.34 87.23 +5.64 —68.87 +23.04 0.91
P6137 -304.97 £ 112.00 11.23 £0.44 0.52+1.50 152.18 £ 38.78 0.90
Simon -367.69 +71.36 9.54 +0.22 38.93+6.95 —71.49 £ 14.87 0.97
Tieter —834.56 +73.72 8.52+0.36 59.41 + 8.87 109.03 +37.89 0.91
Bolson —504.63 £ 61.50 8.48 +£0.25 4294 £7.75 0.32+19.82 0.97
ADAS523  -1,486.90+114.86 10.37 £0.32 119.74 £ 11.71 39.64 £24.42 0.96
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Fig. 1. Relationship between actual and predicted leaf area in Zea mays L. cultivars.
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2000). L and W have been generally chosen for their sim-
plicity and accuracy since these measurements are non-
destructive. A very close relationship between actual and
predicted LA for corn was found in this study (Fig. 1).

Our results were similar to another studies mentioned
above that used linear measurements of leaves from
different plants for estimating LA. Coefficients of
determination were generally high for the best fitted
models in the current and previous studies. However, the
differences among the corn cultivars observed in the
present study were not surprising due to differences in
size and shape of leaves of the genotypes.
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