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Abstract

To determine the effects of rootstock choice on the scion response to drought stress, we compared the vegetative growth,
biomass accumulation, gas exchange, and water-use efficiency (WUE) of ‘Gale Gala’ apple (Malus domestica Borkh.)
trees grafted onto nine wild Chinese Malus rootstocks. Compared with the well-watered control, drought treatment
limited growth, as manifested by smaller increments in plant height (PH), trunk diameter (TD), total fresh biomass (TB),
total dry biomass (TDB), total leaf area (LA), and relative growth rate (RGR). The extent of this effect differed among
rootstocks. Stress conditions led to increases in the root/shoot ratio (RSR), leaf thickness (LT), water-holding capacity
(WHC), carbon isotope composition (8"C), and WUE. Decreases were noted in stomatal density (SD), leaf relative
water content (RWC), chlorophyll content (Chl), net photosynthetic rate (Py), transpiration rate (£), and stomatal
conductance (g;), again varying by rootstock. Those that are generally considered more drought-tolerant, e.g.,
M. sieversii, M. prunifolia, and M. toringoides, had smaller declines in PH, TD, TB, TDB, LA, RGR, SD, RWC, Chl,
Py, E, and g, and proportionally greater increases in RSR, LT, WHC, 8'"°C, and WUE compared with the drought-
sensitive M. hupehensis and M. sieboldii. These results suggest that moisture stress has a significant dwarfing effect in
the latter two species. Based on WUE calculations, trees on drought-tolerant rootstocks showed higher tolerance when
stressed, whereas those on drought-sensitive rootstocks were less tolerant, as indicated by their lower WUE values.

Additional key words: carbon isotope composition; gas exchange; growth; Malus domestica Borkh.; water-use efficiency.

Introduction

Apple (Malus domestica Borkh.) is one of the most
economically important fruits worldwide. It is mainly
cultivated in arid and semiarid regions such as the North-
west Loess Plateau in China. However, an increasingly
serious water deficit in those areas is a major limitation to
apple cultivation. Grafting superior, commercial cultivars
onto rootstocks capable of alleviating the effects of
drought is a promising tool for reducing water losses in
production and improving WUE under stress conditions
(Schwarz et al. 2010). Valuable knowledge about the
evolutionary and adaptive senses of intraspecific vari-
ability in WUE has already been gained from some
important forest species, e.g., Nothofagus spp. (Read and
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Farquhar 1991), Pinus pinaster (Brendel et al. 2002,
Nguyen-Queyrens et al. 1998), Pseudotsuga menziesii,
and Larix occidentalis (Marshall and Zhang 1993), and
Castanea sativa (Lauteri et al. 2004). However, little
research has been reported concerning the selection and
breeding of both rootstocks and scions for fruit trees.
Rootstocks function in water and nutrient uptake,
resistance to soil-borne pathogens, and tolerance to
environmental stresses (Layne 1987). The selection of
rootstock is usually based on its ability to promote strong
vegetative growth from the scion and persistence of the
root system in a given soil type (Cohen and Naor 2002).
Various hypotheses (see reviews by Aloni et al. 2010,

"Corresponding author; tel: +86-29-87082648, fax: +86-29-87082648, e-mail: fwm64@sina.com; fwmé64@nwsuaf.edu.cn

Abbreviations: Chl — chlorophyll; g, — stomatal conductance; LA — total leaf area; LAR — leaf area ratio; LT — leaf thickness; Py — net
photosynthetic rate; PH — plant height; RGR — relative growth rate; RSR — root/shoot ratio, RWC — relative water content;
SD — stomatal density; SLA — specific leaf area; E — transpiration rate; TB — total fresh biomass; TD — trunk diameter; TDB — total
dry biomass; WHC — water-holding capacity; WUE — water-use efficiency; 8'>C — carbon isotope composition.
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Martinez-Ballesta et al. 2010, and Schwarz et al. 2010)
have proposed that the rootstock influences scion
vegetative growth mainly by affecting tree water status,
mineral nutrition, and hormones.

A good rootstock should be compatible with the scion
cultivar, resistant and/or tolerant to pests and diseases,
and adaptable to a wide range of soil types and climatic
conditions (Hernandez et al. 2010). Many rootstock types
are used for apple cultivation in China, each having
particular advantages and limitations when matched to
different geographical regions. For example, M.9, M.26,
and M.27 are often used as an interstock grafted onto
vigorous rootstock to reduce growth in high-density
orchards (Di Vaio et al. 2009, Smolka et al. 2010,
Tworkoski and Miller 2007). Bai et al. (2010) have
reported that M. hupehensis is more hypoxia-tolerant than
M. toringoides and can be used in areas prone to water-
logging. Ma et al. (2010) compared the drought tolerance

Materials and methods

Plants and experimental design: One-year-old Malus
domestica cv. ‘Gale Gala’ trees were grafted onto nine
rootstocks. Their seeds had been collected from plants
growing in their native regions within China (Table 1).
For bud-grafting, we used one-year-old seedlings
produced from those seeds at Northwest A&F University,
Yangling (34°20'N, 108°24’E), Shaanxi, China. All plants
were greenhouse-grown in plastic pots (38 cm X 23 cm,
volume adequate for root growth) filled with a local
topsoil:sand:grass peat mix (5:1:1, viviv) (pH = 8.31;
bulk density, 0.84 g cm; water field capacity, 18.3%;
gravel content, 14.3%; and content of organic matter and
available N, P, and K were 0.95 g kg™, 50.3 mg kg ',
31.0 mg kg, and 50.7 mg kg, respectively). Plants
were grown without supplemental illumination at
20/25°C (day/night) and a relative humidity of 65 to 80%.
Prior to the start of our experiments, all trees were
irrigated daily and supplied weekly with 100% Hoag-
land’s solution (pH = 6.5). After two months of growth
under well-watered conditions, we initiated treatments on
19 May 2009. Two watering regimes were implemented

Table 1. Origins in China for nine Malus rootstocks.

and WUE of 10 Malus rootstocks and observed that
M. prunifolia and M. sieversii are the best in those
aspects. Previous studies of performance by commercial
apple cultivars focused mainly on clonal rootstocks
(Cohen et al. 2007, Di Vaio et al. 2009, Larsen et al.
1992, Samad et al. 1999, Zeller et al. 1991a,b). Little
researches were reported on the influence of wild Chinese
rootstocks on the growth and WUE of apple trees under
a variety of environmental stresses.

Here, we compared growth parameters for M. domes-
tica cv. ‘Gale Gala’ trees grafted onto nine wild root-
stocks originating from China. We assessed the influence
of rootstock on scion vegetative growth, biomass accu-
mulation, gas exchange, and WUE. Our goal was to
provide useful information about the selection of stock—
scion combinations that are most appropriate for arid and
semiarid regions.

over a 60-d period: (/) well-watered control, in which
15 trees grafted onto each rootstock were irrigated every
other day to 80% field capacity; and (2) drought stress,
with 15 trees grafted onto each rootstock being main-
tained at 50% field capacity by irrigating every other day.
All treatments were applied at 18:00 h. Soil field capa-
cities were determined with a digital moisture recorder
(ZTS-I1, Zhejiang, China) and the volume of water added
to each pot was recorded for WUE calculations. To avoid
edge effects, all pots were rotated weekly. These experi-
ments were terminated on 19 July 2009.

Surface evaporation was minimized by covering the
potting media surface with a 3-cm layer of sieved (2 mm)
sand. As a reference for comparison, six pots per treat-
ment that did not contain plants were used to determine
evaporative water loss from the soil surface throughout
the experimental period. Transpiration water loss was
evaluated gravimetrically by weighing all pots and calcu-
lating the changes in mass that occurred between water-
ing events. The amount of water lost via transpiration was
then added back to each pot during irrigation.

Rootstock Origin

Elevation [m]

Mean annual Mean annual
precipitation [mm] temperature [°C]

M. hupehensis (Pamp.) Rehd. Pingyi, Shandong 154-1,156 849 14.1
M. mandshurica (Maxim.) Xingcheng, Liaoning 330-702 600 8.7
Komarov

M. micromalus Hesmel Changli, Hebei 50-695 713 11.0
M. prunifolia (Willd.) Borkh. Fuping, Shaanxi 380-1,420 533 13.1
M. robusta Rehd. Huailai, Hebei 394-1,978 413 10.5
M. sieboldii (Regel.) Rehd. Lushi, Henan 475-2,058 467 12.6
M. sieversii (Ledeb.) Roem Yili, Xinjiang 600770 352 8.3
M. spectabilis (Ait.) Borkh. Huailai, Hebei 394-1,978 413 10.5
M. toringoides (Rehd.) Hughes Maerkang, Sichuan 2,180-5,301 753 11.1
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Growth: At the end of the experiment, plant height (PH)
and trunk diameter (TD) were recorded. Afterward, six
plants were harvested from each treatment and divided
into leaf, stem, and root portions to determine above-
ground (shoot) biomass, root biomass, total fresh biomass
(TB), and the root/shoot ratio (RSR, root fresh biomass
divided by shoot fresh biomass). Total leaf areca (LA) was
obtained with an AM-100 Area Meter (Analytical Deve-
lopment Company, Hertsfordshire, UK). Materials were
oven-dried at 70°C to a constant mass before calculating
the total dry biomass (TDB) for each tissue type. Specific
leaf area (SLA) and the leaf area ratio (LAR) were
computed as LA/leaf dry mass and LA/TDB, respecti-
vely. The relative growth rate (RGR) was calculated by
the standard formula of RGR = (InW, — InW,)/(t, — t;),
where W, and W, were the initial and final dry biomasses
at the beginning and the end of the experiment, respecti-
vely, and (t, — t;) was the time interval.

Leaf relative water content (RWC), leaf water-holding
capacity (WHC), and content of leaf chlorophyll (Chl)
were measured on days 10, 20, 30, 40, 50, and 60 of the
experiment. Six fully expanded leaves were collected at
midday from the mid-canopy position of treated plants,
placed in dishes containing wet filter paper, and weighed
immediately to record their fresh mass (FM). Turgid mass
(TM) was determined from leaves floated for 24 h in
distilled water in a closed container at 4°C under
darkness. Dry mass (DM) was determined for those same
leaves after oven-drying for 48 h at 70°C. RWC and
WHC were calculated as: RWC = [(FM — DMWTM —
DM)] x 100 and WHC = (TM - DM)YDM x 100,
respectively. Chl was extracted from 0.5 g of fresh leaf
material for 72 h in the dark, using acetone (80%).
Absorbances at 647 and 664 nm were determined with
a Shimadzu UV-/Vis Spectrophotometer (UV2401PC,
Shimadzu, Columbia, MD, USA) and used to calculate
Chl according to the method of Garcia-Sanchez et al.
(2002). Mean values for RWC, WHC, and Chl recorded
at the six time points were used to demonstrate the effect
of rootstock choice and soil water status over the
experimental period.

Leaf thickness (LT) and stomatal density (SD): Eight
healthy, undamaged leaves per treatment were selected at
mid-day to record LT and SD with an electron micro-
scope (H-7650, Hitachi Co., Japan) according to the
method of Khazaei et al. (2009). LT was measured on
either side of the mid-vein and averaged. The numbers of
stomata were counted under a microscope at 400 x from
four different fields of vision for lamina impressions,
obtained from four leaves per species and treatment (i.e.,
16 different fields of vision). To estimate SD, the number

of stomata per field of view was converted to the number
of stomata per mm’ of leaf, using a standard scale.

WUE was defined as the ratio of dry biomass produced
to total water transpired during the experimental period.
It was calculated as: WUE = (Wg — W|yWy, where Wg
was the final DM, W; was the initial DM, and Wy was
the total amount of water transpired during the period
(Liu et al. 2012).

Gas-exchange parameters were measured every 10 d on
the 8™ leaf from the shoot apex, using a Li-Cor 6400
portable photosynthesis system (Li-Cor Inc., Lincoln,
NE, USA). The net photosynthetic rate (Py), transpiration
rate (E), and stomatal conductance (g;) were obtained
from six plants per treatment. Measurements were made
on sunny days (09:00 to 11:00 h) at 1,500 umol m* s’
PPFD (light-saturation point of ‘Gale Gala’ is 1,453 umol
m~ s, as provided by a Q-Beam (blue and red diode)
light source. Leaf temperature, ambient water vapor pres-
sure, and CO, concentration were maintained at 28.7 +
1.0°C, 1.30 + 0.15 kPa, and 380 pmol m~* s,
respectively.

Carbon isotope composition (6"C): Five apple trees per
rootstock and treatment were selected at the end of the
experiment. The ninth leaf from the top was taken from
each plant, and all five from the same treatment combi-
nation were mixed as one sample. These were first oven-
dried at 105°C for 0.5 h, then at 70°C to a constant mass
after about 72 h. After being ground and sieved, the
samples were used to determine their stable 3"°C in a
Continuous Flow Isotope Ratio Mass Spectrometer
(Finnegan MAT-251, Delta-E, Bremen, Germany).
Stable-isotope ratios were expressed as deviations from
the Pee Dee Belemnite (PDB) standard, i.e., 8"°C (%o) =
[(Rp/Rg) —1] x 1,000, where Rp and Rg were the *C/"*C
values for the plant sample and PDB standard,
respectively. An atmospheric correction was not
necessary in this case because all plants in the greenhouse
were exposed to approximately the same conditions (Liu
et al.2012).

Statistical analysis: The experiments comprised a nine
(rootstock) x two (watering regime) factorial, completely
randomized design. Each treatment was replicated six
times, with each sample measured four times. Average
values for each parameter were the means of six repli-
cates. Data were analyzed with a statistical software
package (SPSS 13.0 for Windows; SPSS Inc., USA).
Treatment means were separated by least significant
difference (LSD) tests (p<0.05).
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Results

Growth: We found significant differences (p<0.05) in
PH, TD, TB, TDB, LA, RGR, SD, and LT among ‘Gale
Gala’ trees grafted onto nine different rootstocks grown
under two watering regimes (Table 2). Under either
regime, trees with M. sieversii and M. prunifolia as their
rootstock showed significantly higher values for these
parameters than those on M. hupehensis. Compared with
the well-watered plants, 60 d of drought stress was
associated with smaller increments in PH, TD, TB, TDB,
and LA. The extent of this effect differed among root-
stocks. The smallest gains in height and diameter were
noted for M. hupehensis (39.69% less than well-watered
plants) and M. foringoides (27.63%), respectively,
compared with M. sieversii (21.61%) and M. spectabilis
(16.32%), respectively. Those on M. prunifolia rootstocks
showed the widest gap in values for TB (34.49%), TDB
(30.98%), and LA (61.01%) when compared with well-
watered trees; M. sieversii had the smallest decrease in
TB (14.92%) and TDB (7.57%), and M. micromalus had
the smallest decrease in LA (17.08%). Drought reduced
the RGR for all trees except those on M. sieboldii, with
reductions of 40.0% for the M. hupehensis rootstock but
only 16.8% for M. sieversii. Drought was also associated
with fewer stomata (decreased SD) — ranging from
a decline of 7.94% for M. sieversii to 43.35% for
M. hupehensis. By contrast, leaf thicknesses were
increased by drought exposure, with LT rising by 4.00%
for the M. toringoides rootstock and by 22.96% for trees
on M. prunifolia.

Rootstock selection had a significant impact (p<0.05)
on values for RSR, SLA, LAR, RWC, and WHC under
both watering regimes (Table 3). Trees grafted onto
M. prunifolia had significantly higher LAR, RWC, and
WHC than those on the other eight rootstocks. Under
well-watered conditions, trees on M. hupehensis had
significantly higher values for RSR and SLA. That
rootstock under drought stress induced significantly
higher SLA but lower RSR compared with the others.
The extent to which trees were affected by reduced
irrigation depended upon rootstock choice when RSR,
SLA, LAR, RWC, and WHC were considered (Table 3).
Stress treatment increased the RSR for all trees except
those grafted onto M. hupehensis; the greatest increase in
that ratio was found with M. spectabilis. Drought
decreased values for SLA, LAR, and RWC, especially for
M. spectabilis (12.27%), M. spectabilis (11.73%), and

Discussion

Growth: Superior rootstocks are widely used by horticul-
turalists to enhance performance when the growing envi-
ronment is influenced by suboptimal and/or supraoptimal
factors (Castle ef al. 2010a,b; 2011). In the present study,
M. hupehensis and M. sieboldii induced lower PH, RGR,
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M. sieboldii (12.46%), respectively. This impact was
lowest for trees on M. toringoides (0.48% for SLA),
M. sieboldii (0.56% for LAR), and M. mandshurica
(4.01% for RWC). Water-holding capacity was increased
by drought conditions for all rootstocks except M. hupe-
hensis, with the greatest improvement found for trees on
M. micromalus (6.09%).

Gas exchange and Chl content: Under either watering
regime, values for Chl, Py, E, and g, were significantly
different (p<0.05) among trees on all nine rootstocks
(Table 4). Plants on M. sieversii showed the largest rises
in Chl, Py, and g; while those on M. hupehensis had the
smallest increases. Furthermore, values for £ were lowest
for trees on M. sieversii under both well-watered (5.99
mmol m* s ') and drought (4.98 mmol m”* s ') condi-
tions. The highest transpiration rates were 7.40 mmol
m s for well-watered tree on M. mandshurica and 7.02
mmol m s~ for drought-stressed tree on M. toringoides.

The extent to which drought diminished Chl, Py, E,
and g, differed among rootstocks, with M. hupehensis
showing the largest declines in Chl (58.12%), Px
(36.46%), and g, (63.64%), and trees on M. mandshurica
having the greatest decrease in £ (25.95%). By contrast,
values were least influenced by drought in trees grafted
onto M. prunifolia (10.45% for Chl), M. sieversii
(16.17% for Py; 21.05% for g;), and M. toringoides
(15.95% for E).

WUE and $“C were significantly different (p<0.05)
among trees grafted onto nine rootstocks under either
watering regime, with those values being significantly
elevated for M. prunifolia and M. sieversii. The extent to
which drought influence these responses depended upon
rootstock choice (Table 5). Trees on M. sieversii and
M. spectabilis showed much greater increases in WUE,
which respectively rose from 27.34 to 45.17 g L' and
from 22.41 to 45.13 g L', Rootstock M. toringoides
induced the smallest increase in WUE, only from 19.26 to
23.00 g L', 8"C increased the most for trees on
M. mandshurica and M. micromalus, which were from
-26.75 to —-25.08%0 and from -26.83 to —25.12%o,
respectively. By contrast, the carbon isotope composition
was least increased (from —25.22 to —25.00%) in trees on
M. prunifolia.

and LA of ‘Gale Gala’ trees under both water conditions
(Table 2), which suggested their dwarfing effects. The
extent of the drought-induced decrease in growth
parameters was significantly different among different
rootstocks (Table 2). Since scions were the same, the
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INFLUENCE OF ROOTSTOCK ON APPLE TREE'S RESPONSE TO DROUGHT
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differences in their growth were mainly ascribed to the
effects of rootstock on scion morphological and physio-
logical responses to drought (reviewed by Martinez-
Ballesta et al. 2010, Schwarz et al. 2010). Trees grafted
onto M. prunifolia and M. sieversii had higher vegetative
growth, as manifested by the higher value in PH, TB, LA,
and RGR. These outcomes were probably associated with
their much larger and more vigorous root systems (Yan et
al. 2008, Zhou 1999) when compared with the low
biomass accumulations and shallow-rooting M. hupe-
hensis (Zhou 1999). Our findings are consistent with
results reported from studies with other species on the
interactive effect of stock—scion combination, where it
has been suggested that a balance is maintained between
canopy growth and the size of the root system
(Koundouras et al. 2008, Weibel ef al. 2003).

Under drought condition, RSR, RWC, WHC, LT,
and SD increased regardless of rootstock type. This may
be considered a strategy for drought avoidance and
a morphological adaptation to minimize water loss
(Koundouras et al. 2008, Gémez del Campo et al. 2003,
Toumi et al. 2007). The mechanism by which leaves
become thicker enables a plant to reduce transpiration by
retaining more water in the mesophyll (Lo Gullo and
Salleo 1988). Measures of SLA and LAR are widely used
to describe leaf structural modifications; here, both were
significantly decreased by drought, primarily because the
surface area of individual leaves from stressed plants was
significantly smaller (Gomez del Campo et al. 2003).
Trees grafted onto M. prunifolia or M. sieversii showed
less sensitivity to reduced irrigation, as manifested by
larger increases in LT and SD and smaller decreases in
RWC, WHC, SLA, and LAR. Their responses are
probably associated with greater drought tolerance, as
previously reported with those same genotypes (Ma et al.
2010, Yan et al. 2008, Zhou 1999). By contrast, plants on
the sensitive M. hupehensis rootstock showed smaller
increases in LT and SD, and larger decreases in RWC,
WHC, SLA, and LAR, suggesting less tolerance to
drought. This noticeable influence on the scion response
has also been described with additional Malus rootstocks
(Cohen et al. 2007, Tworkoski and Miller 2007), and
other species such as grape (Koundouras et al. 2008) and
pistachio (Gijon et al. 2010).

Gas exchange: Drought stress led to reduced gas ex-
change and chlorophyll contents, with this effect varying
significantly among rootstocks. Leaves from trees on
M. prunifolia and M. sieversii had the highest Py under
both well-watered and drought conditions, which could
primarily be attributed to those plants having the highest
values for LA, g, and Chl. Whereas M. hupehensis
induced much larger decrease in values for Py, g, and
Chl under drought condition (Table 4). It suggested that
grafting in fact served to minimize those induced
decreases in LA, g, and Chl, thereby improving Py
overall in those plants. Similar results have been reported
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by Etehadnia et al. (2008) and He et al. (2009). Root-
stocks have been widely reported to affect gas exchange
(Soar et al. 2006, Solari et al. 2006) but reasons for the
effect remain obscure due to the possibly complex inter-
actions among morphological factors, nutrient status,
water absorption, and source/sink relations (Paranychia-
nakis et al. 2004).

8"C and WUE: Evaluating the carbon isotope composi-
tion is an ideal indirect tool for analyzing plant responses
to water deficits. It is widely used to assess long-term
WUE because of the positive and significant correlations
between those two components (Zhang et al. 1993). Ma
et al. (2010) have previously compared the 8"°C and
WUE for the nine rootstocks used in this study and
observed much higher values for M. prunifolia and
M. sieversii than for M. hupehensis. In the current
examination, both M. prunifolia and M. sieversii had
higher 3"°C and WUE under drought stress, while trees
on M. hupehensis had the lowest values in both §"°C and
WUE (Table 5). The 8"°C and WUE of ‘Gale Gala’ trees
was mainly ascribed to the difference in growth, biomass
accumulation, stomatal conductance, and photosynthetic
capacity, likely, caused by rootstocks as discussed above.
In fact, a high 8"C associated with M. sieversii and
M. prunifolia implies a low ratio of intercellular to
atmospheric CO, concentrations. Given the relatively
high g values found here for some rootstocks, the
decrease in intercellular concentration must have been
caused by enhanced photosynthetic capacity.

Conclusion: Performance by ‘Gale Gala’ trees is a func-
tion of the rootstock genotype, which affects RSR, LA,
LT, SD, RWC, WHC, Chl, and g, thereby influencing Py,
TB, TDB, and WUE. Both M. hupehensis and M. sie-
boldii showed a significant dwarfing effect, a desirable
trait when using them in orchards planted at close
spacings. Under drought conditions, trees on M. pruni-

folia and M. sieversii had better performance, meaning

that they are more suitable than other rootstocks for use
in arid and semiarid regions. We demonstrated here that
scion vegetative growth and WUE can be improved by
grafting onto the most appropriate rootstocks, thereby
exploiting their drought-induced differences in RWC,
WHC, stomatal regulation, and photosynthetic capacity.

Young, potted apple trees were used here to deter-
mine the influence of wild Chinese Malus rootstocks on
scion vegetative growth, biomass accumulation, gas
exchange, and WUE in response to drought. For future
work, we will utilize older trees to assess the effect of
rootstock choice on blossom initiation, fruit and flower
set, and fruit size and quality. Further research should
also focus on the effects of scion genotype on root
growth. All of these studies will provide a useful
foundation when tailoring the selection of effective
stock—scion combinations to fit specific environmental
conditions.
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