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Chlorophyll content and photosystem II efficiency in soybean exposed
to supplemental ultraviolet-B radiation
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Abstract

Chlorophyll (Chl) a fluorescence parameters and rapid light curves of soybean [Glycine max (L.) Merrill] were
measured by pulse amplitude modulation fluorometry. Measurements were taken during different stages of soybean
growth under field conditions with 20% enhancement in ultraviolet-B (UV-B) radiation. Results showed that
supplemental UV-B radiation decreased Chl contents by 5.5% (P=0.048), 8.7% (P=0.046), and 10.5% (P=0.005) in
seedling, in branching-flowering, and in pod-setting stages, respectively. In the branching-flowering and pod-setting
stages, maximum quantum yield of photosystem (PS) II photochemistry (F,/F,,) decreased by 6.1% (P=0.001) and 3.0%
(P=0.009), respectively. Supplemental UV-B radiation significantly decreased the effective quantum yield (Y). The
photosynthetic capacity at light saturation (P,,) also decreased in both the seedling and branching-flowering stages by
28.9% (P=0.007) and 15.5% (P=0.041), respectively. However, Y and P, showed no significant difference in the trefoil
and pod-setting stages with and without the UV treatment. The light saturation parameter (£y) decreased by 21.1%
(P=0.000) and 23.2% (P=0.029) in the trefoil and seedling stages, respectively. Moreover, the initial slope (o) decreased
by 21.1% (P=0.001) in the branching-flowering stage. Nonphotochemical quenching (NPQ) in the seedling stage and
photochemical quenching coefficient (q,) in the branching-flowering stage decreased significantly under UV-B
treatments. The results of the present study suggest that supplemental UV-B radiation adversely affected Chl content and
electron transport activity in PSII and consequently decreased the photosynthetic efficiency of soybean plants.
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Introduction

Atmospheric chlorofluorocarbons and N,O continue to
rise significantly and it leads to stratospheric ozone
depletion. As a result, the amount of biologically harmful
UV-B radiation (280-320 nm) reaching the Earth’s
surface is rising (Erickson et al. 2000). The effects of
UV-B radiation have been intensively studied on crop
plants (Yannarelli et al. 2006, Feng et al. 2007, Pradhan
et al. 2008). Enhanced UV-B radiation damaged the
chloroplast structure, reduced Chl and Rubisco contents,
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decreased the Hill reaction rate (He et al. 2004, Yao and
Liu 2006), inhibited photosynthesis and transpiration
rates (Pandey et al. 2007, Yang et al. 2007), and reduced a
biomass production (Agrawal et al. 2006, Yao et al. 2006).
Rapid light curve (RLC) is a powerful tool for asses-
sing photosynthetic activity (White and Critchley 1999,
Ralph and Gademann 2005) that has been widely used to
quantify the photosynthetic activity of photoautotrophic
organisms (Serddio et al. 2005, Belshe et al. 2007, Cruz

“Corresponding author; fax: +86 025 58731090, e-mail: zhhu@nuist.edu.cn

Abbreviations: Chl — chlorophyll; DAS — dark-adapted state; E\, — light saturation parameter; ETR — electron transport rate; F —
fluorescence yield; F,— minimum fluorescence yield of a dark-adapted leaf; F,, — maximum fluorescence yield of a dark-adapted leaf;
Fn' — maximum fluorescence yield of a light-adapted leaf; F,/F, — maximum quantum yield of PSII photochemistry; FPs —
chlorophyll fluorescence parameters; NPQ — nonphotochemical quenching; NR — nitrate rdeuctase; PAR — photosynthetically active
radiation; Py, — photosynthetic capacity at light saturation; PS — photosystem; q, — photochemical quenching coefficient; RLCs — rapid
light curves; SPAD-502 — chlorophyll meter; Y — effective quantum yield; UV-B — ultraviolet-B radiation; o — initial slope.
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and Serddio 2008). Compared with traditional measure-
ment methods, RLCs can significantly decrease
measurement time and interferences in natural photo-
synthesis (White et al. 1999). In fact, the RLC method
takes only about 10 s to retrieve stable information on
photochemical electron transport under different PAR
levels (Rascher et al. 2000). In addition, RLCs provide
detailed information on PSII and on the photosynthetic
performance of plants and can describe the light
adaptation state of a plant and its capacity to tolerate
short-term light changes (Ralph and Gademann 2005).
Hence, RLCs have been extensively used in plant
physiological and ecological studies (Belshe et al. 2007,
Cruz and Serodio 2008).

Several studies have shown that UV-B radiation can

Materials and methods

Experimental design: The field experiment was per-
formed during the soybean-growing season. The experi-
ment was arranged in a randomized plot design, with
4 plots of the UV-B treatment and 4 plots of the ambient
control. Each plot had an area of 3 m x 4 m and featured
11 rows arranged at interval distances of 30 cm each.

Seeds of soybean were sown on 6 July 2008. The
main growth stages of soybean were: seedling, 9 July;
trefoil, 14 July; branching, 14 August; flowering, 23
August; pod, 7 September; grain-filling, 19 September;
harvest, 13 October. Neither basal fertilizer nor additional
organic manure was applied.

UV-B treatments: Supplemental UV-B radiation was
artificially provided by 40 W fluorescent lamps (UV-B,
Huade Instrument Factory, Shanghai, China). The lamps
were hung above and parallely to the planted rows, which
were arranged east-westward to minimize shading. The
experiment consisted of the UV-B treatment group
(UV-B, with 20% enhancement in UV-B radiation), and
the control group (control, with UV-B lamp exposure
filtered by a 125 pm thick polyester plastic film, Mylar-D,
purchased from DuPont Co., Wilmington, DE, USA).
The film covering the control group, which filtered off
UV-B radiation (Fig. 1), was replaced weekly to ensure
uniformity in UV-B absorption. Plants under the
polyester-filtered lamps received only ambient levels
of UV-B radiation, whereas plants beneath the lamps
received ambient and supplemental levels of UV-B
radiation.

At the canopy level, the PAR photon flux density for
the two treatments was consistent and varied with
weather conditions. Irradiance of the biologically effec-
tive UV-B of the two treatments varied with the solar
radiation. The irradiance of UV-B in the two treatments
was recorded automatically with the UV-B radiance
measurement instrument, which consists of UV-B
radiation sensors (spectral range = 280-315 nm; SKU430,
Skye Co., Powys, UK) and a data logger (Skye-Datahog,
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decrease Chl content and a net photosynthetic rate of high
plants (Brandle et al. 1977, Teramura 1983, Teramura
and Sullivan 1994, Liang et al. 2011). However, these
studies were performed under controlled laboratory
conditions. In this study, we hypothesized that enhanced
UV-B radiation might change the characteristics of the
Chl fluorescence of soybean under field conditions. To
test this hypothesis, a soybean experimental field was
exposed to supplemental UV-B radiation, which was
generated by an automatic control system under field
conditions. The primary aim of the present study was to
investigate the response of the Chl content and
fluorescence characteristics of soybean to supplemental
UV-B radiation during different growth stages.

Skye Co., Powys, UK). The sensors were installed at the
vegetation level at the center of the plots. The maximum
UV-B radiation intensity of the treatment was 518.49 yW
em? and the average UV-B radiation intensity of the
treatment and the control were 288.45 pW cm” and
239.73 W cm 2, respectively. The plants were irradiated
daily for 8 h (08:00-16:00) from the seedling to the
harvest stage.

Chl content: Total Chl content of soybean leaves was
measured using a SPAD-502 meter (Minolta Camera Co.,
Osaka, Japan), which has a weigh of 225 g, 0.06 cm’
measurement area, and an index is calculated in ‘SPAD
units’. The claimed accuracy of the SPAD-502 is =+
1.0 SPAD units. The principle of measurement is based
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Fig. 1. Emission spectra of 4: UV-B lamps, and B: Mylar film-
filtered UV-B lamps.
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on the difference in a light attenuation at 650 and 940 nm.
From the difference in a light attenuation, a dimension-
less SPAD unit, ranging from 0 to 80, is calculated by the
microprocessor in the SPAD-502 meter (Ruiz-Espinoza
et al. 2010). The relationship between the output of the
SPAD-502 and absolute Chl content can be described by
the equation: Chl [umol m?] = 10M"%9 ;2 = 0.94 (M,
SPAD values) (Markwell et al. 1995). In general, SPAD
values may increase with leaf thickness, and specific leaf
mass (Marenco et al. 2009). There are highly positive
exponential relationships between SPAD values and
Chl (atb), Chl a, and Chl b contents (Mielke et al. 2010).

Leaves at different developmental stages, from very
young to fully expanded functional leaves, were selected
to obtain a wide range of total Chl contents. The
SPAD-502 measurements were conducted in the field
between 08:00 and 10:00 h. Ten readings were taken
from the widest portion of the leaf blade at about 1.5 cm
from the leaf margin. The adaxial leaf surface was
positioned toward the emitting window of the SPAD-502
avoiding major veins.

Chl fluorescence and RLCs: Chl fluorescence para-
meters (FPs) were measured with a Diving-PAM fluoro-
meter (Walz Co., Effeltrich, Germany), and the type of
radiation measured was set to red. RLCs were constructed
on four randomly chosen soybean shoots from each plot.
Prior to the measurements, leaves were kept in a dark-
adapted state (DAS) for about 2 h after sunset. During
DAS, all reaction centers and electron carriers of PSII
were re-oxidized, which was essential for recording FPs
(Genty et al. 1989, van Kooten and Snel 1990, Baker
2008). The leaves were exposed to different irradiation
intensity (112, 234, 366, 557, 771; 1,146; 1,561; and
2,351 pmol m 2 s™"), with the exposure to each irradiation
intensity occurring for approximately 10 s.

The following Chl FPs were measured: fluorescence
yield (F), maximum fluorescence yield of a light-adapted
leaf (F,,), and minimum and maximum Chl fluorescence
yields in DAS (F, and F,). Other Chl FPs were
subsequently calculated using the following equations
(Ranjbarfordoei et al. 2011):

Results

Chl content: The supplemental UV-B radiation had no
significant effect on total Chl content in the trefoil stage
(P=0.549) (Table 1). In contrast, supplemental UV-B
radiation significantly decreased Chl contents by 5.5%
(P=0.048), 8.7% (P=0.046), and 10.5% (P=0.005) in the
seedling, branching-flowering, and pod-setting stages,
respectively.

F,/F,,: The supplemental UV-B radiation had no signifi-
cant effect on F,/F, in the trefoil (P=0.089) and seedling
(P=0.116) stages (Table 1). However, F,/F, values
significantly decreased by 6.1% (P=0.001) and 3.0%

FV/Fm = (Fm - FO)/Fm (1)
Y= (Fy' - F)/Fy' )
qp = (Fn' = F)/(Fu' — F,) (3)
NPQ = (F, — Fu)/Fy' 4)

Electron transport rate (ETR) = ¥ x PAR/2 x 0.84 (5)

In the last equation above, ¥ = (F, — F)/F,'; PAR/2,
the absorbed photon energy, is assumed to be equally
distributed between PSI and PSII; 0.84 is the assumed
light absorptance of the leaf (Belshe et al. 2007).

Curve-fitting: To quantitatively compare RLCs, a curve
fittind is done using an equation according to Smith
(1936):

P =P, x a x PAR/sqrt [P,,> + (& * PAR)?] (6)

where P is the relative electron transport rate, P, is the
photosynthetic capacity at saturation, and « is the initial
slope of the RLC. The RLC parameter is a measurement
of the ETR value under different PAR. The least squares
method was used to fit the equation and the corres-
ponding values of P, and o was obtained by using the
fitting equations.

E, = Pu/a (Sakshaug et al. 1997) )

Plant sample analysis: The biomass of soybean was
determined by oven-drying to a constant mass at about
70°C. Extraction and assay for nitrate reductase (NR)
activity were conducted by the method outlined by Natali
et al. (2009). NR activity was reported in units of NO,
produced per hour per gram leaf fresh mass. Soluble
protein contents were determined at 595 nm by the
protein-dye binding method, using bovine albumin as
a standard (Bradford 1976, Azevedo Neto ef al. 2009).

Statistical analyses: ANOVA was performed to test the
effects of supplemental UV-B radiation on the Chl
fluorescence characteristics of soybean with the SPSS
statistical package, version 13 (SPSS Inc., Chicago, IL,
USA). Differences among treatments were considered
highly significant at P<0.01, as well as significant at
P<0.05.

(P=0.009) in the branching-flowering and pod-setting
stages, respectively.

Y values of the control and UV-B treatments showed no
significant difference during the trefoil and pod-setting
stages (Fig.2). In contrast, Y values significantly
decreased during the UV-B treatment in the seedling and
branching-flowering stages.

RLCs: P, values significantly decreased by 28.9%

(P=0.007) and 15.5% (P=0.041) during the UV-B treat-
ment in the seedling and branching-flowering stages,
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Table 1. Effects of supplemental UV-B on the chlorophyll (Chl) content and maximum quantum yield of PSII photochemistry (F,/Fy,)
of soybean leaves. Data are mean values + SD (Chl content, n = 6; F,/F,,, n = 6). " and " — the significant difference between control
and supplemental UV-B treatments in ANOVA at P<0.05, and 0.01, respectively.

Stage Chl content [SPAD] F,/Fn,
Control UV-B Control UV-B
Trefoil 36.92 +1.92 35.88 +3.60 0.84+0.00 0.83+0.02
Seedling 33.93 +0.74 32.06+1.40"  0.83+0.01 0.80+0.03
Branching-flowering 36.40 + 1.46 33.23£3.08" 0.82+0.01 0.77+0.017
Pod-setting 34.62 +1.63 31.00+1.54™  0.83+0.01 0.80+0.01"
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Fig. 2. Changes in the effective quantum yield (¥) with
photosynthetically active radiation (PAR). 4, B, C, and D
indicate the trefoil, seedling, branching-flowering, and pod-
setting stages, respectively. Data are mean values, and error bars
are SDs (n = 6). - significant differences between means
(P<0.05).
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GROWTH STAGES

Fig. 3. Changes in the photosynthetic parameters of soybean at
different growth stages under supplemental UV-B radiation. 4:
maximum fluorescence yield of a dark-adapted leaf (P,), B:
initial slope (@), and C: light saturation parameter (Ey). Data are
mean values + SD (n = 6). " — significant difference between
treatments in the same growth stage (P<0.05).

respectively (Fig. 3). Supplemental UV-B radiation
decreased o by 21.1% (P=0.001) in the branching-
flowering stage. Moreover, Ey decreased by 21.1%
(P=0.000), 23.2% (P=0.029), and 34.9% (P=0.017) in the
trefoil, seedling, and pod-setting stages, respectively.
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qp and NPQ: In the trefoil stage, supplemental UV-B
radiation had no significant effect on g, at different PAR
intensities, but NPQ decreased at PAR > 1,561 pmol m?2s’!
(Fig. 4). In the seedling stage, UV-B radiation signifi-
cantly decreased g, at PAR > 557 pmol m? s and NPQ
decreased at PAR > 366 umol m* s™'. In the branching-

Discussion

The majority of Chl a and Chl b are engaged exclusively
in light harvesting process, they are not directly involved
in the excitation energy dissipation. Only 8 Chls a
participate in the light reactions, four in the reaction
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Fig. 4. Changes in photochemical quenching coefficient (qy)
and nonphotochemical quenching (NPQ) with photosyn-
thetically active radiation (PAR). 4, B, C, and D indicate the
trefoil, seedling, branching-flowering, and pod-setting stages,
respectively. Data are mean values, and error bars are SDs
(n=6)." - significant differences between means (P<0.05).

flowering stage, UV-B radiation decreased g, at PAR >
112 umol m? s', and NPQ decreased at PAR >
771 ymol m? s'. In the pod-setting stage, UV-B
radiation decreased NPQ at PAR > 771 pmol m 2 s™', but

had no significant effect on g,

center of PSII and four in the reaction center of PSI
(Papageorgiou and Govindjee 2011). It is very sensitive
to environmental stress, such as enhanced UV-B radia-
tion. In the present study, supplemental UV-B radiation
significantly decreased the Chl content of soybean leaves
from the seedling to the pod-setting stage. This result was
in agreement with a previous report by Kakani et al.
(2004), who found that UV-B radiation can lower total
Chl contents and damage the photosynthetic capacity
of chloroplasts. Gao et al. (2004) suggested that under
UV-B stress, the contents of Chl a, b, and (a+b) of maize
leaves were reduced. Another study by Yao et al. (2006)
found that enhanced UV-B radiation can inhibit the
production of photosynthetic pigments and destroy the
structure of chloroplasts and their membrane systems.

The efficiency and stability of PSII, a major compo-
nent of the photosynthetic apparatus, was monitored by
means of F,/F, during the experiment. The alterations in
F,/F,, implied changes in the photochemical conversion
efficiency of PSII and a possible photoinhibition of
photosynthesis (Ranjbarfordoei et al. 2011). F,/F, is
relatively steady under nonstress conditions and may
significantly decrease in the stress conditions (Bjorkman
and Demming 1987). The decrease in F,/F,, shows that
environmental stress damages the PSII photochemical
reaction center. In the present study, UV-B significantly
decreased F,/F,, in soybean leaves during the branching-
flowering and pod-setting stages, demonstrating that the
supplemental UV-B radiation lowered PSII efficiency. In
addition, the supplemental UV-B radiation decreased the
biomass of soybean plants in the branching-flowering and
pod-setting stages (Table 2). In a similar study, UV-B
exposure was found to decrease grain yield in wheat
(Paknejad et al. 2007). Therefore, UV-B radiation has
detrimental effects on photosynthetic processes and crop
growth. Correia et al. (2005), Cechin et al. (2007), and
Ranjbarfordoei et al. (2011) also found similar results for
other plants.

The Y index is an effective measure of the operating
photochemical efficiency of PSII in plant leaves (Rascher
et al. 2000). In the seedling and branching-flowering
stages, the supplemental UV-B radiation significantly
decreased the Y of soybean. The cause of the reduction
might be associated with enhancement of excitation
energy quenching in PSII antennae. The decline in Y is
generally considered to indicate physiological regulation
of electron transport (Skorska 2011). Day and Vogel-
mann (1995) also suggested the Y is lower in UV-B
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Table 2. Effects of supplemental UV-B on biomass of soybean. Data are mean values = SD (n = 3). ", and = — the significant
difference between control and supplemental UV-B treatments in ANOVA at P<0.05, and 0.01, respectively.

Stage Shoot biomass [g m™] Root biomass [g m™] Total biomass [g m ]

Control UV-B Control UV-B Control UV-B
Branching-flowering 215.82+10.06  148.52+7.49™  29.13+1.50 21.93+1.52" 24495+921  170.45+6.34"
Pod-setting 776.06 £23.14  666.75+29.30" 55.14+4.63 64.11+191° 831.20+18.73  730.86+28.58"

Table 3. Effects of supplemental UV-B on nitrate reductase (NR) activity and soluble protein content in soybean leaves. Data are
mean values £ SD (NR activity, n = 3; soluble protein content, n = 3). , and  — the significant difference between control and
supplemental UV-B treatments in ANOVA at P<0.05, and 0.01, respectively.

Stage Nitrate reductase activity [ug(NO,) g h™'] Soluble protein content [mg g ']
Control UV-B Control UV-B

Branching-flowering 293.19 +20.22 131.95 + 12.46™ 7.81£0.01  7.47+0.06"

Pod-setting 468.53 + 15.42 279.22 +9.90" 13.86 £0.64  8.59+0.07"

exposed pea leaves due to a lower F,/F,, in these leaves,
which implies a lower efficiency of electron transport in
open PSII reaction centers. Decreases in Y are associated
with increases in the excitation energy quenching in the
PSII antennae, and it can be understood as a physio-
logical regulation of electron transport by increasing the
excitation energy quenching in the PSII antennae
(Skorska 2011).

RLCs can provide information on the saturation
characteristics of electron transport, as well as the overall
photosynthetic performance of a plant (Cruz and Serddio
2008). FPs in RLC also provide photosynthetic informa-
tion on injured plants, such as a, Py, Ey, and electron
transfer capability (van Kooten and Snel 1990, Ralph and
Gademann 2005). In the present study, RLCs provided
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