

BRIEF COMMUNICATION

Gas exchange of terrestrial and epiphytic orchids from Brazilian Atlantic Rainforest

M.V. PIRES, A-A.F. ALMEIDA[†], E.A. SANTOS, and F.Z. BERTOLDE

Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (DCB/UESC). Rod. Ilhéus-Itabuna, km 16, Ilhéus, BA, 45650-000, Brazil

Abstract

Leaf gas exchange of terrestrial and epiphytic orchids from the Atlantic Rainforest in northeast Brazil was investigated under artificial growth conditions. The terrestrial orchids showed higher values of all photosynthetic parameters in comparison to epiphytic ones. There was a close relationship between P_N and g_s for both terrestrial and epiphytic orchids. Taken together, our results demonstrated that the photosynthetic parameters were related to the specific growth habits of the orchids under study.

Additional key words: epiphytes; net photosynthetic rate; orchids; photosynthesis; stomatal conductance; terrestrial; transpiration.

The family Orchidaceae, which comprises estimated 20,000 wild species, shows epiphytic, hemi-epiphytic, terrestrial, and lithophytic growth habits (Dressler 1993). However, majority is epiphytic (72%) (Gravendeel *et al.* 2004) and restricted to tropical and subtropical regions. Epiphytic orchids exhibit commonly morphophysiological traits that enable them to cope with intermittent drought (Benzing 1990). Furthermore, both terrestrial and epiphytic orchids may suffer drastic changes in light conditions in response to formation of treefall gap (Zotz and Hietz 2001). To deal with such environmental variations, this family exhibits a great plasticity in the patterns of CO₂ assimilation with many C₃ and crassulacean acid metabolism (CAM) species, as well as a great morphological variability.

Deforestation caused by agricultural expansion, pasture, and wood extraction in the Atlantic Rainforest in the southern region of the Bahia state (Brazil) affected the native flora, such as terrestrial and epiphytic orchids. However, few studies have been carried out on the physiology of Brazilian orchid species, thus the current knowledge in this field is quite fragmentary. For this reason, this study aimed to evaluate leaf gas-exchange parameters of two terrestrial (*Sobralia* sp. and *Cyrtopodium polyphyllum* Pohet ex. F. Barros) and three epiphytic orchids (*Encyclia fragrans* (Swartz) Dressler, *Miltonia flavescens* (Lindl.) Lindl., and *Gongora quinquenervis* Ruiz & Pavon), to provide a support for conservation programmes and reintroduction of orchids into natural habitats.

Cyrtopodium polyphyllum Pohet ex. F. Barros) and three epiphytic orchids (*Encyclia fragrans* (Swartz) Dressler, *Miltonia flavescens* (Lindl.) Lindl., and *Gongora quinquenervis* Ruiz & Pavon), to provide a support for conservation programmes and reintroduction of orchids into natural habitats.

Mature plants of the orchids were collected in a reserve of the Atlantic Rainforest at the secondary successional stage, surrounded by an urban matrix in the borders of Itapebi city, Bahia (15°57'S, 39°32'W). Annual rainfall at the site is 1,100–1,700 mm, the mean annual temperature is 24°C and air humidity varies between 65–75% (Araújo 2009), with the dominant vegetation being tropical evergreen forest, which predominates in the Brazilian Atlantic coast. Plants of the terrestrial orchids, *Sobralia* sp. and *C. polyphyllum*, were transplanted into plastic pots with capacity of 10 L, containing soil, organic matter, and washed sand as substrate (3:1:1), while the epiphytic orchids, *E. fragrans*, *M. flavescens*, and *G. quinquenervis*, were transplanted to perforated adobe pots filled with dry seeds of *Spondias mombin* L. as a substrate according to Andrade-Souza *et al.* (2009) and Pires *et al.* (2012). The pots were maintained under greenhouse conditions at a mean

Received 15 May 2012, accepted 20 December 2012.

[†]Corresponding author; phone: +55 73 3680 5105, fax: +55 73 3680 5226, e-mail: alexalan.uesc@gmail.com

Abbreviations: C_i – intercellular CO₂ concentration; C_i/C_a – intercellular to atmospheric CO₂ concentration ratio; CV – coefficient of variation; E – leaf transpiration rate; g_s – stomatal conductance to water vapor; P_{max} – light-saturated photosynthetic rate; P_N – net photosynthetic rate; PPFD – photosynthetic photon flux density; R_D – dark respiration rate.

Acknowledgements: This research was funded by Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

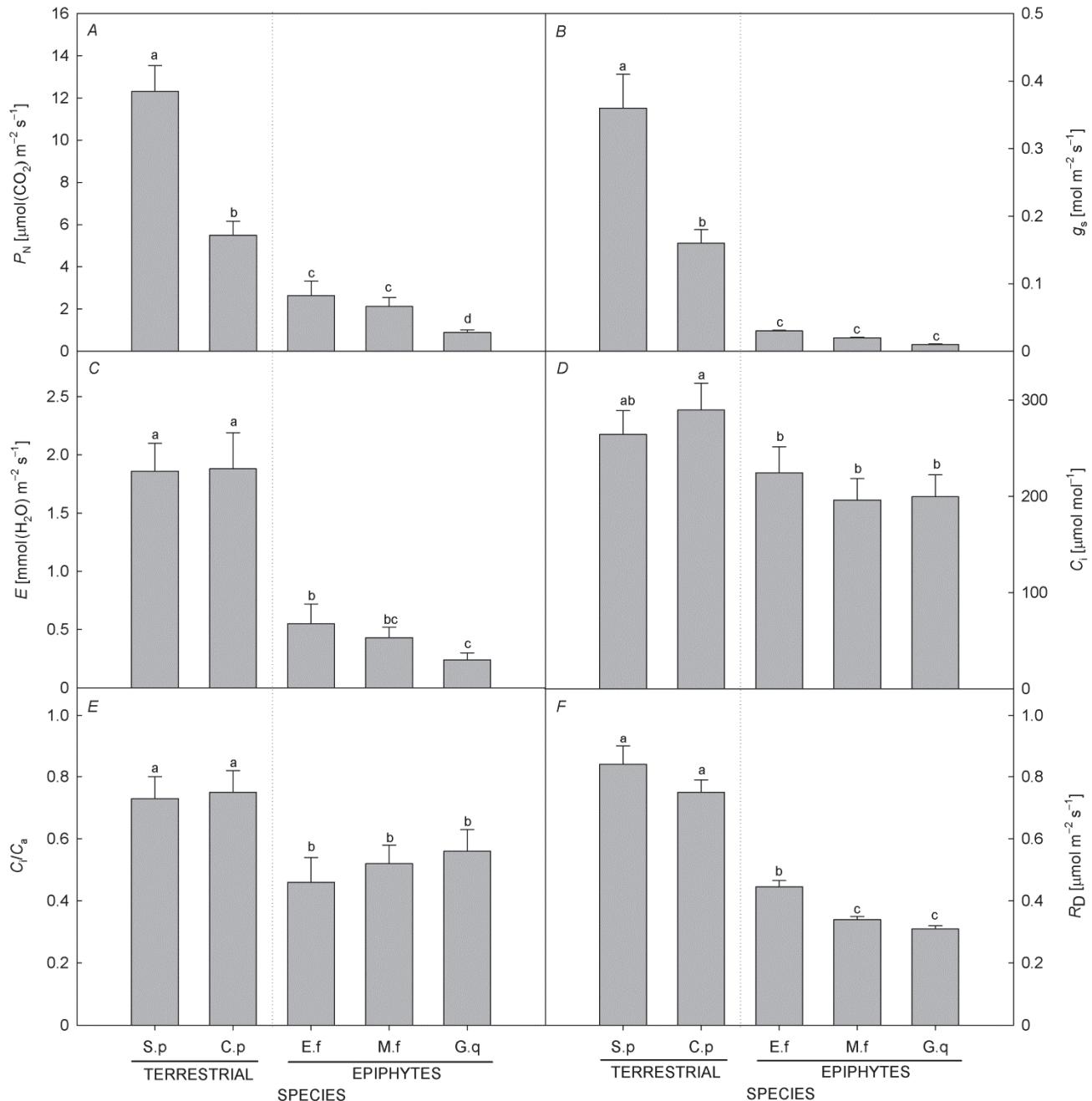


Fig. 1. Net photosynthetic rate, P_N (A), stomatal conductance, g_s (B), transpiration rate, E (C), intercellular CO_2 concentration, C_i (D), intercellular to ambient CO_2 concentration ratio, C_i/C_a (E), and dark respiration rate, R_D (F) of five orchid species. Bars represent means ($n = 5$) and means comparison was done using Tukey's test ($p < 0.05$). Vertical bars denote SE. For each variable lowercase letters indicate comparison among species. S.p – *Sobralia* sp.; C.p – *Cyrtopodium polyphyllum*; E.f – *Encyclia fragrans*; M.f – *Miltonia flavescens*; G.q – *Gongora quinquenervis*.

temperature of $28 \pm 2^\circ\text{C}$, relative humidity of $70 \pm 4\%$, and 50% of global irradiation [$380 \pm 75 \mu\text{mol}(\text{photon}) \text{ m}^{-2} \text{ s}^{-1}$], a nonsaturating irradiance. Each pot had 4–5 stumps and represented 1 experimental sample unit. The plants were irrigated daily, fertilized through the leaves (N:P:K ratio of 1:1:1), and sprayed with fungicide once every 15 d.

Leaf gas-exchange parameters were evaluated 90 d after the plants were transferred to artificial conditions, from 8:00 to 12:00 h, on five individual plants per species in a fully expanded, not self-shaded leaf per plant, using a *Portable Photosynthesis System LI-6400* (Li-Cor Biosciences Inc., Lincoln, NE, USA) equipped with an artificial irradiance source 6400-02B RedBlue. Light-

response curves were created with eight levels of photosynthetic photon flux density, PPFD [0, 25, 50, 100, 200, 400, 600, and 800 $\mu\text{mol}(\text{photon}) \text{ m}^{-2} \text{ s}^{-1}$] applied in a decreasing order, with 1–2 min intervals between each reading coefficient of variation (CV) < 0.8%. The CO_2 flux was adjusted to maintain a concentration of 380 $\mu\text{mol mol}^{-1}$ inside the chamber; the leaf chamber temperature was maintained at 26°C. The net photosynthetic rate (P_N), leaf transpiration rate (E), stomatal conductance to water vapor (g_s), intercellular CO_2 concentration (C_i), and intercellular to atmospheric CO_2 concentration ratio (C_i/C_a) were calculated using the values of CO_2 and humidity variation inside the chamber (~50%), both measured by the infrared gas analyzer of the LI-6400, when $\text{PPFD} \geq 600 \mu\text{mol}(\text{photon}) \text{ m}^{-2} \text{ s}^{-1}$ (saturating, but not inhibitory irradiance observed). The following equation was used for the construction of P_N vs. PPFD curves (Iqbal *et al.* 1997): $P_N = P_{\max} [1 - \exp(-\alpha \text{PPFD}/P_{\max})] - R_D$, where P_{\max} is the light-saturated photosynthetic rate, α is the apparent quantum yield, and R_D is the dark respiration rate, corresponding to the value of P_N , when $\text{PPFD} = 0 \mu\text{mol}(\text{photon}) \text{ m}^{-2} \text{ s}^{-1}$.

The experiment was conducted in a completely randomized design with five treatments (species) and five replications, using one pot per experimental unit. The results were submitted to a variance (ANOVA) and Pearson's correlations analyses, followed by Tukey's mean comparison test ($p < 0.05$). All statistical procedures were performed using the *Statistica 6.0* software (Statsoft Inc., College Station, TX, USA).

The terrestrial orchids showed higher values of photosynthetic parameters in comparison to the epiphytic ones, such as P_N (~79% higher), g_s (~92% higher), and E (~78% higher). The highest value of P_N (Fig. 1A), found for the terrestrial species, *Sobralia* sp., was similar to that of the terrestrial orchid, *Spiranthes cernua* [9.15 $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$]. The P_N values of the epiphytic orchids, *E. fragrans* and *M. flavescens*, were near to that of *Cymbidium sinense* [2.6 $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$], while the value found for *G. quinquenervis* was similar to those observed in *Paphiopedilum barbatum* [1.0 $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$] and *Angraecum sesquipedale* [0.8 $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$] (Goh and Kluge 1989, Hew *et al.* 1989, Antlfinger and Wendel 1997, Kluge *et al.* 1997). The maximal values of g_s (Fig. 1B) were observed for *Sobralia* sp. [0.36 $\text{mol m}^{-2} \text{ s}^{-1}$] and *C. polyphyllum* [0.16 $\text{mol m}^{-2} \text{ s}^{-1}$]; in addition, significantly positive correlations between P_N and g_s were also found (Table 1). *E. fragrans*, *M. flavescens*, and *G. quinquenervis* had lower g_s values (Fig. 1B). Highly significant, positive correlations between P_N and g_s (Table 1) were found for all species, showing that g_s accounted for more than two thirds of the variation in P_N . A significant correlation between E and g_s was also found for all species (Table 1). Furthermore, the highest values of C_i (Fig. 1D), C_i/C_a (Fig. 1E), and R_D (Fig. 1F) were also observed in the terrestrial orchids. The C_i/C_a ratio is a good indicator of

Table 1. Pearson correlations coefficients (r) between the net photosynthetic rate (P_N) and the stomatal conductance (g_s), the intercellular CO_2 concentration (C_i), and the intercellular to ambient CO_2 concentration ratio (C_i/C_a), and between the transpiration rate (E) and g_s of five orchid species. Significant interactions between parameters are: ns – not significant; ** $p < 0.05$; *** $p < 0.01$. ¹ – Terrestrial orchids; ² – Epiphytic orchids.

Species	P_N vs. g_s	P_N vs. C_i	P_N vs. C_i/C_a	E vs. g_s
<i>Sobralia</i> sp. ¹	0.69**	0.51ns	0.52ns	0.59**
<i>Cyrtopodium polyphyllum</i> ¹	0.75**	0.53ns	0.45ns	0.55**
<i>Encyclia fragrans</i> ²	0.90***	0.04ns	0.40ns	0.95***
<i>Miltonia flavescens</i> ²	0.94***	0.37ns	0.35ns	0.81**
<i>Gongora quinquenervis</i> ²	0.83***	0.19ns	-0.09ns	0.95***

stomatal limitation of photosynthesis, and its values change according to the habitat, being higher in mesomorphic than in xeromorphic species, such as vascular epiphytes (Lloyd and Farquhar 1994).

P_N values of most epiphytes are often lower than those of terrestrial orchids (Stuntz and Zott 2001), which could be limited by both low leaf nutrient contents (Field and Mooney 1986) and frequent water shortage periods (Zott and Hietz 2001). The potentially low photosynthetic capacity is related to a low g_s resulting from low stomata densities of the leaf epidermis, a common feature of vascular epiphytes (Holbrook and Putz 1996). Thus, as a consequence, the low E rates found for the epiphytic orchids (Fig. 1C) ensured that tissue desiccation proceeds slowly and, therefore, that a cell turgor is preserved in situations of water deficit (Martin *et al.* 2004). However, the current knowledge in this field is often contradictory. The physiological behavior of epiphytes is commonly influenced by several factors, such as plant size, since the photosynthetic capacity is a function of the plant size (Schmidt *et al.* 2001), and environmental conditions (Pires *et al.* 2012). The current data indicate that as a group, epiphytes show low photosynthetic capacities (Stuntz and Zott 2001, Zott and Hietz 2001); however, these major studies have focused on different groups of epiphytes, with different plant sizes and growth conditions. Thus, a high variability (Zott and Hietz 2001) is expected in the photosynthetic capacity of epiphytes, due to the greater diversity of environments to which those plants are subjected.

Most orchids have remarkable storage organs, such as corms, rhizomes, and tuberoids in terrestrial orchids, as well as enlarged stems, called pseudo-bulbs, in epiphytic orchids (Arditti 1992, Ng and Hew 2000). Pseudo-bulbs can be seen as an adjustment mechanism in situations of reduced water availability, since they can store water, nutrients, and carbohydrates, and thus, help in the maintenance of water balance and metabolism. However, the low P_N , shown by the epiphytic orchids in this study, might be due to increased investment in pseudo-bulbs and

therefore carbohydrate storage. Furthermore, the presence of a thicker cuticle layer in the leaves of the epiphytic orchids can be associated with the reduced rates of P_N , g_s , and E observed. Since the environment of most vascular epiphytes is often subject to temporal and spatial variations in a light intensity and water supply (Maxwell *et al.* 1994), low cuticular permeability to water is a feature commonly observed in epiphytic orchids

(Helbsing *et al.* 2000). Our results demonstrate that the photosynthetic parameters were related to the specific growth habits of the orchids under study. The net photosynthetic rates of the epiphytic orchids were more dependent on g_s and E , probably due to their growth habit and morpho-physiological adaptations, while the terrestrial orchids exhibited a behavior typical for mesomorphic species.

References

Andrade-Souza, V., Almeida, A-A.F., Corrêa, R.X. *et al.*: Leaf carbon assimilation and molecular phylogeny in *Cattleya* species (Orchidaceae). – *Genet. Mol. Res.* **8**: 976-989, 2009.

Antlfinger, A.E., Wendel, L.F.: Reproductive effort and floral photosynthesis in *Spiranthes cernua* (Orchidaceae). – *Amer. J. Bot.* **84**: 769-780, 1997.

Araújo, W.S.: [Detection of climate change trends by precipitation daily indexes in the states of Bahia and Sergipe, Brazil]. – Dissertation, Universidade Federal de Campina Grande, 2009. [In Portuguese.]

Arditti, J.: Fundamentals of Orchid Biology. – Wiley, New York 1992.

Benzing, D.H.: Vascular Epiphytes. General Biology and Related Biota. – Cambridge Univ. Press, Cambridge 1990.

Dressler, R.L.: Phylogeny and Classification of the Orchid Family. – Dioscorides Press, Portland 1993.

Field, C., Mooney, H.A.: The photosynthesis-nitrogen relationship in wild plants. – In: Givnish, T.J. (ed.): On the Economy of Plant Form and Function. Pp. 25-55. Cambridge University Press, Cambridge 1986.

Goh, C.J., Kluge, M.: Gas exchange and water relations in epiphytic orchids. – In: Lütge, U. (ed.): Vascular Plants as Epiphytes. Evolution and Ecophysiology. Pp. 139-166. Springer, Berlin 1989.

Gravendeel, B., Smithson, A., Slik, F.J.W., Schuiteman, A.: Epiphytism and pollinator specialization: drivers for orchid diversity? – *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* **359**: 1523-1535, 2004.

Helbsing, S., Riederer, M., Zotz, G.: Cuticles of vascular epiphytes, efficient barriers for water loss after stomatal closure? – *Ann. Bot.* **86**: 765-769, 2000.

Hew, C.S., Ye, Q.S., Pan, R.C.: Pathways of carbon dioxide fixation in some thin-leaved orchids. – *Lindleyana* **4**: 154-157, 1989.

Holbrook, N.M., Putz, F.E.: From epiphyte to tree: differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes. – *Plant Cell Environ.* **19**: 631-642, 1996.

Iqbal, R.M., Rao, Aur-R., Rasul, E., Wahid, A.: Mathematical models and response functions in photosynthesis: an exponential model. – In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 803-810. Marcel Dekker Inc., New York 1997.

Kluge, M., Vinson, B., Ziegler, H.: Ecophysiological studies on orchids of Madagascar: incidence and plasticity of crassulacean acid metabolism in species of the genus *Angraecum* Bory. – *Plant Ecol.* **135**: 43-57, 1997.

Lloyd, J., Farquhar, G.D.: ^{13}C discrimination during CO_2 assimilation by the terrestrial biosphere. – *Oecologia* **99**: 201-215, 1994.

Martin, C.E., Lin, T.-C., Lin, K.-C. *et al.*: Causes and consequences of high osmotic potentials in epiphytic higher plants. – *J. Plant. Physiol.* **161**: 1119-1124, 2004.

Maxwell, C., Griffiths, H., Young, A.J.: Photosynthetic acclimation to light regime and water stress by the C₃-CAM epiphyte *Guzmania monostachia*: gas-exchange characteristics, photochemical efficiency and the xanthophyll cycle. – *Funct. Ecol.* **8**: 746-754, 1994.

Ng, C.K.Y., Hew, C.S.: Orchid Pseudobulbs – ‘false’ bulbs with a genuine importance in orchid growth and survival. – *Sci. Hort.* **83**: 165-172, 2000.

Pires, M.V., Almeida, A-A.F., Abreu, P.P., Silva, D.C.: Does shading explain variation in morphophysiological traits of tropical epiphytic orchids grown in artificial conditions? – *Acta Physiol. Plant.* **34**: 2155-2164, 2012.

Schmidt, G., Stuntz, S., Zotz, G.: Plant size – an ignored parameter in epiphyte ecophysiology. – *Plant Ecol.* **153**: 65-72, 2001.

Stuntz, S., Zotz, G.: Photosynthesis in vascular epiphytes – a survey of 27 species of diverse taxonomic origin. – *Flora* **196**: 132-141, 2001.

Zotz, G., Hietz, P.: The physiological ecology of vascular epiphytes: current knowledge, open questions. – *J. Exp. Bot.* **52**: 2067-2078, 2001.