

# Utilization of leaf temperature for the selection of leaf gas-exchange traits to induce heat resistance in sunflower (*Helianthus annuus* L.)

T. KALYAR\*, S. RAUF\*,+, J.A. TEIXEIRA DA SILVA \*\*, S. HAIDAR\*, and Z. IQBAL\*

*University College of Agriculture, Ludhewali Jhal, Risala No-5, Sargodha 40100, Pakistan\**

*Faculty of Agriculture and Graduate School of Agriculture, Kagawa University, Miki-Cho, Ikenobe, 2393, Kagawa-Ken, 761-0795, Japan\*\**

## Abstract

Heat stress is a major production constraint of sunflower worldwide. Therefore, various populations (parental,  $F_1$ ,  $F_2$ ,  $F_3$ , and plant progenies) of sunflower were screened for leaf gas-exchange traits with the objectives to formulate selection criteria of heat resistance and development of heat-resistant lines. Initial screening and  $F_2$  seeds exposed to heat stress (45°C) resulted in the development of an adapted  $F_2$  population that showed leaf gas-exchange and morphological traits better than the unadapted population. Correlation coefficients of traits were partitioned into direct and indirect effects via a path analysis technique to determine the cause of their relationship with a basic parameter such as a reproductive head mass (HM). Path analysis showed a positive direct effect of leaf temperature ( $T_{leaf}$ ) (0.32) on HM and also an indirect effect (0.77) of the transpiration rate ( $E$ ) on HM. Moreover,  $T_{leaf}$  showed high heritability estimates.  $T_{leaf}$  was used to select superior plants within the  $F_2$  population. This selection brought about an improvement in the net photosynthetic rate ( $P_N$ ) and  $E$  as it was indicated from progeny performance and realized heritability. Progenies selected on the basis of  $T_{leaf}$  also showed an increase in achene yield and heat resistance over unselected  $F_3$  progenies and a commercial hybrid.

*Additional key words:* gametes; genetic variability; germplasm; heat stress.

## Introduction

Sunflower is a heat-sensitive crop. Qadir *et al.* (2007) found that 25–30°C is the optimal temperature for growth and germination, while temperatures exceeding 30°C pose a stress on the plant. Sunflower is more sensitive to abiotic stresses, such as moisture, salinity, and heat, than other plant species (Dekov *et al.* 2001, Rauf 2008, Rauf and Sadaqat 2008, Rauf *et al.* 2008, 2012).

Among various growth stages, a plant reproductive phase experiences the most deleterious effects under heat stress (Martiniello and Teixeira da Silva 2011). Various studies are available indicating the repressive effect of heat stress on sunflower yield and quality in which high temperature has been correlated with critical growth stages, such as anthesis or grain filling (Rondanini *et al.* 2003, 2006). Rondanini *et al.* (2006) quantified the effects of day/night high temperature regimes on sunflower grain yield and quality and they showed that high temperature (35°C) stress lasting 4 or more days caused significant

reductions in grain yield and quality. Similarly, Rondanini *et al.* (2003) exposed the capitulae of sunflower plants to a range of high temperatures (35, 37, and 40°C) for 7 consecutive days during grain filling. Heat stress resulted in 40% reduction in grain mass at temperatures >35°C during early grain development because of the reduction of grain growth, while at the same temperature oil grain percentage was reduced by 30%. Lower number of grains/cob may be attributed to the abortive effect of heat stress on the susceptible gametes of maize (Petolino *et al.* 1990). Thus, selection for heat-resistant gametes is an index of heat-resistant genotypes and improves the performance of the genotype under heat stress in the next generation. *In vitro* germination of gametes or pollination under heat stress has been proposed to develop heat-resistant genotypes (Acar and Kakani 2010). Furthermore, exposing the reproductive stage (anthesis) of the plants to heat stress in the field could also help

Received 21 June 2012, accepted 22 January 2013.

\*Corresponding author; phone: +92-33-217996-42, fax: +092-48-370036-62, e-mail: saceedbreeder@hotmail.com

Abbreviations: CxB – CM-207 × BF-88 cross; CxC – CM-207 × CM-631 cross; DPH – droopy plant height; E – transpiration rate;  $g_s$  – stomatal conductance; HM – head mass; LM – leaf mass; NL – number of leaves;  $P_N$  – net photosynthetic rate; SD – stem diameter; SM – stem mass;  $T_{air}$  – ambient air temperature around leaf;  $T_{leaf}$  – leaf temperature; WUE – water-use efficiency;  $\sigma^2 E$  – environmental variance;  $\sigma^2 G$  – genotypic variance;  $\sigma^2 P$  – phenotypic variance.

select for heat-tolerant gametes and finally seeds (Rahman 2004).

Despite significant losses in the yield caused by heat stress in sunflower, very few studies have been conducted to enhance heat tolerance of this crop. Regarding breeding, efforts have been carried out only to screen germplasm and to identify tolerant inbred lines for the development of hybrids. However, genetic variability for thermo-tolerance exists within cultivated germplasm of sunflower (Senthil-Kumar *et al.* 2003). Despite this known fact, specific breeding programmes to enhance the heat tolerance of breeding material are rare. Furthermore, information regarding the applicability of specific leaf gas-exchange or morphological traits as selection criteria and their relationships with the yield in sunflower breeding programmes is still unknown.

## Materials and methods

**Plant material:** The study was carried out in large plastic bags and in experimental research field of the University College of Agriculture, University of Sargodha, for two consecutive years (2011–2012). Sunflower germplasm was introduced from the USDA germplasm collection during 2009. In the same year, germplasm was evaluated for various morphological and biochemical traits and crosses were attempted among various inbred lines. In 2010, crosses were evaluated to maturity at multiple locations under various temperature regimes, *i.e.* optimal temperature (25–30°C) and heat stress (45°C). Two crosses, CM-207 × CM-631 (C×C) and CM-207 × BF-88 (C×B), were selected on the basis of their performance under heat stress. These crosses were the source of F<sub>2</sub> seeds. Two types of F<sub>2</sub> seeds were obtained: one from F<sub>1</sub> crosses under an optimal regime and the other from the heat stress regime. F<sub>2</sub> seeds obtained from crosses grown under the heat stress were designated as the heat stress-adapted seeds, while F<sub>1</sub> grown in the optimal regime resulted in unadapted F<sub>2</sub> seeds. Parents (CM-207, CM-631, BF-88) involved in the F<sub>1</sub> crosses and in a subsequent F<sub>2</sub> generation were again used to produce fresh F<sub>1</sub> seeds for comparing the parents, F<sub>1</sub>, and F<sub>2</sub> generations (adapted and unadapted) under a heat stress (45°C) regime.

**Cultivation of plant material:** Parental lines, F<sub>1</sub> crosses, and F<sub>2</sub> seeds were grown in large plastic bags containing 17 kg of soil (an equal amount of sand, silt, and farmyard manure) to have a homogenous fertility gradient in all plant populations. In total, 15 bags were used for F<sub>1</sub> and parental lines, while 80 bags were used for the F<sub>2</sub> population. Three seeds were sown per a bag for all populations at a uniform depth of 2.5 cm to grow seedlings. They were thinned out to a single plant after the germination 10 d after sowing (DAS).

**Development of plant progenies and F<sub>3</sub> population:** Superior plants (on the basis of high mean values of

On these grounds, a research project was undertaken to study the usability of leaf gas-exchange traits as selection criteria for the development of heat-resistant and productive sunflower populations, to understand the contribution of various leaf gas-exchange and morphological traits on reproductive biomass, and to evaluate the outcome of selection in terms of: (1) improvement in the mean values of leaf gas-exchange traits as a result of selection of genotypes having these superior leaf gas-exchange traits; (2) correlated response of selection to achene yield and heat resistance.

This information could also be useful to understand the heat tolerance and the sustainability of sunflower yield under heat stress.

measured physiological traits) were selected in the F<sub>2</sub> adapted populations for a progeny test. For this purpose, the first few rows of selected sunflower head (capitula) were manually emasculated early in the morning to remove immature anthers with the help of forceps. Emasculated rows within head were pollinated with the pollen from a heat-susceptible F<sub>2</sub> plant showing inferior performance under the heat stress. The plant was considered as a tester since it was used to test the performance of the selected F<sub>2</sub> plants. The seeds, which developed from emasculated rows and were pollinated subsequently by the tester, were harvested separately from other rows within the same head. F<sub>3</sub> seeds were developed by bagging the heads of F<sub>2</sub> plants.

**Raising plant progenies in a replicated trial:** Plant progenies along with the F<sub>3</sub> population of crosses (C×B, C×C) were grown in a replicated trial under a randomized complete block design with three replications and at two locations during 2012. There were three rows per progeny within each replication, while the F<sub>3</sub> population was represented by 6 rows per replication. Each row was 450 cm in length, row-to-row distance was 60 cm, and plant-to-plant distance was 22 cm. All weeds were controlled manually. Any leaf disease was scored as absent or present and insects were controlled by recommended insecticide (pyriproxyfen 620 ml ha<sup>-1</sup> and lufeneron 500 ml ha<sup>-1</sup>) before they could cause any significant damage to the crop. Populations were raised according to the production package adapted in the region.

**The heat stress regime:** During the vegetative phase, plants were grown under optimal conditions, then the temperature was gradually raised to a maximum of 45°C. Photosynthetically active radiation was 1,900 µmol m<sup>-2</sup> s<sup>-1</sup> during the vegetative phase just before the start of the reproductive phase and the temperature was held until maturity (Fig. 1). During the growth cycle, all plants were

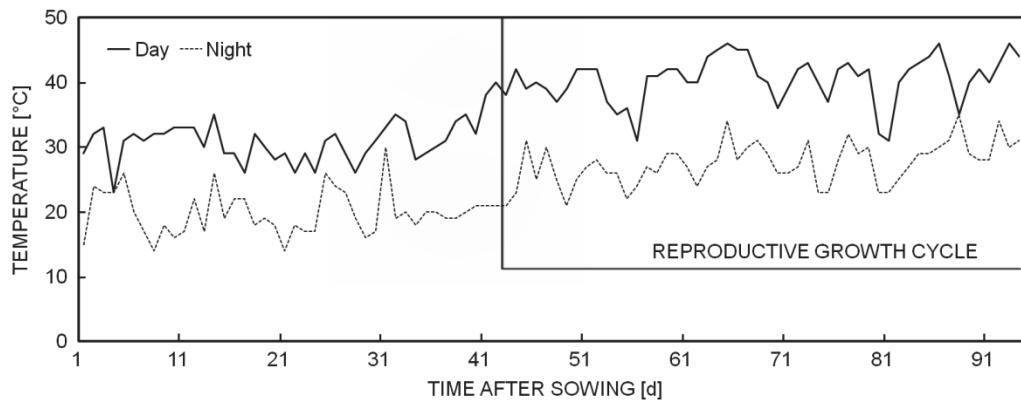



Fig. 1. Mean minimum and maximum temperature (°C) throughout the growth cycle of sunflower (*Helianthus annuus* L.).

irrigated with an equal quantity of water according to the plant demand to avoid drought stress. Leaf gas-exchange traits were measured at anthesis (70 DAS), while morphological traits were measured at maturity (100 DAS).

**Plant traits:** Leaf gas-exchange characteristics ( $P_N$ ,  $E$ , and  $g_s$ ) as well as  $T_{leaf}$  and temperature of ambient air around the leaf ( $T_{air}$ ) were measured with *Photosystem CI-340* (Camas, WA, USA) between 10:00 and 12:00 h.  $T_{air}$  was determined for each plant with an infrared thermometer installed on *Photosystem CI-340*. Average  $T_{air}$  for plants was  $40.4^{\circ}\text{C} \pm 1.0$ . Leaf to air temperature difference ( $\Delta$ ) was calculated by subtracting  $T_{air}$  from  $T_{leaf}$  (Royo *et al.* 2002), while water use efficiency (WUE) was calculated as the ratio of  $P_N$  to  $E$ .

Data were obtained from 50  $F_2$  plants and 15  $F_1$  plants and of the parental generation within each cross. At maturity (100 DAS), morphological traits, *i.e.* stem diameter (SD), head mass (HM), leaf mass (LM), stem mass (SM), head diameter (HD), plant height (PH), droopy plant height (DPH), and number of leaves (NL) were measured. For this purpose, plants were cut from the base and dissected into three parts: head, stem, and leaves. The masses of all three organs were measured on a digital balance after drying at  $60^{\circ}\text{C}$  until dry mass became constant. PH, SD, and HD were measured with a measuring tape in cm. DPH was measured from the base to the bend in the drooping stem.

Seed yield per plant of 30 plants within each progeny was measured by threshing seed from the capitula and measuring their mass on a digital balance.

Seedling survival (%) was estimated by growing sunflower seeds in germinating trays filled with a loam type of soil. Within each tray, 100 seeds were sown at  $25^{\circ}\text{C}$ , 60% relative humidity, and in a growth chamber until the first true leaves emerged. At this stage, temperature in the growth chamber was raised to  $50^{\circ}\text{C}$  for 5 h. After the heat stress treatment, seedlings were allowed to recover for 72 h and final seedling mortality was assessed.

**Biometric and statistical procedures:** Generation means

were estimated by averaging the total number of measurements in each generation. Variation among the values within each generation was computed by measuring the variance of each generation. Phenotypic variance ( $\sigma^2\text{P}$ ) was estimated by measuring the variance of the  $F_2$  population as it included both environmental ( $\sigma^2\text{E}$ ) and genotypic variation ( $\sigma^2\text{G}$ ). On the other hand,  $\sigma^2\text{E}$  was estimated by averaging the variance of  $F_1$  and the parental generation, while  $\sigma^2\text{G}$  was estimated by subtracting  $\sigma^2\text{E}$  from  $\sigma^2\text{P}$ . Estimates of  $\sigma^2\text{P}$ ,  $\sigma^2\text{E}$ , and  $\sigma^2\text{G}$  were summarized in the following equations:

$$\begin{aligned}\sigma^2\text{P} &= \sigma^2\text{F}_2; \\ \sigma^2\text{E} &= (\sigma^2\text{F}_1 + \sigma^2\text{P}_1 + \sigma^2\text{P}_2)/3; \\ \sigma^2\text{G} &= \sigma^2\text{P} - \sigma^2\text{E}.\end{aligned}$$

Heritability was estimated as  $\sigma^2\text{G}/\sigma^2\text{P}$ . Realized heritability was estimated as the ratio of selection response to the selection differential ( $X_{\text{SF}_3} - XF_3/X_{\text{SF}_2} - XF_2$ ), in which  $X_{\text{SF}_3}$ ,  $XF_3$ ,  $X_{\text{SF}_2}$ ,  $XF_2$  are means for the  $F_3$  progenies for the selected  $F_2$  plant,  $F_3$  progenies from the whole  $F_2$  population (including selected plants), selected  $F_2$  plants, and the whole  $F_2$  population, respectively. The selection response was the difference between the selected plants and the total mean of the  $F_2$  population. 10 plants from each of the  $F_2$  populations were drawn to formulate 3 classes on the basis of the leaf temperature differences, *i.e.* the lowest  $T_{leaf}$ , medium  $T_{leaf}$ , and high  $T_{leaf}$ . Averages of these plants were used to estimate the selection differential since this was the difference between the averages of a selected plant and the original  $F_2$ -adapted population. Correlations were computed with computer-based software *MiniTab 15*, while the path diagram was constructed with *AMOS-5* software (Arbuckle 2000, Bethlehem Pike, USA). Correlation coefficients showed the magnitude of association between two traits. The intensity of the relationship ranged from 0–1, where “1” was the maximal degree of association. Path coefficient analysis is a technique used to partition the correlation coefficient into direct and indirect effects and it measures the cause of the relationship between two traits. Values ranging from 0.30–0.99 are considered to be

high, while it is also possible that values may exceed 1. The direct effect shows the individual effect, while the indirect effect shows the effect of a trait *via* other traits

## Results

The mean performance of various generations for leaf gas-exchange traits is provided in Table 1. The mean of the  $F_1$  population derived from the  $C \times C$  cross was significantly higher than its parents and the  $F_2$  population for traits, such as  $P_N$  and  $E$ . The mean value for  $T_{leaf}$  in the  $F_1$  population derived from the  $C \times C$  cross was significantly lower than one of the parents (CM-631) but higher than the other parent, CM-207. The mean of  $\Delta$  in  $F_1$  ( $C \times C$ ) was significantly lower than the parent CM-207, but higher than the other parent, CM-631. The  $F_2$  mean for  $P_N$ ,  $E$ , and  $T_{leaf}$  was lower than that of  $F_1$ , while the mean for  $\Delta$  and WUE in  $F_2$  was higher than that of  $F_1$  in the adapted population derived from  $C \times C$  (Table 1). However, the  $F_2$  mean for  $g_s$  showed an insignificant difference in the adapted population compared with the  $F_1$  population and the unadapted  $F_2$  population. The adapted  $F_2$  population showed a higher mean for  $P_N$ ,  $E$ , WUE, and  $\Delta$  than the unadapted  $F_2$  population (*i.e.*  $F_2$  seed obtained under optimal regimes) derived from  $C \times C$ .

The mean for  $P_N$  in the  $F_1$  population derived from  $C \times B$  was significantly higher than the mean of the  $F_1$  population derived from the  $C \times C$  cross but it was insignificant for other traits. The  $F_1$  mean for  $P_N$  and  $E$  was higher than that of both parents in the cross of  $C \times B$ . The  $F_1$  ( $C \times B$ ) means for WUE and  $T_{leaf}$  were significantly higher than the means of its parent CM-207. Parents (CM-207 and BF-88) showed significant differences for all traits except WUE. The  $F_2$  means for  $E$  and  $T_{leaf}$  of the adapted population derived from the cross  $C \times B$  were significantly lower than  $F_1$ , while the mean was higher than that of  $F_1$  for  $\Delta$ . The adapted  $F_2$  population showed higher or similar mean values for all traits except for  $T_{leaf}$  and  $g_s$  when compared with the unadapted  $F_2$  population, showing positive selection for  $P_N$ ,  $E$ , and  $\Delta$  in the cross derived from  $C \times B$ .

On the basis of  $T_{leaf}$ , the plants were divided into three major groups: low ( $28^\circ\text{C}$ ), medium ( $37^\circ\text{C}$ ), and high ( $42^\circ\text{C}$ ) within the  $F_2$  population. The plants maintaining  $T_{leaf}$  of approximately  $37^\circ\text{C}$  or a  $\Delta$  of 1.6 showed higher values for all leaf gas-exchange traits, followed by plants which maintained the low  $T_{leaf}$  or high  $\Delta$ . The plants showing the high  $T_{leaf}$  ( $42^\circ\text{C}$ ) with low  $\Delta$  showed lower estimates for  $P_N$ ,  $g_s$ , and WUE.

Sunflower populations were also evaluated according to several morphological traits listed in Table 2. The  $F_1$  population showed higher mean than  $F_2$  or parental generations for all traits except for SM and PH in population derived from cross  $C \times C$  and for DPH in  $F_1$  derived from  $C \times B$ . Parents of both crosses showed

(Singh and Narayanan 2007). Parents,  $F_1$ ,  $F_2$ , and progeny means were compared using *Fisher's LSD* test at  $p < 0.05$ .

significant differences for all traits except for HD in parents (CM-207 and BF-88). Adapted  $F_2$  plants showed higher mean value for all traits than unadapted  $F_2$  plants except for PH and DPH in population derived from  $C \times C$ . The  $F_2$  population had also lower values than  $F_1$  in both crosses except for SD, SM, and PH in cross  $C \times C$ . The adapted  $F_2$  plants were further divided into plants that maintained medium or low  $T_{leaf}$ . The plants possessing lower  $T_{leaf}$  showed lower means for all traits except SD, SM, and NL compared with those that maintained medium  $T_{leaf}$ . All traits showed low to medium heritability reflecting a significant impact of the environment on the phenotypic expression of these traits. However, traits such as NL and SM showed high heritability estimates only in cross  $C \times C$ . Among the traits, the highest broad sense heritability was shown by NL, followed by SD in the cross  $C \times C$ . In the cross  $C \times B$ , SD and DPH showed the highest broad sense heritability. Selection on the basis of  $T_{leaf}$  brought also the highest selection differential for HM in both crosses.

Among all traits,  $P_N$  and  $E$  showed the highest realized heritability (Table 3), while heritability in a broad sense was high for all leaf gas-exchange traits except for  $g_s$  in the populations derived from both crosses. The cross  $C \times B$  showed higher estimate of realized heritability than  $C \times C$  (Table 3). Within this cross,  $P_N$  followed by  $E$  showed the highest estimates of realized heritability.

Progenies derived from both crosses were evaluated along with the  $F_3$  population as a standard check in replicated trials over two locations. Analyses of variance showed significant variation within progenies for all traits of the crosses. Furthermore, the progeny also differed significantly over all means from the  $F_3$  mean as indicated from contrast of  $F_3$  vs. progenies showing that selection was effective in  $F_2$  population over leaf gas-exchange traits. The locations or progenies vs. location was insignificant for most of the traits. Therefore progenies and  $F_3$  mean performance was averaged over the location. The mean performance of progenies and  $F_3$  over three replications is displayed in Table 3. Overall mean performance of the progenies surpassed that of the  $F_3$  population in  $P_N$ ,  $E$ , WUE, and  $T_{leaf}$  in the cross derived from  $C \times C$ , while progenies obtained from the cross of  $C \times B$  showed significantly higher values for  $P_N$ ,  $E$ , and  $T_{leaf}$ . However, progenies within crosses also showed significant differences and showed higher mean performance than overall mean of the progeny for specific trait (Table 3).

Table 1. Population means, selection responses, selection differential, and heritability estimates of photosynthesis rate ( $P_N$ , [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]), transpiration ( $E$ , [ $\text{mmol m}^{-2} \text{s}^{-1}$ ]), stomatal conductance ( $g_s$ , [ $\text{mmol m}^{-2} \text{s}^{-1}$ ]), water-use efficiency (WUE, [ $\mu\text{mol}(\text{CO}_2) \text{ mmol}(\text{H}_2\text{O})^{-1}$ ]), leaf temperature ( $T_{\text{leaf}}$ , [ $^{\circ}\text{C}$ ]) and leaf-to-air temperature difference ( $\Delta$  [ $^{\circ}\text{C}$ ]) of various populations of sunflower (*Helianthus annuus* L.) under heat stress. Data are expressed as mean values (parental and  $F_1$  population  $n = 15$  plants while  $F_2$  population  $n = 50$  plants),  $\pm$  SD is shown for selected plants,  $F_1$ , and parents. Values within columns followed by different letters showed difference among genotypes at  $p < 0.05$  using Fisher's LSD test.

| Population                                   | $P_N$                         | $E$                          | $g_s$                          | WUE                           | $T_{\text{leaf}}$             | $\Delta$                      |
|----------------------------------------------|-------------------------------|------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|
| CM-207                                       | 3.93 $\pm$ 1.61 <sup>C</sup>  | 3.13 $\pm$ 0.98 <sup>C</sup> | 0.90 $\pm$ 0.44 <sup>A</sup>   | 1.25 $\pm$ 0.52 <sup>bc</sup> | 31.76 $\pm$ 0.59 <sup>E</sup> | 10.26 $\pm$ 1.37 <sup>A</sup> |
| CM-631                                       | 0.63 $\pm$ 0.21 <sup>E</sup>  | 0.55 $\pm$ 0.18 <sup>D</sup> | 0.19 $\pm$ 0.09 <sup>C</sup>   | 1.14 $\pm$ 0.55 <sup>C</sup>  | 42.21 $\pm$ 0.61 <sup>A</sup> | -1.21 $\pm$ 0.42 <sup>E</sup> |
| CM-207 $\times$ CM-631 ( $F_1$ )             | 8.58 $\pm$ 2.41 <sup>A</sup>  | 6.74 $\pm$ 2.06 <sup>A</sup> | 0.55 $\pm$ 0.26 <sup>B</sup>   | 1.27 $\pm$ 0.58 <sup>B</sup>  | 36.73 $\pm$ 0.61 <sup>C</sup> | 2.37 $\pm$ 0.81 <sup>C</sup>  |
| CM-207 $\times$ CM-631 ( $F_2$ ) (adapted)   | 5.92 <sup>B</sup>             | 4.63 <sup>B</sup>            | 0.59 <sup>B</sup>              | 2.57 <sup>A</sup>             | 32.64 <sup>D</sup>            | 7.30 <sup>B</sup>             |
| CM-207 $\times$ CM-631 ( $F_2$ ) (unadapted) | 2.44 <sup>D</sup>             | 3.61 <sup>C</sup>            | 0.58 <sup>B</sup>              | 0.61 <sup>D</sup>             | 37.29 <sup>B</sup>            | 1.04 <sup>D</sup>             |
| Selected plants (high $T_{\text{leaf}}$ )    | 0.76 $\pm$ 0.17               | 0.85 $\pm$ 0.23              | 0.17 $\pm$ 0.02                | 0.89 $\pm$ 0.21               | 42.08 $\pm$ 1.01              | -1.31 $\pm$ 0.15              |
| Selected plants (medium $T_{\text{leaf}}$ )  | 9.56 $\pm$ 1.37               | 7.78 $\pm$ 0.51              | 0.60 $\pm$ 0.27                | 1.24 $\pm$ 0.17               | 37.47 $\pm$ 0.45              | 1.63 $\pm$ 0.61               |
| Selected plants (low $T_{\text{leaf}}$ )     | 5.59 $\pm$ 2.58               | 5.48 $\pm$ 1.89              | 0.46 $\pm$ 0.91                | 1.25 $\pm$ 0.67               | 28.37 $\pm$ 1.37              | 12.39 $\pm$ 0.80              |
| $\sigma$ Genotype                            | 10.34                         | 7.66                         | 527.05                         | 7.88                          | 18.38                         | 18.36                         |
| $\sigma$ Phenotype                           | 13.15                         | 8.81                         | 936.15                         | 10.11                         | 18.76                         | 19.12                         |
| $\sigma$ Environment                         | 2.81                          | 1.15                         | 409.02                         | 2.31                          | 0.38                          | 0.76                          |
| Heritability in a broad sense                | 0.78                          | 0.87                         | 0.56                           | 0.78                          | 0.98                          | 0.96                          |
| CM-207                                       | 3.93 $\pm$ 1.61 <sup>D</sup>  | 3.13 $\pm$ 0.98 <sup>E</sup> | 0.90 $\pm$ 0.44 <sup>A</sup>   | 1.25 $\pm$ 0.52 <sup>C</sup>  | 31.76 $\pm$ 0.59 <sup>D</sup> | 10.26 $\pm$ 1.37 <sup>A</sup> |
| BF-88                                        | 6.91 $\pm$ 2.98 <sup>C</sup>  | 6.84 $\pm$ 0.22 <sup>C</sup> | 0.57 $\pm$ 0.11 <sup>D</sup>   | 1.41 $\pm$ 1.11 <sup>bc</sup> | 37.21 $\pm$ 0.71 <sup>B</sup> | 2.88 $\pm$ 1.06 <sup>C</sup>  |
| CM-207 $\times$ BF-88 ( $F_1$ )              | 11.48 $\pm$ 2.51 <sup>A</sup> | 7.71 $\pm$ 0.24 <sup>A</sup> | 0.64 $\pm$ 98.37 <sup>cd</sup> | 1.61 $\pm$ 1.06 <sup>ab</sup> | 36.96 $\pm$ 0.73 <sup>B</sup> | 3.38 $\pm$ 1.08 <sup>C</sup>  |
| CM-207 $\times$ BF-88 ( $F_2$ ) (adapted)    | 11.09 <sup>A</sup>            | 7.26 <sup>B</sup>            | 0.70 <sup>bc</sup>             | 1.72 <sup>A</sup>             | 33.57 <sup>C</sup>            | 5.29 <sup>B</sup>             |
| CM-207 $\times$ BF-88 ( $F_2$ ) (unadapted)  | 8.21 <sup>B</sup>             | 6.31 <sup>D</sup>            | 0.80 <sup>AB</sup>             | 1.54 <sup>AB</sup>            | 39.55 <sup>A</sup>            | 0.78 <sup>D</sup>             |
| Selected plants (medium $T_{\text{leaf}}$ )  | 12.44 $\pm$ 3.53              | 7.48 $\pm$ 0.60              | 0.68 $\pm$ 0.14                | 1.66 $\pm$ 0.64               | 37.46 $\pm$ 0.48              | 1.80 $\pm$ 0.37               |
| $\sigma$ Genotype                            | 31.38                         | 1.29                         | 71.32                          | 9.78                          | 3.76                          | 7.98                          |
| $\sigma$ Phenotype                           | 36.76                         | 1.52                         | 118.64                         | 10.66                         | 4.22                          | 9.35                          |
| $\sigma$ Environment                         | 5.60                          | 0.23                         | 47.37                          | 0.88                          | 0.46                          | 1.37                          |
| Heritability in a broad sense                | 0.84                          | 0.85                         | 0.40                           | 0.92                          | 0.89                          | 0.85                          |

Table 2. Population means, selection responses, selection differential, heterosis, inbreeding depression, and heritability estimates of morphological traits, *i.e.* stem diameter (SD, [cm]), head mass (HM, [g]), leaf mass (LM, [g]), stem mass (SM, [g]), head diameter (HD, [cm]), plant height (PH, [cm]), and number of leaves (NL) of various populations of sunflower (*Helianthus annuus* L.) under heat stress. Data are expressed as mean values (parental and  $F_1$  population:  $n = 15$  plants, while  $F_2$  population:  $n = 50$  plants),  $\pm$  SD is shown for selected plants,  $F_1$ , and parents. Values within columns followed by *different letters* showed difference among genotypes at  $p < 0.05$  using *Fisher's LSD* test.

| Population                                   | SD                           | HM                            | LM                            | SM                            | HD                            | PH                             | DPH                           | NL                            |
|----------------------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------|
| CM-207                                       | 4.00 $\pm$ 0.29 <sup>C</sup> | 28.63 $\pm$ 2.58 <sup>B</sup> | 7.13 $\pm$ 1.88 <sup>D</sup>  | 20.00 $\pm$ 1.05 <sup>B</sup> | 9.90 $\pm$ 0.61 <sup>B</sup>  | 93.63 $\pm$ 5.10 <sup>B</sup>  | 81.13 $\pm$ 6.89 <sup>C</sup> | 20.75 $\pm$ 1.81 <sup>C</sup> |
| CM-631                                       | 4.11 $\pm$ 0.36 <sup>B</sup> | 9.11 $\pm$ 1.77 <sup>D</sup>  | 5.12 $\pm$ 1.29 <sup>E</sup>  | 13.00 $\pm$ 1.31 <sup>D</sup> | 6.43 $\pm$ 0.88 <sup>D</sup>  | 77.89 $\pm$ 3.89 <sup>C</sup>  | 69.89 $\pm$ 7.73 <sup>E</sup> | 12.89 $\pm$ 0.61 <sup>E</sup> |
| CM-207 $\times$ CM-631 ( $F_1$ )             | 4.55 $\pm$ 0.15 <sup>A</sup> | 34.17 $\pm$ 2.33 <sup>A</sup> | 14.83 $\pm$ 1.69 <sup>A</sup> | 20.50 $\pm$ 1.11 <sup>B</sup> | 10.63 $\pm$ 0.51 <sup>A</sup> | 104.17 $\pm$ 6.11 <sup>A</sup> | 89.33 $\pm$ 8.22 <sup>A</sup> | 25.17 $\pm$ 1.93 <sup>A</sup> |
| CM-207 $\times$ CM-631 ( $F_2$ ) (adapted)   | 4.48 <sup>A</sup>            | 28.71 <sup>B</sup>            | 12.25 <sup>B</sup>            | 22.53 <sup>A</sup>            | 9.32 <sup>C</sup>             | 103.83 <sup>A</sup>            | 75.21 <sup>D</sup>            | 24.43 <sup>B</sup>            |
| CM-207 $\times$ CM-631 ( $F_2$ ) (unadapted) | 3.65 <sup>D</sup>            | 21.35 <sup>C</sup>            | 8.82 <sup>C</sup>             | 16.33 <sup>C</sup>            | 6.39 <sup>D</sup>             | 104.88 <sup>A</sup>            | 82.33 <sup>B</sup>            | 19.22 <sup>D</sup>            |
| Selection differential                       | 0.83                         | 7.36                          | 3.43                          | 6.2                           | 2.93                          | 0.00                           | 0.00                          | 5.21                          |
| Selected plants (medium $T_{leaf}$ )         | 4.38 $\pm$ 0.61              | 37.30 $\pm$ 11.60             | 16.70 $\pm$ 3.89              | 21.60 $\pm$ 7.04              | 10.06 $\pm$ 1.79              | 106.70 $\pm$ 16.14             | 73.30 $\pm$ 25.87             | 23.20 $\pm$ 3.99              |
| Selected plants (low $T_{leaf}$ )            | 4.46 $\pm$ 0.98              | 26.56 $\pm$ 5.46              | 8.06 $\pm$ 3.17               | 18.67 $\pm$ 5.92              | 8.84 $\pm$ 1.04               | 105.22 $\pm$ 17.84             | 86.56 $\pm$ 17.09             | 24.78 $\pm$ 2.54              |
| Heritability in a broad sense                | 0.71                         | 0.38                          | 0.32                          | 0.88                          | 0.42                          | 0.69                           | 0.69                          | 0.91                          |
| CM-207                                       | 4.00 $\pm$ 0.29 <sup>D</sup> | 28.63 $\pm$ 2.58 <sup>B</sup> | 7.13 $\pm$ 1.88 <sup>E</sup>  | 20.00 $\pm$ 1.05 <sup>C</sup> | 9.90 $\pm$ 0.61 <sup>B</sup>  | 93.63 $\pm$ 2.10 <sup>C</sup>  | 81.13 $\pm$ 2.89 <sup>A</sup> | 20.75 $\pm$ 1.81 <sup>D</sup> |
| BF-88                                        | 4.20 $\pm$ 0.31 <sup>C</sup> | 22.33 $\pm$ 2.11 <sup>C</sup> | 15.00 $\pm$ 2.22 <sup>B</sup> | 21.00 $\pm$ 0.87 <sup>B</sup> | 9.80 $\pm$ 0.88 <sup>B</sup>  | 85.00 $\pm$ 3.33 <sup>E</sup>  | 79.00 $\pm$ 3.44 <sup>B</sup> | 27.00 $\pm$ 0.73 <sup>B</sup> |
| CM-207 $\times$ BF-88 ( $F_1$ )              | 4.88 $\pm$ 0.41 <sup>A</sup> | 37.88 $\pm$ 2.92 <sup>A</sup> | 18.35 $\pm$ 1.91 <sup>A</sup> | 23.33 $\pm$ 1.01 <sup>A</sup> | 12.21 $\pm$ 0.90 <sup>A</sup> | 103.33 $\pm$ 4.17 <sup>A</sup> | 81.22 $\pm$ 2.22 <sup>A</sup> | 31.13 $\pm$ 1.58 <sup>A</sup> |
| CM-207 $\times$ BF-88 ( $F_2$ ) (adapted)    | 4.48 <sup>B</sup>            | 28.43 <sup>B</sup>            | 14.07 <sup>C</sup>            | 20.47 <sup>D</sup>            | 9.71 <sup>B</sup>             | 95.83 <sup>B</sup>             | 63.60 <sup>C</sup>            | 23.09 <sup>C</sup>            |
| CM-207 $\times$ BF-88 ( $F_2$ ) (unadapted)  | 4.12 <sup>cd</sup>           | 20.55 <sup>D</sup>            | 7.90 <sup>D</sup>             | 19.50 <sup>E</sup>            | 6.50 <sup>C</sup>             | 91.35 <sup>D</sup>             | 60.25 <sup>D</sup>            | 18.55 <sup>E</sup>            |
| Selection differential                       | 0.36                         | 7.88                          | 6.17                          | 0.97                          | 3.21                          | 4.48                           | 3.35                          | 4.54                          |
| Selected plant (optimum $T_{leaf}$ )         | 4.39 $\pm$ 0.38              | 35.33 $\pm$ 10.08             | 15.26 $\pm$ 3.85              | 18.35 $\pm$ 7.03              | 11.35 $\pm$ 1.69              | 91.80 $\pm$ 12.44              | 52.35 $\pm$ 17.56             | 25.50 $\pm$ 3.40              |
| Heritability in a broad sense                | 0.67                         | 0.37                          | 0.52                          | 0.59                          | 0.52                          | 0.46                           | 0.65                          | 0.48                          |

Table 3. Mean performance of plant progenies averaged over locations in replicated trial during 2012. Data are expressed as mean values (each plant progeny  $n = 30$  plants per replication),  $\pm$  SD is shown for progeny mean. Values within columns followed by *different letters* showed difference among genotypes at  $p < 0.05$  using *Fisher's LSD* test.  $P_N$  – net photosynthetic rate, [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ];  $E$  – transpiration rate, [ $\text{mmol m}^{-2} \text{s}^{-1}$ ];  $g_s$  – stomatal conductance, [ $\text{mol m}^{-2} \text{s}^{-1}$ ]; WUE – water-use efficiency, [ $\mu\text{mol}(\text{CO}_2) \text{ mmol}(\text{H}_2\text{O})^{-1}$ ];  $T_{\text{leaf}}$  – leaf temperature, [ $^{\circ}\text{C}$ ];  $\Delta$  – leaf-to-air temperature difference, [ $^{\circ}\text{C}$ ].

| Progeny                | Cross                                             | $P_N$              | $E$               | WUE                          | $\Delta$          | $g_s$             | $T_{\text{leaf}}$  |
|------------------------|---------------------------------------------------|--------------------|-------------------|------------------------------|-------------------|-------------------|--------------------|
| UCA-0                  | CM-207 $\times$ CM-631 ( $F_3$ )                  | 12.27 <sup>B</sup> | 9.11 <sup>B</sup> | 1.29 <sup>B</sup>            | 3.23 <sup>A</sup> | 0.83 <sup>A</sup> | 34.91 <sup>B</sup> |
| UCA-1                  | (CM-207 $\times$ CM-631; $F_2$ ) $\times$ Tester  | 15.01 $\pm$ 0.92   | 8.28 $\pm$ 1.22   | 1.81 $\pm$ 0.54              | 2.63 $\pm$ 0.78   | 0.86 $\pm$ 0.16   | 36.00 $\pm$ 0.38   |
| UCA-2                  | (CM-207 $\times$ CM-631; $F_2$ ) $\times$ Tester  | 13.33 $\pm$ 0.78   | 10.10 $\pm$ 0.95  | 1.32 $\pm$ 0.42              | 3.82 $\pm$ 0.58   | 0.76 $\pm$ 0.15   | 36.38 $\pm$ 0.42   |
| UCA-3                  | (CM-207 $\times$ CM-631; $F_2$ ) $\times$ Tester  | 10.57 $\pm$ 0.69   | 11.47 $\pm$ 0.81  | 0.93 $\pm$ 0.38              | 3.08 $\pm$ 0.61   | 0.78 $\pm$ 0.15   | 37.30 $\pm$ 0.57   |
| UCA-4                  | (CM-207 $\times$ CM-631; $F_2$ ) $\times$ Tester) | 17.16 $\pm$ 1.05   | 9.08 $\pm$ 0.79   | 1.89 $\pm$ 0.36              | 4.31 $\pm$ 0.88   | 1.17 $\pm$ 0.12   | 36.76 $\pm$ 0.58   |
| Progeny average        |                                                   | 14.02 <sup>A</sup> | 9.73 <sup>A</sup> | 1.49 <sup>A</sup>            | 3.46 <sup>A</sup> | 0.89 <sup>A</sup> | 0.89 <sup>A</sup>  |
| Selection differential |                                                   | 3.64               | 3.15              | 0.00                         | 0.00              | 4.7               | 4.7                |
| Selection response     |                                                   | 1.75               | 0.62              | 0.20                         | 0.23              | 57.51             | 57.51              |
| Realized heritability  |                                                   | 0.48               | 0.20              | 0.00                         | 0.00              | 0.00              | 0.00               |
| UCA-2-1                | (CM-207 $\times$ BF-88) $\times$ Tester           | 15.44 $\pm$ 0.54   | 9.66 $\pm$ 0.56   | 1.59 <sup>B</sup> $\pm$ 0.42 | 2.91 $\pm$ 0.54   | 0.67 $\pm$ 0.14   | 37.88 $\pm$ 0.19   |
| UCA-2-2                | (CM-207 $\times$ BF-88) $\times$ Tester           | 21.80 $\pm$ 0.72   | 9.46 $\pm$ 0.48   | 2.32 <sup>A</sup> $\pm$ 0.39 | 2.95 $\pm$ 0.68   | 0.67 $\pm$ 0.14   | 38.70 $\pm$ 0.29   |
| UCA-2-3                | (CM-207 $\times$ BF-88) $\times$ Tester           | 13.29 $\pm$ 0.59   | 9.01 $\pm$ 0.21   | 1.48 <sup>B</sup> $\pm$ 0.44 | 6.16 $\pm$ 0.93   | 1.02 $\pm$ 0.16   | 34.38 $\pm$ 0.36   |
| UCA-2-4                | (CM-207 $\times$ BF-88) $\times$ Tester           | 14.37 $\pm$ 0.61   | 8.43 $\pm$ 0.34   | 1.70 <sup>B</sup> $\pm$ 0.36 | 3.60 $\pm$ 0.81   | 0.68 $\pm$ 0.16   | 36.16 $\pm$ 0.41   |
| UCA-2-0                | CM-207 $\times$ BF-88 ( $F_3$ )                   | 15.34 <sup>B</sup> | 8.51 <sup>B</sup> | 1.69 <sup>A</sup>            | 3.73 <sup>A</sup> | 0.75 <sup>A</sup> | 35.12 <sup>B</sup> |
| Progeny average        |                                                   | 16.23 <sup>A</sup> | 9.14 <sup>A</sup> | 1.77 <sup>A</sup>            | 3.91 <sup>A</sup> | 0.76 <sup>A</sup> | 0.76 <sup>A</sup>  |
| Selection differential |                                                   | 4.42               | 0.72              | 0.41                         | 0.9               | 26.43             | 26.43              |
| Selection response     |                                                   | 1.35               | 0.22              | 0.00                         | 0.00              | 0.00              | 0.00               |
| Realized heritability  |                                                   | 0.66               | 0.65              | 0.00                         | 0.00              | 0.00              | 0.00               |

Table 4. Mean performance of plant progenies over locations for seed yield per plant (SYP) and seedling survival (SS) in a replicated trial during 2012. Data are expressed as means  $\pm$  SD of  $n = 30$  for SYP and  $n = 100$  for SS. Values within columns followed by different letters showed difference among genotypes at  $p < 0.05$  using Fisher's LSD test.

| Progeny         | Cross                                            | SYP [g]             | SS [%]             |
|-----------------|--------------------------------------------------|---------------------|--------------------|
| UCA-0           | CM-207 $\times$ CM-631 ( $F_3$ )                 | 93.80 <sup>B</sup>  | 71.34 <sup>B</sup> |
| UCA-1           | (CM-207 $\times$ CM-631; $F_2$ ) $\times$ Tester | 98.34 $\pm$ 17.83   | 85.00              |
| UCA-2           | (CM-207 $\times$ CM-631; $F_2$ ) $\times$ Tester | 109.00 $\pm$ 26.51  | 90.16              |
| UCA-3           | (CM-207 $\times$ CM-631; $F_2$ ) $\times$ Tester | 158.34 $\pm$ 14.14  | 94.12              |
| UCA-4           | (CM-207 $\times$ CM-631; $F_2$ ) $\times$ Tester | 126.22 $\pm$ 8.18   | 95.15              |
| Progeny average |                                                  | 122.98 <sup>A</sup> | 91.10 <sup>A</sup> |
| UCA-2-1         | (CM-207 $\times$ BF-88) $\times$ Tester          | 125.22 $\pm$ 7.62   | 96.88              |
| UCA-2-2         | (CM-207 $\times$ BF-88) $\times$ Tester          | 116.34 $\pm$ 8.51   | 93.85              |
| UCA-2-3         | (CM-207 $\times$ BF-88) $\times$ Tester          | 109.33 $\pm$ 9.35   | 85.11              |
| UCA-2-4         | (CM-207 $\times$ BF-88) $\times$ Tester          | 105.41 $\pm$ 10.31  | 86.35              |
| UCA-2-0         | CM-207 $\times$ BF-88 ( $F_3$ )                  | 91.25 <sup>B</sup>  | 69.22 <sup>B</sup> |
| Progeny average |                                                  | 114.33 <sup>A</sup> | 90.55 <sup>A</sup> |
| S-278           |                                                  |                     | 56.33 <sup>C</sup> |

Table 5. Correlation coefficients for photosynthesis rate ( $P_N$ ), transpiration rate ( $E$ ), stomatal conductance ( $g_s$ ), water use efficiency (WUE), leaf temperature ( $T_{leaf}$ ), and number of leaves (NL) on head mass (HM) in the  $F_2$  population under heat stress. <sup>NS</sup> – nonsignificant at  $p < 0.05$ ; <sup>\*</sup> – significant at  $p < 0.05$ ; <sup>\*\*</sup> – highly significant at  $p < 0.01$ .

| Traits     | $P_N$               | $E$                 | $g_s$               | $T_{leaf}$          | $\Delta$            | NL                  | HM                  |
|------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| $P_N$      |                     |                     |                     |                     |                     |                     | 0.49 <sup>**</sup>  |
| $E$        | 0.91 <sup>**</sup>  |                     |                     |                     |                     |                     | 0.57 <sup>**</sup>  |
| $g_s$      | 0.03 <sup>NS</sup>  | 0.07 <sup>NS</sup>  |                     |                     |                     |                     | 0.14 <sup>NS</sup>  |
| $T_{leaf}$ | 0.75 <sup>**</sup>  | 0.83 <sup>**</sup>  | -0.13 <sup>NS</sup> |                     |                     |                     | 0.47 <sup>**</sup>  |
| $\Delta$   | -0.53 <sup>**</sup> | -0.58 <sup>**</sup> | 0.18 <sup>NS</sup>  | -0.87 <sup>**</sup> |                     |                     | -0.31 <sup>*</sup>  |
| NL         | 0.12 <sup>NS</sup>  | 0.02 <sup>NS</sup>  | 0.08 <sup>NS</sup>  | -0.09 <sup>NS</sup> | -0.04 <sup>NS</sup> |                     | 0.24 <sup>NS</sup>  |
| WUE        | -0.31 <sup>*</sup>  | -0.44 <sup>*</sup>  | -0.15 <sup>NS</sup> | -0.06 <sup>NS</sup> | -0.11 <sup>NS</sup> | -0.05 <sup>NS</sup> | -0.16 <sup>NS</sup> |

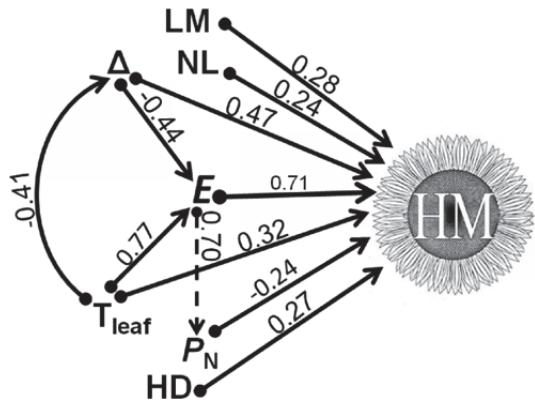



Fig. 2. Path diagram showing direct and indirect effects of transpiration rate ( $E$ ), leaf-to-air temperature difference ( $\Delta$ ), leaf temperature ( $T_{leaf}$ ), photosynthesis rate ( $P_N$ ), head diameter (HD), and leaf mass (LM) on head mass (HM).

Mean performance of the  $F_3$  population was also better than the  $F_2$  population showing improved plant attributes related to their physiology and resistance to heat stress. Improvement in mean performance of the populations due to the selection could be implied from

the realized heritability, which was  $> 0.6$ , regarded as a high value. The realized heritability for  $P_N$  and  $E$  was high, while that for  $T_{leaf}$  was moderate, reflecting the benefits of the selection in the  $F_2$  population (Table 3). Among the two populations, the progenies obtained from the C  $\times$  B cross showed greater estimates for the realized heritability. The realized heritability estimate for  $P_N$  and  $E$  were high in the progenies derived from the cross of C  $\times$  B (Table 3).

Seed yield per plant and heat stress resistance in terms of seedling survival (SS [%]) of selected progenies was also estimated (Table 4). The progenies derived from C  $\times$  C and C  $\times$  B crosses showed 31 and 26% higher achene yield, respectively, than their  $F_3$  progenies. Furthermore, the progenies derived from these crosses showed 28 and 31% better survival under heat stress indicating the superiority of progenies in the yield and resistance as a result of the selection for  $T_{leaf}$ .

Correlation analysis of various physiological and morphological traits was estimated within the  $F_2$  population of the cross of C  $\times$  C, which showed a positive relationship between  $P_N$  and  $E$  and also between  $P_N$  and  $T_{leaf}$  (Table 5).  $P_N$  also showed a positive and significant

relationship with HM. A negative relationship was observed between  $P_N$  and  $\Delta$  and between  $P_N$  and WUE.  $\Delta$  showed a negative and significant relationship with HM.  $E$  showed a significant positive relationship with  $T_{leaf}$  and a negative relationship with  $\Delta$  and WUE.

Path analysis was carried out to determine the direct and indirect effects of various leaf gas-exchange traits on HM.  $E$  showed the highest direct effect on HM (Fig. 2).  $T_{leaf}$  also showed a positive direct effect on HM, although it showed the highest indirect effect on  $T_{leaf}$  via  $E$ . The indirect effect of  $T_{leaf}$  via  $E$  was greater than the direct

effect of  $E$  on HM.  $P_N$  showed a negative direct effect on HM despite having a positive relationship with HM. This positive relationship might be explained by its positive indirect effect on HM via  $E$ . The  $\Delta$  direct effect on HM was positive, but it was negative on HM via  $E$ . Morphological traits (LM, HD, and NL) showed positive and moderate direct effects on HM. However, the direct effects were lower than  $T_{leaf}$ ,  $E$ , and  $\Delta$ . None of the morphological traits were able to impose a high indirect effect on HM via leaf gas-exchange traits.

## Discussion

Initial screening and low  $F_2$  seed set under heat stress increased the fitness of the  $F_2$  plant population. This may be due to discrimination of heat-susceptible gametes under the heat stress regime (Jóhannsson and Stephenson 1998, Kalyar *et al.* 2013). Kalyar *et al.* (2013) found a significant variation within  $F_1$  heads of sunflower in pollen fertility indicating that the haploid genotype of gametes was also involved in determining its resistance to heat stress and eliminating heat-susceptible gametes or genotypes. This resulted in the development of an adapted  $F_2$  population, which showed higher leaf gas-exchange and some morphological traits than the unadapted population. The heat-induced selection responses and further selection within the adapted  $F_2$  population resulted in high realized heritability for  $P_N$ ,  $E$ , and  $T_{leaf}$ . There was also a high selection differential for HM, HD, and NL among the studied morphological traits. Thus, heat-induced selection could enhance the fitness of the population in a direction relevant to heat stress tolerance.

Path analysis was carried out to determine the criterion of the selection for heat-resistant genotypes in the adapted  $F_2$  population. The correlation analysis was used to find an association between two traits, while the path analysis showed the cause of this relationship. This could also be utilized for understanding the mechanism of heat resistance. The information obtained could be further utilized in discriminating the resistant from the susceptible genotypes. Path analyses were used to partition the correlation into direct and indirect effects on the dependent trait, *i.e.* the yield (Rauf *et al.* 2004, 2007). The path analysis showed that  $T_{leaf}$  had a positive direct effect and the highest indirect effect via  $E$  on reproductive HM.  $E$  also showed the highest positive direct effect on reproductive HM. Thus, a high  $E$  was important for the productivity under heat stress. High  $E$  was also indicated from  $T_{leaf}$  due to a high positive correlation between the traits and the highest indirect effect of  $T_{leaf}$  on HM via  $E$  indicating that  $T_{leaf}$  regulates  $E$ . Previous literature also showed the importance of canopy temperature since it regulates  $E$  (Royo *et al.* 2002).  $T_{leaf}$  also showed the highest heritability (Table 1). Moreover, genotypes were easily characterized into

various classes on the basis of  $T_{leaf}$ . Therefore,  $T_{leaf}$  was used to select superior plants within the  $F_2$  population. This selection brought about an improvement in  $P_N$  and  $E$  as indicated from the progeny performance and the realized heritability. Progenies selected on the basis of  $T_{leaf}$  also showed an increase in achene yield and heat resistance compared with unselected  $F_3$  progenies and the commercial hybrid. Blum *et al.* (1989) and Saint Pierre *et al.* (2010) showed a significant negative correlation between canopy temperature and wheat yield under drought stress. Under heat stress, we found this correlation to be positive, showing the difference under different stresses. The positive correlation between  $T_{leaf}$  and reproductive HM was indicative of introgression of heat resistance in the sunflower population and it showed an overall positive response of various leaf gas-exchange traits ( $E$ ,  $P_N$ ) due to an increase in  $T_{leaf}$ . Bahar *et al.* (2008) showed changes in the direction of correlation between canopy temperature and yield in wheat when measured at various growth stages. The correlation was negative and insignificant at the spike emergence stage and positive and significant at the anthesis stage.

On the basis of  $T_{leaf}$ , different groups of plants were selected in the adapted  $F_2$  population, *i.e.* the plants showing low (28°C), medium (36–37°C), or high (42°C) leaf temperature. The group showing the highest  $T_{leaf}$  showed the worst (the most reduced) leaf gas-exchange and morphological traits, while the plants with the medium  $T_{leaf}$  showed the highest values for the same traits, indicating that selection for the high  $T_{leaf}$  was not effective due to diminished  $P_N$ ,  $E$ , and  $g_s$ . On the other hand, the plant group with the lowest  $T_{leaf}$  showed the highest  $\Delta$ . However, these plants had a slightly higher WUE and lower  $E$  and  $P_N$  even though they had a similar NL and high SD (Table 1). This group showed very low mean LM relative to the group which maintained medium  $T_{leaf}$  (Table 2). This showed that canopy cooling was achieved by producing smaller leaves, which might intercept less radiation and thus had a low leaf temperature. Leaf area is important for high yield due to interception of (Leite *et al.* 2006). Therefore, plants that maintained a cooler canopy also demonstrated low dry

matter accumulation and productivity. Thus, a cool canopy showed no obvious benefit in sunflower.

In conclusion, in this study, the plants selected and considered to be the heat resistant were those that maintained the medium  $T_{leaf}$  (36–37°C), the low  $\Delta$ , and

the high  $P_N$  and  $E$ . They were able to accumulate higher dry matter in the leaves, stem, and head. The  $P_N$ ,  $E$ , and  $T_{leaf}$  could be useful traits for improving the resistance to heat stress and to increase dry matter (*i.e.* the yield) under such stressful conditions.

## References

- Acar, I., Kakani, V. G.: The effects of temperature on *in vitro* pollen germination and pollen tube growth of *Pistacia* spp. – *Sci. Hort.* **125**: 569-572, 2010.
- Bahar, B., Yildrim M., Barutcular C., Genc, I.: Effect of canopy temperature depression on grain yield and yield components in bread and durum wheat. – *Not. Bot. Hort. Agrobot. Cluj* **36**: 34-37, 2008.
- Blum, A., Shipley, L., Golan, G.: Yield stability and canopy temperature of wheat genotypes under drought stress. – *Field Crops Res.* **22**: 289-296, 1989.
- Dekov, I., Tsonev, T., Yordanov, I.: Effects of water stress and high-temperature stress on the structure and activity of photosynthetic apparatus of *Zea mays* and *Helianthus annuus*. – *Photosynthetica* **38**: 361-366, 2001.
- Jóhannsson, M.H., Stephenson, A.G.: Effects of temperature during microsporogenesis on pollen performance in *Cucurbita pepo* L. (Cucurbitaceae). – *Int. J. Plant Sci.* **159**: 616-626, 1998.
- Kalyar, T., Rauf, S., Teixeira da Silva, J.A.: Handling sunflower (*Helianthus annuus* L.) populations under heat stress. *Arch. Agron. Soil Sci.* - DOI:10.1080/03650340.2013.799276, 2013.
- Leite, R.M.V.B.C., Amorim, L., Bergamin Filho, A.: Relationships of disease and leaf area variables with yield in the *Alternaria helianthi*–sunflower pathosystem. – *Plant Pathol.* **55**: 73-81, 2006.
- Martiniello, P., Teixeira da Silva, J.A.: Physiological and bioagronomical aspects involved in growth and yield components of cultivated forage species in Mediterranean environments: A review. – *Eur. J. Plant Sci. Biotech.* **5**: 64-98, 2011.
- Petolino, J.F., Cowen, N.M., Thompson, S.A., Mitchell, J.C.: Gamete selection for heat-stress tolerance in maize. – *J. Plant Physiol.* **136**: 219-224, 1990.
- Qadir, G., Hassan, F.U., Malik, M.A.: Growing degree days and yield relationship in sunflower (*Helianthus annuus* L.). – *Int. J. Agric. Biol.* **9**: 564-568, 2007.
- Rahman, H.U.: Genetic variability for heat resistance in upland cotton *Gossypium hirsutum* L. – PhD Thesis, Bahauddin Zakariya University, Multan 2004.
- Rauf, S.: Breeding sunflower (*Helianthus annuus* L.) for drought tolerance. – *Comm. Biom. Crop Sci.* **3**: 29-44, 2008.
- Rauf, S., Khan, T.M., Naveed, A., Munir, H.: Modified path to high lint yield in upland cotton (*Gossypium hirsutum* L.) under two temperature regimes. – *Turk. J. Biol.* **31**: 119-126, 2007.
- Rauf, S., Khan, T.M., Sadaqat, H.A., Khan, A.I.: Correlation and path coefficient analysis of yield component in cotton (*Gossypium hirsutum* L.). – *Int. J. Agric. Biol.* **6**: 704-707, 2004.
- Rauf, S., Sadaqat, H.A.: Identification of physiological traits and genotypes combined to high achene yield. – *Aust. J. Crop Sci.* **1**: 23-30, 2008.
- Rauf, S., Shahzad, M., Teixeira da Silva, J.A., Noorka, I.R.: Biomass partitioning and genetic analyses of salinity tolerance in sunflower (*Helianthus annuus* L.). – *J. Crop Sci. Biotech.* **15**: 205-217, 2012.
- Rondanini, D., Savin, R., Hall, A.J.: Dynamics of fruit growth and oil quality of sunflower (*Helianthus annuus* L.) exposed to brief intervals of high temperature during achene filling. – *Field Crops Res.* **83**: 79-90, 2003.
- Rondanini, D., Savin, R., Hall, A.J.: Responses of sunflower yield and grain quality to alternating day/night high temperature regimes during grain filling: Effects of timing, duration and intensity of exposure to stress. – *Field Crops Res.* **96**: 48-62, 2006.
- Royo, C., Villegas, D., del Moral, L.F. *et al.*: Comparative performance of carbon isotope discrimination and canopy temperature depression as predictors of genotype differences in durum wheat yield in Spain. – *Aust. J. Agric. Res.* **53**: 561-569, 2002.
- Saint Pierre, C., Crossa, J., Manes, Y., Reynolds, M.P.: Gene action of canopy temperature in bread wheat under diverse environments. – *Theor. Appl. Genet.* **120**: 1107-1117, 2010.
- Senthil-Kumar, M., Srikanthbabu, V., Mohan, R.B. *et al.*: Screening of inbred lines to develop a thermotolerant sunflower hybrid using the temperature induction response (TIR) technique: a novel approach by exploiting residual variability. – *J. Exp. Bot.* **54**: 2569-2578, 2003.
- Singh, P., Narayanan, S.S.: Biometrical Techniques in Plant Breeding. Pp. 56-57. Kalyani Publishers, New Dehli 2007.