

Does elevated CO₂ protect photosynthesis from damage by high temperature *via* modifying leaf water status in maize seedlings?

M.N. QU^{*, **, +}, J.A. BUNCE^{**}, and Z.S. SHI^{*}

Department of Agronomy, Shenyang Agricultural University, Shenyang, China*
USDA ARS, Crop Systems and Global Change Laboratory, Beltsville, MD, USA**

Abstract

We hypothesized that decreased stomatal conductance (g_s) at elevated CO₂ might decrease transpiration (E), increase leaf water potential (Ψ_W), and thereby protect net photosynthesis rate (P_N) from heat damage in maize (*Zea mays* L) seedlings. To separate long-term effects of elevated CO₂, plants grew at either ambient CO₂ or elevated CO₂. During high-temperature treatment (HT) at 45°C for 15 min, leaves were exposed either to ambient CO₂ (380 $\mu\text{mol mol}^{-1}$) or to elevated CO₂ (560 $\mu\text{mol mol}^{-1}$). HT reduced P_N by 25 to 38% across four CO₂ combinations. However, the g_s and E did not differ among all CO₂ treatments during HT. After returning the leaf temperature to 35°C within 30 min, g_s and E were the same or higher than the initial values. Leaf water potential (Ψ_W) was slightly lower at ambient CO₂, but not at elevated CO₂. This study highlighted that elevated CO₂ failed in protecting P_N from 45°C *via* decreasing g_s and Ψ_W .

Additional key words: heat stress, leaf water potential; net photosynthesis; stomatal conductance; vapor pressure deficit.

Introduction

High air temperatures are a serious threat to crop production worldwide (Mearns *et al.* 1984). Heat stress affects photosynthetic and metabolic processes that ultimately influence the production of biomass, fruits, and grains (Hay and Walker 1989, Orbovic and Poff 2007). Rising atmospheric concentrations of CO₂ are expected to increase the frequency of extreme high-temperature events (Groisman and Knight 2008). Nevertheless, research on plant heat tolerance is not focused on the effects of elevated CO₂.

In a few C₃ species, elevated CO₂ improved the tolerance of photosynthesis to high temperatures (Taub *et al.* 2000, Hamilton *et al.* 2008, Gutiérrez *et al.* 2009). Hamilton *et al.* (2008) exposed whole plants of maize and other species to high-temperature stress at two growth CO₂ concentrations. They found that elevated CO₂ did not always protect P_N from damage. Moreover, Wang *et al.* (2008) reported that elevated CO₂ even decreased the

tolerance to high temperatures in some cases. In C₄ species, P_N is usually near or at saturation for CO₂ at the current atmospheric concentration, thus, no positive effect of elevated CO₂ on P_N should be anticipated at high temperatures (Kim *et al.* 2007) as it is in C₃ species (Taub *et al.* 2000). However, indirect effects of CO₂ concentration could influence the tolerance of high temperatures even in C₄ species because of changes in g_s , E , and Ψ_W at elevated CO₂.

In the field, high-temperature stress is usually accompanied by high evaporative demand for water vapor. Thus, leaf desiccation can be involved in the damage caused by high temperatures. If desiccation is involved, then partial stomata closure caused by elevated CO₂ could mitigate the damage by high temperatures. Therefore, we hypothesized that decreased g_s at elevated CO₂ might protect P_N in C₄ species from damage caused by high-temperature stress, reducing E , and increasing leaf Ψ_W .

Received 12 March 2013, accepted 28 August 2013.

⁺Corresponding author; fax: 1+301-504-5823, email: mingnanqu@gmail.com

Abbreviations: AC – ambient CO₂ concentration; C_i – intercellular CO₂ concentration; CT – control; E – transpiration rate; EC – elevated CO₂ concentration; g_s – stomatal conductance; HT – high-temperature treatment; P_N – net photosynthetic rate; R_I – relative injury; T_{leaf} – leaf temperature; VPD – water vapor pressure deficit; WJC – water-jacketed cuvette; WUE – water-use efficiency; Ψ_W – water potential.

Acknowledgements: We thank Dr. Richard Sicher for technical assistance with the measurements of leaf water potential and electrolyte leakage and Dr. Shardendu Singh for comments on an earlier version of this manuscript.

Materials and methods

Growth: Maize (*Zea mays L.* cv. Silver Queen) plants were grown in two environment-controlled chambers under either ambient CO₂ (AC, 380 $\mu\text{mol mol}^{-1}$) or elevated CO₂ (EC, 560 $\mu\text{mol mol}^{-1}$) concentrations. Plants were grown in vermiculite and irrigated daily with a complete nutrient solution containing 14.5 mM total N. Day/night air temperatures were 29/17°C, while soil temperature averaged 25.7 \pm 0.33°C/14.8 \pm 0.41°C. Light was provided by a mixture of high-pressure sodium and metal halide lamps (*Shanghai Yahong Electrical Lighting Co., Ltd*, China) at a photosynthetic photon flux density (PPFD) of 1,000 $\mu\text{mol m}^{-2} \text{s}^{-1}$, with a photoperiod of 12 h. Air humidity was 60% during the daytime. When the 4th leaf numbered from the bottom was fully expanded (14 d after emergence), a single leaf was exposed to a high-temperature treatment described below.

High-temperature treatment (HT): P_N , g_s , and intercellular CO₂ concentration (C_i) of nonstressed leaves (control, CT) were measured over a range of CO₂ concentrations and temperatures with a portable photosynthesis system (*CIRAS-2, PP-Systems*, Amesbury, MA, USA) equipped with a LED light source, at the growth PPFD of 1,000 $\mu\text{mol m}^{-2} \text{s}^{-1}$. In a preliminary test, P_N were significantly reduced after exposure to 45°C for 15 min, but recovered to almost the initial rates after 24 h. Thus, HT of 45°C for 15 min was chosen for this study, because it produced significant, but slowly reversible damage to photosynthesis.

For each measurement, single, intact 4th leaf attached to the plants, numbered from the bottom, with leaf area of *ca.* 40 cm^2 was placed inside a water-jacketed cuvette (WJC) with an internal fan (Bunce 2006) in the following arrangement:

Combination	Growth	During HT
AA	AC	AC
AE	AC	EC
EA	EC	AC
EE	EC	EC

Leaf temperature was measured using a miniature thermister (NTC 5k, *ET Enterprises Ltd.*, UK) pressed against the lower leaf surface. These leaf sections were then exposed to gradually increasing leaf temperatures (T_{leaf}) from 35 to 45°C, held at 45°C for 15 min, and then T_{leaf} was gradually decreased again to 35°C (Fig. 1). The whole HT cycle was completed within 1 h. During this cycle, light intensities were maintained at 1,000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ PPFD, and the water vapor content of air in the WJC was held constant. A *Ciras-1* portable photosynthesis system (*PP-Systems*, Amesbury, MA) programmed to use an external air supply and leaf chamber was used to record the

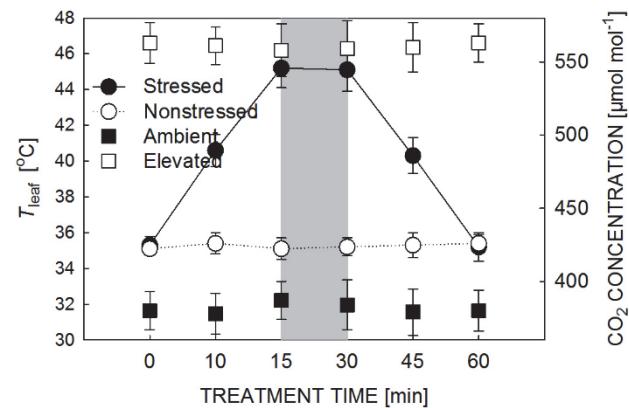


Fig. 1. Time courses of leaf temperatures (T_{leaf}) and CO₂ concentrations during the heat stress cycles. During the whole temperature cycle, light was maintained at PPFD of 1,000 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Vertical bars represent SE.

CO₂ concentration, P_N , g_s , C_i , T_{leaf} , and water vapour pressure deficit (VPD) for the intact leaf inside the WJC throughout the temperature cycle (Bunce 2006). The reduction in photosynthesis due to the HT was quantified as: (1) the differences between P_N before and after HT for each temperature, and (2) the percentage decrease in P_N after HT for each temperature calculated as: $[(P_{\text{NHT}} - P_{\text{NC}})/P_{\text{NC}}] \times 100$, where P_{NHT} is P_N after HT treatments and P_{NC} is P_N before HT treatments for each temperature, as in Ameye *et al.* (2012). Water-use efficiency (WUE) was calculated as a ratio of P_N to E . Nine leaves from 9 different plants were subjected to HT for each of the four combinations of growth and measurement CO₂ concentration. For P_N measurements, 9 leaves per treatment were sampled.

Water potential (Ψ_w) and electrolyte leakage: Leaf samples were collected from the control and stressed, 4th leaves after the HT. For the measurement of leaf Ψ_w , leaf disc of a 6-mm diameter was removed from the leaf section in the WJC and immediately sealed in a sample chamber for determination of Ψ_w using a *Wescor HR-33* dew point hygrometer (*Wescor, Inc.*, Logan, UT), as previously described by Sicher and Barnaby (2012). Electrolyte leakage was expressed as relative injury (R_l) according to the procedure of Warren *et al.* (1996) with minor modification. Five leaf discs taken from the leaf inside the WJC, washed 3 times, and placed in glass tubes containing 30 mL of distilled water. The tubes were kept at room temperature (about 20°C) for 16 h. The tubes were then gently shaken for 15 min and electrical conductivity was measured with an *Okaton 510* conductivity meter (*Eutech Instrumenta*, Singapore). The conductivity values were designated as T_1 . The tubes were then boiled in a microwave oven for 3 min to release all electrolytes. After

cooling to room temperature, the tubes were briefly shaken and the conductivity was measured as the total ion content (T_2). Average conductivity of distilled water served as the basic ion content (T_0). The R_I after HT was calculated by $[(T_1 - T_0)/(T_2 - T_0)] \times 100$. Because of the limited size of the leaf material inside the WJC, discs for water potential and electrolyte leakage measurements were taken from different plants. Before sampling, they were subjected to

HT in a similar fashion as those for the P_N measurements.

Statistical analysis: For the Ψ_W and electrolyte leakage analyses, $n = 4$. Two-way analysis of variance (*ANOVA*) was used to test the effects of growth CO₂, exposure CO₂, and their interaction for the leaf gas exchange data. Means were compared using *Fisher's* protected LSD test. A program used for calculations is *StatView* (SAS Institute Inc., USA).

Results

The HT reduced P_N in all combinations of growth and measurement CO₂ concentration (Table 1). P_N decreased after HT by 24–38% compared with the CT in all CO₂ combinations. The decrease in P_N was significantly lesser when the HT occurred at AC rather than at EC (Table 1). In the plants grown and exposed to AC, P_N was the highest at the beginning of HT and at the end of HT in all combinations of CO₂. It suggested that EC did not protect P_N from the damage caused by HT (Fig. 2). Both growth

CO₂ and its interaction with exposure CO₂ had no significant effect on the decrease of P_N (Table 1). Exposure to AC rather than EC prior to the HT resulted in higher g_s and E at both 35°C and 40°C in plants from both growth CO₂ concentrations (Fig. 3A). During the HT, g_s , E , VPD, WUE, and Ψ_W increased in all CO₂ combinations, while P_N declined (Figs. 2,3,4). After returning the T_{leaf} to 40°C and then to 35°C within 30 min, g_s and C_i were the same or higher than the initial values at those temperatures, while P_N

Table 1. Effects of CO₂ concentration during growth and during exposure to high temperature and their effects on the decreases in P_N after a heat stress treatment, compared with values at each temperature measured before the heat stress. Within each temperature, values with the same *lowercase letters* are not significantly different using *Fisher's* LSD test. ns – not significant; * – $P \leq 0.05$; ** – $P \leq 0.01$. G, E – growth and exposure to CO₂ concentrations, respectively; AC, EC – ambient and elevated CO₂, respectively. T_{leaf} – leaf temperature. Values are \pm SE for $n = 9$.

CO ₂ treatments	Decrease in P_N [$\mu\text{mol}(\text{CO}_2) \text{m}^{-2} \text{s}^{-1}$]			Decrease in P_N [%]		
	T_{leaf} [°C]			T_{leaf} [°C]		
	35	40	45	35	40	45
GAC-EAC	9.6 \pm 2.2 ^b	10.9 \pm 2 ^b	7.5 \pm 1.6 ^a	26.6 \pm 2.8 ^b	31.2 \pm 2.7 ^b	25.5 \pm 2.5 ^b
GAC-EEC	13.3 \pm 2.0 ^a	15.5 \pm 2.2 ^a	9.5 \pm 2.0 ^a	35.0 \pm 2.5 ^{ab}	41.6 \pm 2.8 ^{ab}	35.1 \pm 3.8 ^{ab}
GEC-EAC	11.9 \pm 1.5 ^a	12.3 \pm 2.3 ^a	6.1 \pm 1.9 ^b	34.0 \pm 1.9 ^{ab}	36.9 \pm 2.7 ^{ab}	24.8 \pm 3.8 ^b
GEC-EEC	14.3 \pm 3.9 ^a	16.9 \pm 3.4 ^a	9.8 \pm 1.9 ^a	37.6 \pm 4.9 ^a	44.7 \pm 4.4 ^a	38.1 \pm 4.6 ^a
G	ns	ns	ns	ns	ns	ns
E	*	**	*	ns	*	**
Interaction	ns	ns	ns	ns	ns	ns

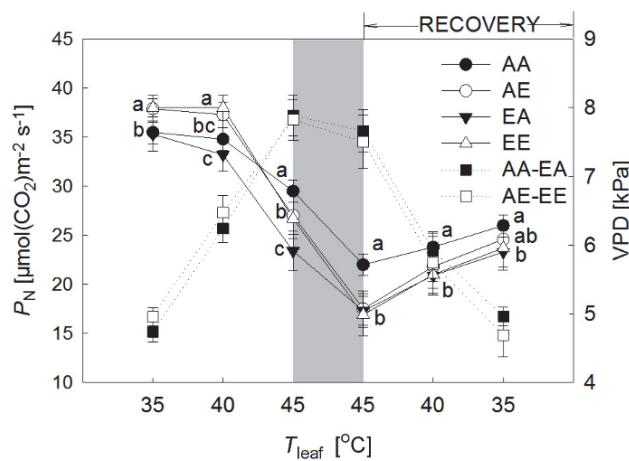


Fig. 2. Net photosynthetic rate (P_N) in response to the high-temperature treatment of 4 combinations of growth and exposure to CO₂ for maize seedlings, and the water vapor pressure deficit (VPD), to which leaves were exposed. P_N and VPD are depicted with solid and dotted lines, respectively. AA – growth and exposure at the ambient carbon dioxide concentration (AC, 380 $\mu\text{mol mol}^{-1}$), AE – growth at AC and exposure at the elevated concentration (EC, 560 $\mu\text{mol mol}^{-1}$), EE – growth and exposure at EC, and EA – growth at the EC and exposure at the AC. AA-EE – exposure to heat stress at AC across growth CO₂, AE-EE – exposure to heat stress at EC across growth CO₂. Within each temperature point, values among different [CO₂] treatments with same *lowercase letter* are not significantly different ($P > 0.05$). Grey area represents the 15-min period of exposure to high temperature. Vertical bars represent SE for $n = 9$. $T_{leaf} = 45^\circ\text{C}$.

was lower than initial values (Figs. 2,3). Leaf Ψ_w was slightly lower after the HT at AC, but not at EC (Fig. 4A).

There were higher values of R_I from leaf tissue after the

Discussion

Our results underlined that the damage to P_N due to 45°C was greater under EC, regardless of EC used for plant growth, compared to the plants grown and exposed to AC. Thus, EC failed in protecting P_N from 45°C in this maize cultivar. Hamilton *et al.* (2008) showed that EC increased

HT at both CO₂ concentrations, but the values of R_I were lower at AC than at EC (Fig. 4C).

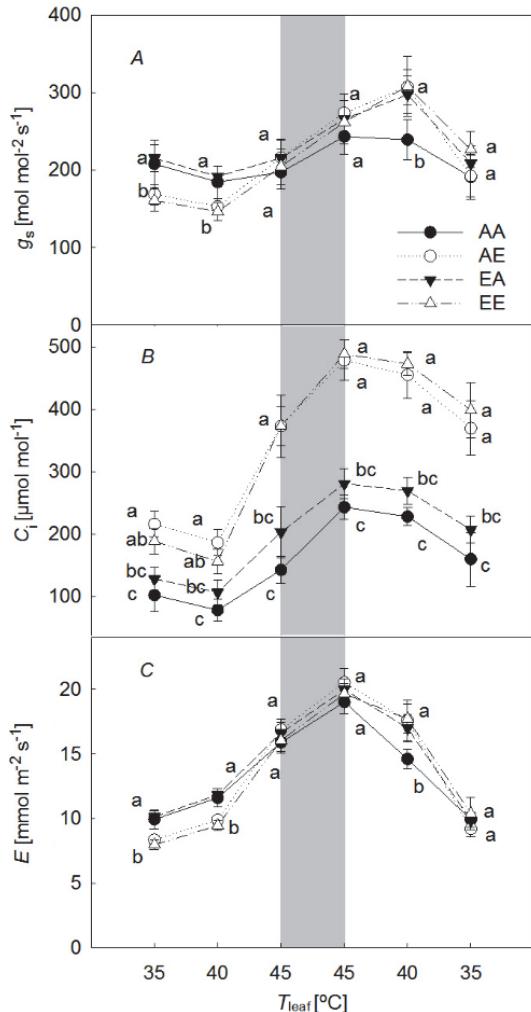


Fig. 3. Effects of a high-temperature treatment on *A*: stomatal conductance (g_s), *B*: intracellular CO₂ (C_i) and *C*: transpiration (E) under 4 combinations of growth and exposure CO₂ concentrations. AA – growth and exposure at the ambient carbon dioxide concentration (AC, 380 $\mu\text{mol mol}^{-1}$), AE – growth at AC and exposure at the elevated concentration (EC, 560 $\mu\text{mol mol}^{-1}$), EE – growth and exposure at EC, and EA – growth at EC and exposure at AC. Within each temperature point, values among different CO₂ treatments with same lowercase letter are not significantly different using Fisher's LSD test ($P > 0.05$). The grey area represents the high-temperature treatment of 15 min. Vertical bars represent SE for $n = 9$.

the damage to P_N caused by the HT in maize at 50°C. In their study, maize, pigweed, lambs quarters, and pea were subjected to 3 different temperature treatments. Results showed that the negative EC effects occurred mainly at the highest temperature. In maize, CO₂ effects similar to those

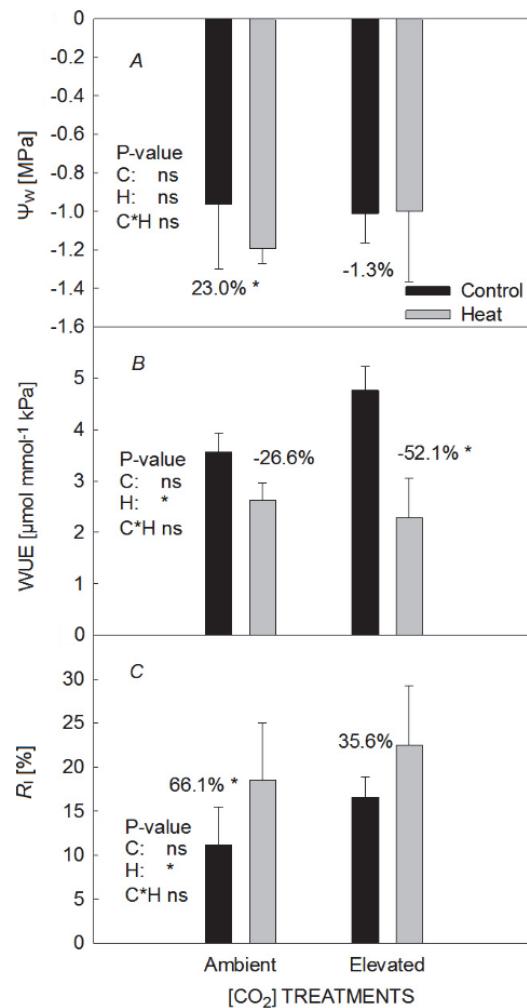


Fig. 4. High-temperature treatment induced changes in *A*: water potential (Ψ_w), *B*: water-use efficiency (WUE), and *C*: leaf relative injury (R_I) in leaves grown and measured at ambient and elevated CO₂. CO₂ effect (C), heat stress effect (H), and their interaction effect were inserted into each panel. ns – not significant; * – $P < 0.05$. Vertical bars represent SE, with $n = 4$ for Ψ_w and R_I and $n = 9$ for WUE.

observed here occurred also at 45°C (Wang *et al.* 2008). The lower P_N (Fig. 2), and higher g_s (Fig. 3A), and C_i (Fig. 3B) indicated that nonstomatal inhibition of P_N

occurred after the HT. This was also found after HT stress in grapes (Luo *et al.* 2011) and in birch (Ranney and Peet 1994).

With high g_s and VPD during the HT, the values of E were 16 to 21 mmol m⁻² s⁻¹, approximately twice of those at 35°C (Fig. 4). Thus, it was remarkable that the HT did not lower Ψ_w substantially. The lowest Ψ_w observed (−1.2 MPa) was too high to cause inhibition of P_N in this cultivar (Barnaby and Sicher 2012). Thus, the HT did not produce damaging leaf Ψ_w at two CO₂ concentrations despite of high VPD and E . The lack of stomata response to CO₂ concentration and the lack of significant leaf water deficits during the HT stress explained why our hypothesis was contradicted by the experimental data. Our results indicated that damage to P_N occurred at 45°C without the involvement of low leaf Ψ_w .

The premise of our hypothesis was that part of the damage to P_N caused by HT in combination with high VPD would be caused by low leaf Ψ_w resulting from high E . In such situation, we expected EC to decrease g_s and reduce the drop in leaf Ψ_w , thus preventing the damage. This scenario did not occur for two reasons in this maize cultivar. First, T_{leaf} of 45°C was high enough to cause

damage to P_N in this species. Fig. 3 clearly indicated that during HT no differences in g_s occurred between the AC and EC. This was even true comparing CO₂ concentrations of 200 and 1,000 μmol mol⁻¹ (data not shown). In addition, because the HT occurred at high VPD, it could be either HT or high VPD that eliminated the stomata response to CO₂. Reduced CO₂ effect on g_s at high VPD has been reported in other species, *e.g.*, potato and sorghum (Bunce 2003), *Bromus japonicas* (Maherali *et al.* 2003), and wheat and barley (Bunce 2000b). An increase in g_s with temperature at constant water VPD occurs in many species including soybean, sunflower, tomato, turnip, winter wheat, barley (Bunce 2000a,b), and castor bean (Dai *et al.* 1992). Current study did not find a major weakening of membrane integrity by the heat stress. At this point, Xu *et al.* (2011) also found no ion leakage in maize after heat stress.

Conclusion: EC did not protect photosynthesis from inhibition caused by high temperature by modifying the leaf water status at high leaf temperature in maize. Actually, EC increased the inhibition of photosynthesis during the high temperature treatment.

References

Ameye, M., Werten, T.M., Bauweraerts, I., *et al.*: The effect of induced heat waves on *Pinus taeda* and *Quercus rubra* seedlings in ambient and elevated CO₂ atmospheres. – *New Phytol.* **196**: 448-46, 2012.

Barnaby, J.Y., Sicher, R.C.: Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. – *Physiol. Plantarum* **144**: 238-253, 2012.

Bunce, J. A.: Acclimation of photosynthesis to temperature in eight cool and warm climate herbaceous C₃ species: temperature dependence of parameters of a biochemical photosynthesis model. – *Photosynth. Res.* **63**: 59-67, 2000a.

Bunce, J. A.: Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. – *Glob. Change Biol.* **6**: 371-382, 2000b.

Bunce, J. A.: Effects of water vapor pressure difference on leaf gas exchange in potato and sorghum at ambient and elevated carbon dioxide under field conditions. – *Field Crop Res.* **82**: 37-47, 2003.

Bunce, J.A.: How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits? – *Plant Cell Environ.* **29**: 1644-1650, 2006.

Dai, Z., Ku, M.S.B., Edwards, G.E.: Control of photosynthesis and leaf conductance in *Ricinus communis* L. (castor bean) by leaf to air vapor pressure deficit. – *Plant Physiol.* **99**: 1426-1434, 1992.

Groisman, P.Y., Knight, R.W.: Prolonged dry episodes over the conterminous United States: new tendencies emerging during the last 40 years – *J. Climate* **21**: 1850-1862, 2008.

Gutiérrez, D., Gutiérrez, E., Pérez, P., *et al.*: Acclimation to future atmospheric CO₂ levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers. – *Physiol. Plantarum* **137**: 86-100, 2009.

Hamilton, E.W., Heckathorn, S.A., Joshi, P., Wang, D., Barua, D.: Interactive effects of elevated CO₂ and growth temperature on the tolerance of photosynthesis to acute heat stress in C₃ and C₄ species. – *J. Integr. Plant Biol.* **50**: 1375-1387, 2008.

Hay, R.K.M., Walker, A.J.: An Introduction to the Physiology of Crop Yield. Pp. 292. Longman Scientific & Technical, New York 1989.

Kim S.H., Gitz D.C., Sicher R.C., *et al.*: Temperature dependence of growth, development, and photosynthesis in maize under elevated CO₂. – *Environ. Exp. Bot.* **61**: 224-236, 2007.

Luo, H.B., Ma, L., Xi, H.F., *et al.*: Photosynthetic responses to heat treatments at different temperatures and following recovery in Grapevine (*Vitis amurensis* L.) leaves. – *PLOS ONE*: doi:10.1371/journal.pone.0023033, 2011.

Maherali, H., Johnson, H.B., Jackson, R.B.: Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO₂ gradient in a C₃/C₄ grassland. – *Plant Cell Environ.* **26**: 1297-1306, 2003.

Mearns, L.O., Katz, R.W., Schneider, S.H.: Extreme high temperature events: changes in their probabilities with changes in mean temperature. – *J. Clim. Appl. Meteorol.* **23**, 1601-1613, 1984.

Orbovic V., Poff, K.L.: Effect of temperature on growth and phototropism of *Arabidopsis thaliana* seedlings. – *J. Plant Growth Regul.* **26**: 222-228, 2007.

Ranney, T.G., Peet, M.M.: Heat tolerance of five taxa of birch (*Betula*): physiological responses to supraoptimal leaf temperatures – *J. Am. Soc. Hortic. Sci.* **119**: 243-248, 1994.

Sicher, R.C., Barnaby, J.Y.: Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. – *Physiol. Plantarum* **144**: 238-253, 2012.

Taub, D.R., Seemann, J.R., Coleman, J.S.: Growth in elevated CO₂ protects photosynthesis against high-temperature damage. – *Plant Cell Environ.* **23**: 649-656, 2000.

Wang, D., Heckathorn, S.A., Barua, D., *et al.*: Effects of elevated CO₂ on the tolerance of photosynthesis to acute heat stress in C₃, C₄, and CAM species. – Am. J. Bot. **95**: 165-176, 2008.

Warren, G.R., Marin, M.A., Teutonico, R.: Isolation of mutations affecting the development of freezing tolerance in *Arabidopsis thaliana* (L.). Heynh. – Plant Physiol. **111**: 1011-1019, 1996.

Xu, Z.Z., Zhou, G.S., Han, G.X., Li, Y.J.: Photosynthetic potential and its association with lipid peroxidation in response to high temperature at different leaf ages in maize. – J. Plant Growth Regul. **30**: 41-50, 2011.