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Abstract

Responses of drought-tolerant (DT) and drought-susceptible (DS) pot-grown groundnut (Arachis hypogaea L.) varieties
to changes in leaf relative water content (RWC) were studied. Water stress (WS) was imposed on 30-day-old plants for
2 weeks. Leaf RWC decreased significantly under WS conditions with simultaneous decrease in net photosynthetic rate
(Pn) and stomatal conductance (g;). Even though no significant difference was observed between DT and DS varieties
with regard to RWC, DT varieties were able to maintain significantly higher Py than DS varieties. Higher values of
water use efficiency (WUE) were also observed in DT varieties during WS conditions. The decline in Py due to WS
could be attributed to both reduction in g; (i.e. stomatal limitation) and to reduction in chlorophyll content (Chl). No
significant difference in leaf area index (LAI) was found between DT and DS types and LAI was not reduced by WS.
Significant differences were found among the studied groundnut varieties, but not between DT and DS types, in terms of
root, aboveground, and total dry mass. These growth parameters significantly decreased under WS conditions. Based on
the results, a sequence of physiological responses in groundnut crop subjected to WS was postulated.

Additional key words: drought susceptibility; drought tolerance; net photosynthesis; peanut; physiological mechanism; water-use
efficiency.

Introduction

Groundnut (4rachis hypogaea L.) also known as peanut,
is an important crop used for food and oil production
(Smith 1995). It is grown on 19.3 million ha of land area
in about 82 countries (Reddy ef al. 2003). Generally, field
crops including groundnut undergo WS under field
conditions (Ndunguru et al. 1995), which causes reduc-
tion in a pod yield. WS or drought is the most devas-
tating, abiotic stress and the most resistant to breeders’
efforts (Tuberosa and Salvi 2006). In the past, breeding
efforts to improve drought tolerance have been hindered
by its quantitative genetic basis and our poor under-
standing of the physiological basis of the yield under WS
conditions (Blum 1988, Passioura 2002). For this reason,
advancement of the current understanding of plant
responses to drought stress and the mechanisms involved
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has become a major target of research and investment,
with the ultimate goal of developing crops with improved
WUE and minimized drought-induced loss of the yield
(Somerville and Briscoe 2001, Zhang et al. 2004). More
DT species control stomatal function to allow carbon
fixation under stress, thus improving WUE (Yordanov et
al. 2000).

Plants perceive and respond rapidly to even small
alterations in water status via a serie of physiological,
cellular, and molecular events developing in parallel
(Chaves et al. 2009). WS can trigger a variety of plant
responses, which include decrease in RWC and water
potential (Lawlor and Cornic 2002), reduction of stomatal
aperture (Dubey 1997) and Py (Leport ef al. 1999). RWC
ranging between 40 and 50% due to severe WS caused

Abbreviations: ADM — aboveground dry mass; C — control, irrigated plants; Chl — chlorophyll; DS — drought-susceptible;
DT - drought-tolerant; £ — transpiration rate; g, — stomatal conductance to water vapour; LAI — leaf area index; Py — net
photosynthetic rate; RDM — root dry mass; RLA — relative leaf area; RWC — leaf relative water content; SLM — specific leaf mass;
TDM - total dry mass; WS — water stress; WUE — water-use efficiency.
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the decrease in g, E, Py, and WUE in groundnut
(Lauriano et al. 2004). Photosynthesis is one of the key
processes to be affected by WS via decreased CO,
diffusion to the chloroplast and metabolic constraints
(Pinheiro and Chaves 2011). Reduction in Py can be
attributed in part to the reduced intercellular CO, concen-
tration due to stomatal limitation (Lawlor and Cornic
2002) and also to perturbations of biochemical processes
(Lauer and Boyer 1992). Nonstomatal limitation of
photosynthesis has been attributed to a reduced carboxy-
lation efficiency (Jia and Gray 2004), reduced ribulose-
1,5-bisphosphate regeneration, and reduced amount of
functional ribulose-1,5-bisphosphate carboxylase/oxy-
genase (Rubisco) (Kanechi ef al. 1995). Critical reviews
on responses of plants in general (Yordanov ef al. 2000),
and groundnut in particular (Boote 1983, Reddy et al.
2003), to drought stress provide more information on
physiological characteristics associated with drought
stress. Vu (2005) inferred that in the absence of other
environmental stresses, groundnut leaf photosynthesis
would perform well under rising atmospheric CO, and
temperature as predicted for this century.

The mechanism of drought response has been
extensively investigated in the model plant, Arabidopsis
thaliana, and a resurrection plant, Craterostigma planta-
gineum (Yamaguchi-Shinozaki et al. 1995, Shinozaki and
Yamaguchi-Shinozaki 1996). Assessment of the regula-

Materials and methods

Plants: The experiments were carried out at Karpagam
Arts and Science College, Coimbatore during April
2008—May 2009. Plant materials include 9 groundnut
varieties. Among these, six varieties came from the
Regional Research Station of Tamilnadu Agriculture
University (TNAU), Vridhachalam, and three varieties
from the Regional Research Station of TNAU, Aliyar.
These varieties were already categorized into DT and DS
varieties based on their drought response index values
(Jeyaramraja and Thushara 2011).

Variety Origin Drought response
VRI-2 Vridhachalam DT
VRI-3 Vridhachalam DS
VRI-4 Vridhachalam DS
VRI-5 Vridhachalam DT
VRI-6 Vridhachalam DT
TMV-13 Vridhachalam DS
ALR-1 Aliyar DT
ALR-3 Aliyar DS
CO-2 Aliyar DS

Plant water status: RWC was determined gravimetri-
cally using samples of 10 leaf discs of 0.5 cm diameter
according to Clavel et al. (2006) from the third leaf from
the top of the main shoot using the equation:
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tory mechanisms of groundnut photosynthesis in response
to future changes in climatic conditions, including
drought, is limited (Clifford et al. 2000). Although
impressive advances have been made in the last decade
with respect to the nature of events occurring in plants
subjected to drought, an integrated picture of the
metabolic regulation is still missing (Rolland et al. 2006,
Shinozaki and Yamaguchi-Shinozaki 2007). In ground-
nut, limited literature is available about the physiological
changes under drought conditions. Matching physio-
logical responses of the crop to WS with molecular
studies requires further elucidation, because it is hard to
relate molecular events to plant physiological status and
to WS intensity (Pinheiro and Chaves 2011).

In a previous study (Jeyaramraja and Thushara 2011),
we have categorized selected groundnut varieties into DT
and DS varieties based on their drought-response index
values, i.e. ratio of the pod yield during drought and crop
seasons under field conditions. In the present investigation,
we tested the hypothesis that the DT and DS varieties of
groundnut were different in their physiological responses
to WS. Hence, this investigation was aimed to study the
effect of WS on various physiological parameters in
groundnut varieties varying in their drought tolerance, as
this is useful in understanding the drought-tolerance
mechanisms and also in suggesting a sequence of physio-
logical responses in groundnut crop subjected to WS.

RWC = [(FM - DM)/(TM — DM)] x 100, where FM was
fresh mass of the leaf, TM was turgid mass after 4-h
rehydration of the leaf in distilled water, under dark
conditions, at room temperature, and DM was the dry
mass after drying at 85°C for 24 h.

WS imposition: WS treatment was conducted according
to Jain et al. (2001) with slight modifications. The
experiment was designed to determine the physiological
responses of DT and DS types of groundnut to drought
stress. All varieties were grown in pots filled with sandy-
clay-loam soil with pH 8.7. The seeds were treated with
with a fungicide, Mancozeb, at 4 g kg '(seed) just before
sowing. This was done to protect the young seedlings
from root-rot and collar-rot infection. The seeds were also
treated with 600 g ha' of rhizobial culture, TNAU 14
(Tamilnadu Agriculture University, Vridhachalam, India;
600 g ha '), using rice congee as a binder.

There was one plant in each pot and there were

18 pots for each variety (9 for control (C) and 9 for WS
treatment). Therefore, there were 162 pots in total (81 for
C and 81 for WS treatment). Plants were grown in a green-
house under natural irradiance (PPFD up to 1,500 pmol
2 s, daily temperatures of 18-32°C, and relative
humidity between 75 (morning) and 45% (late afternoon).
The plants were irrigated by saturating the soil every
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other day. Soil-drying techniques are generally regarded
as the most practical means of approximating field
drought conditions for laboratory-based research (Woo et
al. 2008). Hence, in the present study, 30-day-old plants
were drought-stressed for 2 weeks by withholding the
irrigation. For C, the plants were irrigated until 45" d. For
each variety receiving the irrigation or WS treatment, all
measurements were taken randomly from 3 plants.

Physiological studies: Fully developed, expanded leaves
(5™-9"™ leaves from the shoot tip) were used for physio-
logical measurements. Py [umol(CO,) m™ s'] and g
[mol(H,0) m? s'] were monitored using infrared gas
analyzer (ADC, UK) with leaf chamber and porometer,
respectively. Since high light intensity and temperature
reduced Py, measurements were made between 08:30 and
11:30 h, when the greenhouse temperature ranged from
25 to 28°C and photosynthetically active radiation ranged
from 900 to 1,000 pmol m?2s’. During Py measurement,
the leaf chamber had flow rate of 360 ul(CO,) 1"'(air),
60% humidity, and ~1199 Pa vapour-pressure deficit.
Each leaf was equilibrated for 15 to 20 s before a single
Py or g, record, to obtain a constant value of Py or g.
WUE is the capacity of a plant economizing the use of
moisture for the production of dry matter (Handique
1992). It was calculated as the ratio between Py and g;.

Pigment estimation: Chl in the second, fully expanded
leaf from the top was analyzed spectrophotometrically at

Results

Leaf RWC decreased significantly in all the pot-grown
groundnut varieties under WS conditions. In the present
study and relatively to leaf RWC, there was no significant
difference between DT and DS types both under C and
WS conditions (Table 1).

Gas-exchange parameters and pigments: Py and g
decreased significantly under WS condition both in DT
and DS varieties (Table 1). Nevertheless, DT varieties
were found to maintain significantly higher Py and WUE
than the DS types both under C and WS conditions. No
significant difference between DT and DS types could be
found in Chl content (Table 1). Although the DT varieties

Discussion

In this work, RWC was used to study the water content of
the leaves, because this parameter is considered to be a
more useful integrator of plant water balance than the leaf
water potential (Sinclair and Ludlow 1985, Wright and
Nageswara Rao 1994). The reduction of RWC in plants
under WS might be associated with the decrease in plant
vigour as it was observed in many plant species (Lopez et
al. 2002, Halder and Burrage 2003). While screening
groundnut cultivars for drought tolerance, Boote (1983)

645 nm and 663 nm following the method of Sadasivam
and Manickam (1996). Acetone was used as solvent.

Plant growth parameters: Root dry mass (RDM),
aboveground dry mass (ADM), and total dry mass
(TDM) were estimated according to Clavel et al. (2005).
Plants were carefully removed from the pots and the roots
were washed with water. Thereafter, RDM and ADM
were measured after 48-h drying at 80°C. TDM is the
sum of ADM and RDM.

Leaf area was measured using allometric model given
by Kathirvelan and Kalaiselvan (2007) and LAI was
computed as the ratio of leaf area to ground area (the area
within the pot). RLA (Clavel et al. 2005) was estimated
by the following formula: RLA = ADM/SLM, where
SLM [g cm *] was the specific leaf mass of the third leaf
of each plant and ADM [g plant ']. SLM was estimated
as the ratio of leaf dry mass per unit leaf area.

Statistical analysis: Two-way analysis of variance
(ANOVA) was performed and critical difference (CD)
values were calculated at 0.05 level to find out whether
statistically significant difference existed within types,
varieties, and treatments. The regression analysis tool of
Microsoft® Office Excel® 2007 was used to perform linear
regression analysis by using the "least squares" method to
study the relationships among different parameters
analyzed in this study.

had significantly higher g, than DS wvarieties under
C conditions, WS led to statistically insignificant
difference in g; between DT and DS varieties.

Growth parameters: No significant difference in LAI
was found between DT and DS types and LAI was not
reduced by WS (Table 2). Significant differences were
observed among the groundnut varieties, but not between
DT and DS types, in RDM, ADM, and TDM, all of them
significantly decreased under WS conditions (Table 2).
ADM and RLA correlated positively (Table 3) with a
correlation coefficient of 0.976 (P<0.001).

pointed out a close relationship between RWC of leaves
and transpiration.

Py of groundnut varieties observed in the present
study were in the same range as those observed by Pallas
et al. (1974). In groundnut, relatively high g values were
obtained by us similar to the findings of Pallas (1980),
which was likely the result of high Py observed in this
crop (Bennet ef al. 1993). Light and temperature did not
vary much during Py measurements inside the
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Table 3. Linear regression analysis by using the “least squares”
method giving certain relationships among net photosynthetic
rate (Pn, [pmol(CO,) m™> s7']), chlorophyll content (Chl,
[mg g’l(FM)]), total dry mass (TDM, [g plant’l]), Aboveground
dry mass (ADM, [g plant ']), and relative leaf area (RLA, [cm?])
in different varieties of groundnut. The relationships are given
by the formula y = a + b x. "P<0.001. y — dependent variable;
x — independent variable; R — correlation coefficient; a, b —
constants.

y X R R a b
Chl Py 0.812"°  0.660  -0.29 0.1
TDM Py 0.747° 0557  -2.756  0.338
RLA ADM 0976°  0.953 20.38 190.7

greenhouse and hence their effect on Py was considered
negligible based on the light- and temperature-response
curves available in literature for groundnut (Pallas et al.
1974, Pallas 1980).

The decrease of Py and gg due to WS, found in this
work, could be related to the observed decrease in RWC.
Py and g correlated with RWC in significantly positive
relationships at 0.001 level (» = 0.782) and at 0.05 level
(r = 0.502), respectively. Reduction in Py and g, due to
WS was reported by Lauriano et al. (2004) in groundnut.
Indeed, as referred by Ritchie er al. (1990), metabolic
changes in response to WS include a reduction in
photosynthetic activity. Flexas et al. (1999) reported that
when WS became stronger, it induced a drastic
downregulation of photosynthesis. On the other hand,
stomatal control of water loss has been recognized as an
early response for conditioning the leaf water status of
plants in the field, but it severely limits carbon uptake and
biomass production (Chaves 1991) as it was shown in the
present work by the decrease in RDM, ADM, and TDM.

Although no significant difference was observed
between DT and DS varieties with regard to RWC in the
present study, DT types were found to maintain
significantly higher Py than the DS varieties both under C
and WS conditions. The hypothesis that DT plants at the
cellular level are often able to keep their stomata open
under severe WS was established in a study involving
four cultivars of another leguminous plant, i.e. Phaseolus
vulgaris (Costa Franga et al. 2000). RWC data of Clavel
et al. (2005) showed that DS cultivar had always higher
water contents than the other cultivars, particularly until
35 days of applied WS on 2-week-old groundnut seed-
lings. This indicated that ability to conserve leaf water
during WS is not a mechanism of drought tolerance in
groundnut. However, drought tolerance means the ability
of a plant to utilize the water effectively. This hypothesis
was supported by significantly higher values of WUE
observed in this study in DT types under WS conditions.
The decrease in g5 would allow the DT varieties to use
less water and to become more efficient in their water
usage (Hetherington and Woodward 2003). An increase
in WUE results in the reduction of transpiration (Vu
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2005). If transpiration rate decreases more than Py, an
increase on WUE can occur. It was clarified by Krishna-
murthy et al. (2007); they suggested that improving WUE
would be the best strategy to cope with episodes of
intermittent drought in groundnut, which is usually grown
in rain fed conditions.

Based on the physiological data obtained, the reduc-
tion in Py due to WS could be attributed both to reduction
in g (stomatal limitation) and to reduction in Chl.
Stomatal limitation of photosynthesis during WS has
been reported by Ludlow and Muchow (1990), which is
in contrary to the findings of Kicheva et al. (1994), who
reported that decrease in CO, assimilation rate could
occur because of decrease in Chl under severe drought.
Moreshat et al. (1996) has reported that Chl increases in
groundnut due to mild drought stress.

Comparing Py with LAI indicated that reduction in
leaf area did not contribute to drought susceptibility in
DS types of groundnut during WS. Instead of reducing
the leaf area, the DS types might alter the leaf angle
during dehydration to diminish total intercepted radiation
and therefore carbon assimilation by a plant (Pinheiro and
Chaves 2011). Our data suggested that it was the ability
of the DT types to efficiently utilize the available leaf
RWC and leaf area to maintain significantly higher Py
during WS, which conferred them the drought tolerance.

The reduction in Py should have contributed to reduc-
tions in RDM, ADM, and TDM. Long-term consequence
of WS seems to be a reduction of growth (Lauriano et al.
2004), which is usually measured in terms of biomass.
The question, how ADM could decrease without any
reduction in LAI, was answered by the values of RLA,
which were influenced by leaf dry masses. RLA also
followed the same trend of ADM and hence, our data
proved that leaf dry mass decreased without any effect on
the leaf area during WS, thus contributing to low ADM
with high LAIL. SLM, which expresses leaf thickness (Jun
and Imai 1999), decreased due to WS in most of the
groundnut varieties studied (data not shown). An increase
in the root/shoot ratio (RDM/ADM) due to WS observed
in the present study (data not shown) was attributed to the
reason that decline observed in leaf net carbon uptake
was followed by an alteration in partitioning of the
photoassimilates at the whole plant level as referred by
Pinheiro and Chaves (2011). This is the result of the
decline in shoot growth and the maintenance of root
growth under decreasing water in the soil (Sharp 2002).
The changes in the root/shoot ratio as well as the tempo-
rary accumulation of reserves in the stem occur in several
species under WS (Blum ef al. 1994, Chaves et al. 2002).

Although we hypothesized that ability to conserve
water during WS was not a mechanism of the drought
tolerance in groundnut, it was found that leaf RWC had
positive relationships with Py (r = 0.782), Chl (r = 0.908),
TDM (r = 0.788), and RLA (» = 0.891), which were
significant at P<0.001. Hence, we put forward that leaf
RWC is an index of various physiological parameters,
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Fig. 1. Schematic representation of
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responses in groundnut owing to soil
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ses are expressed in terms of leaf
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(LAI), root dry mass (RDM), above-
ground dry mass (ADM), total dry
mass (TDM), and relative leaf area

leaf area

TDM RLA

pigment concentration, and dry mass accumulation, but
not that of the drought tolerance. Based on the observa-
tion and analysis of physiological data, we suggested a
sequence of physiological responses in groundnut crop
subjected to WS (Fig. 1). WS for 2 weeks in 30-day-old
groundnut plants resulted in 8.8% reduction in leaf RWC
compared with C plants. Consequently, the plants closed
the stomata in order to reduce the transpiratory loss of
water. Thus, it was a reduction in g, which was more
pronounced in DT types (5.6%) than in DS types (3.2%).
As a result, CO, diffusion into the leaf was also reduced.
Hence, there was a reduction in Py. Chl reduction
(28.4%) due to WS also contributed to reduction in Py.
However, the reduction in Py was found to be lower
(14.5%) in DT types and higher (18.1%) in DS types.
Lesser reduction of Py coupled with higher reduction of
g, resulted in high WUE values in DT types and vice
versa. Reduction in Py caused reductions in growth
parameters, such as RDM and ADM, and therefore,
reductions in TDM and RLA. No significant reduction in
LAI due to WS was attributed to the reduction (6.8%) in
leaf dry mass without any effect on leaf area.

Groundnut suffers usually from terminal drought
stress and thus, the yield decreases to a large extent. The

(RLA).

varieties that yield well during drought are therefore
considered to be DT and vice versa. In a previous study
(Jeyaramraja and Thushara 2011), such a categorization
of recently used groundnut varieties into DT and DS
varieties was done based on their yield during drought
and non-drought seasons. Comparison of yield data of
our previous study with the physiological data of the
present investigation showed some interesting relation-
ships. The pod yield showed significant positive
relationships with leaf RWC (r=0.523), WUE (= 0.550),
and Chl (» = 0.492), and it also showed highly significant
positive relationships with Py (» = 0.652) and g, (r =
0.601). However, no significant relationships could be
noticed between the yield and any of the physiological
parameters using the data obtained only during non-
drought conditions. This is due to the fact that DS
varieties yielded more than the DT types during non-
drought conditions (Jeyaramraja and Thushara 2011),
which did not coincide with the higher values of Py, g,
and WUE in DT types compared with DS types. On the
other hand, a significant positive relationship between the
yield and Py was observed (r = 0.754) using the data
obtained only during drought conditions. This was
because of higher yield in DT varieties compared to that
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of the DS types during drought (Jeyaramraja and
Thushara 2011) that matched with the higher values of Py
in DT types than DS types. Hence, being the DT variety
is useful, because groundnut is usually grown under
drought conditions and usually faces terminal drought
stress. Although the DS varieties give higher yield than
DT types during nondrought conditions, the DS varieties
could be useless to the farmers, because most of the
groundnut is cultivated as a rainfed crop, which faces
drought under field conditions. There are a very few
places, where this crop is cultivated as an irrigated crop.
Numerous physiological traits have been shown to
potentially contribute to the yield under stress, but the
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