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Photosynthetic response of desert plants to small rainfall events
in the Junggar Basin, northwest China
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Abstract

Small rainfall events (< 5 mm) have short intervals, but account for a large proportion of the annual rainfall frequency in
arid lands. To explore possible strategies used by desert plants to utilize the small rainfall events, we investigated the
photosynthetic responses of 28 species to 1 mm and 6 mm of simulated rainfall in the Junggar Basin, northwest China.
The species were grouped into four plant functional types: short-life-cycle herbs, long-life-cycle herbs, non-phreatophyte
shrubs, and phreatophyte shrubs. The results showed that the net photosynthetic rate, stomatal conductance, and
transpiration rate increased in most of the herbs, but they responded differently to the rainfall treatments. However, the
water-use efficiency did not significantly differ after | and 6 mm rainfall treatments in most of the shrubs. The maximum
water absorption by leaves and the percentage increase of a leaf water content (LWC) were higher in the herbs than those
in the shrubs. Plants with dense trichomes had the highest LWC. The results suggested that the desert plants benefited
from the micro-environment humidity provided by the small rainfall events.

Additional key words: leaf water uptake; photosynthetic rate; plant functional types; stomatal conductance; trichome; water-use
efficiency.

Introduction

Rainfall, as the major water input for deserts (Noy-Meir
1973), is thought to have a considerable effect on plant
survival and production (Briggs and Knapp 1995, Fay et
al. 2003). Rainfall in arid regions is dominated by small
events (lesser than 5 mm) rather than infrequent and highly
unpredictable large rainfall events (Loik er al. 2004,
Reynolds ef al. 2004). In the Junggar Basin, northwest
China, events up to 5 mm contribute by 81.4% of the total
rainfall frequency, being 35.9% of the total annual mean
precipitation. The average interval between small rainfall
events is less than 10 days (Zheng et al. 2009, Wang 2009).

However, small rainfall events have been usually
considered as “ineffective rainfall” because the water does
not reach root zones (Nobel 1976, Weaver 1982,
Dougherty et al. 1996). A large proportion of small rainfall
is intercepted by plant canopies and generally evaporates

within a day of a precipitation event (Loik et al. 2004,
Owens et al. 2006). Absorption of water through leaves
has been demonstrated in some studies (Boucher et al.
1995, Yates and Hutley 1995, Munné-Bosch and Alegre
1999, Munné-Bosch et al. 1999). In coastal redwood
forests of California, western USA, prolonged and heavy
fog events yielded clear examples of sap flow reversal,
which suggested that there was direct leaf uptake of water
by Sequoia sempervirens (Burgess and Dawson 2004). A
similar phenomenon was observed in Vellozia flavicans in
central Brazil (Oliveira et al. 2005). Approximately 80%
of the dominant species in redwood forests followed this
leaf uptake strategy (Limm et al. 2009). More evidence
had been found in epiphytes and non-epiphytes in
Xishuangbanna, southwest China, where plants absorbed
fog water through their leaves (Zheng and Feng 2006).
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These results implied that leaf water uptake is a common
strategy for acquiring water in some plants.

Trichomes on leaf surfaces improve the overall area
available for water vapor condensation, which leads to
increased water retention and duration on the leaf surface
(Zhuang and Zhao 2010). Grammatikopoulos et al. (1994)
demonstrated that water on hairy leaf surfaces quickly
penetrated into mesophyll. Other possible mechanisms,
such as the potential role of epidermal hydathodes (Martin
and von Willert 2000), the cuticular pathway (Yates and
Hutley 1995, Gouvra and Grammatikopoulos 2003), and
fungal endophytes, have been also considered (Burgess
and Dawson 2004). However, studies on intercepted water
absorption have mainly focused on a small number of
species (Munné-Bosch ef al. 1999, Breshears et al. 2008,
Tange et al. 2009, Limm and Dawson 2010).

Materials and methods

Study area and species: The research was carried out on
the southeastern edge of the Junggar Basin (44°15'N—
46°50'N, 84°50'E-91°20'E), near the Fukang Station of
Desert Ecology, Chinese Academy of Sciences (44°17'N,
87°56'E, 475 m a.s.l.). The climate was a typical
temperate, continental arid climate with a hot, dry summer
and a cold winter. The annual mean temperature was
6.6°C, annual mean precipitation was about 160 mm, and
the corresponding pan-evaporation was about 2,000 mm.
The meteorological data were recorded by the Campbell
automatic station (Campbell Scientific, Logan, UT, USA)
located within the study area. The annual mean rainfalls
was 168.4 mm, the annual rainfall frequency took up 77%
of the annual precipitation frequency (data for the years
1998-2007). The rainfall and the average daily
temperatures in 2012 are shown in Fig. 1. In the study
region, the total rainfall from February to October 2012
was 94.6 mm. Most rainfall events were less than 5 mm,
especially in the summer, and 68% of the rainfall
frequency was less than 1 mm. The average daily
temperature of the study period (day of year 124-257) was
24.4°C (Fig. 1). The soils were cither a silty clay-loam,
with a high salinity, or sandy. There are nine species
growing in the silty clay-loam: Karelinia caspia,
Limonium gmelinii, Sophora alopecuroides, Salicornia
europaea, Kalidium foliatum, Halostachys caspica,
Halimodendron halodendron, Nitraria tangutorum, and
Tamarix ramosissima. Other species grow in the sandy
soils. The groundwater table is nearly 5 m deep.

Based on herb phenology or shrub root patterns,
28 plant species were grouped into four functional types in
this study (see the text table on the next page).

Experimental design: The field experiment lasted from
May to September in 2012, which is the peak growth
period for plants in this region. Nine (1 m X 1 m) plots

More recently, it has been suggested that leaf
absorption of intercepted water may be important, not only
during periods of dew or fog, but also during rainfall
(Breshears et al. 2008, Munné-Bosch 2010). Water
absorption by leaves enables plants to decouple leaf-level
water and carbon relationship from soil water availability
(Simonin et al. 2009). Relative water content, water poten-
tial, and leaf gas exchange have been shown to increase
during fog (Zheng and Feng 2006), dew (Boucher et al.
1995, Munné-Bosch ef al. 1999) and small rainfall events
(Wang and Tang 2009). Therefore, small rainfall events
could be important for improving plant water conditions.
The objectives of this study were to investigate the photo-
synthesis of different plant functional types in response to
small rainfall events, and clarify the role of leaf hairs in
absorbance of water during small rainfall events.
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Fig. 1. Rainfall and average daily temperature at the Junggar
Basin in 2012. The shadow part shows the study period (the first
species was measured on day 124 of the year and the last species
on day 257 of the year).

were used for each herb species and (2 m X 2 m) plots were
used for each shrub species. Three plots acted as controls
(i.e., only natural rainfall, NR), three were subjected to 1
mm simulated rainfall (ISR) applied with a hand-held
sprayer and the other three were subjected to 6 mm
simulated rainfall (6SR) applied with a watering can.
Water was added from 1.0-1.5 m above the plant canopy.
All treatments were applied in the late afternoon of the day
before measurements. To avoid interference by natural
rainfall, the experiment was paused for at least 5 d after a
natural rainfall event. Previous studies indicated that this
was long enough to allow the top soil water content to
return to normal levels (Liu ef al. 2012, Ma et al. 2012). In
this study, the largest natural rainfall event was 11.9 mm
(Fig. 1) and the 5-d gap between the natural rainfall and
the treatments was sufficient to avoid the buffer effect of
xylem water (Bassiri Rad ef al. 1999).
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Plant group Description

Species

Short-life-cycle herbs
survives until July

Herbs where the aboveground part Amberboa turanica (Compositae)
Cancrinia discoidea (Compositae)

Corispermum lehmannianum (Chenopodiaceae)
Erysimum cheiranthoides (Brassicaceae)
Erodium oxyrriynchum (Geraniaceac)
Euphorbia turczaninowii (Euphorbiaceae)
Nonea caspica (Boraginaceae)

Nepeta micrantha (Labiatae)

Long-life-cycle herbs
survives until mid-September

Herbs where the aboveground part Agriophyllum squarrosum (Chenopodiaceae)
Bassia dasyphylla (Chenopodiaceae)

Ceratocarpus arenarius (Chenopodiaceae)
Karelinia caspia (Compositae)

Limonium gmelinii (Plumbaginaceae)
Peganum harmala (Zygophyllaceae)
Sophora alopecuroides (Leguminosae)
Salicornia europaea (Chenopodiaceac)
Tribulus terrester (Zygophyllaceae)

Non-phreatophyte shrubs

Shrubs with shallow root systems Ceratoides latens (Chenopodiaceae)

that mainly use rainfall or shallow Calligonum leucocladum (Polygonaceac)

soil water (Xu and Li 2006)

Haloxylon ammodendron (Chenopodiaceae)

Haloxylon persicum (Chenopodiaceae)
Kalidium foliatum (Chenopodiaceae)
Reaumuria songarica (Tamaricaceac)

Phreatophyte shrubs

Shrubs with deep root systems that Alhagi sparsifolia (Leguminosae)

use deep soil water or groundwater Halostachys caspica (Chenopodiaceae)

(Xu and Li 2006)

Halimodendron halodendron (Leguminosae)

Nitraria tangutorum (Zygophyllaceae)
Tamarix ramosissima (Tamaricaceae)

Top soil water content (SWC): To assess the effects of
the water treatments on soil water, the SWC (%) was
measured at 10-cm depth with a Delta-T Device moisture
meter (type WET-2, Delta-T Devices Ltd., Burwell,
Cambridge, UK) (four times and with four separate
directions within each plot) before the gas exchange mea-
surements. Then the average SWC in each individual plot
and the mean SWC for each treatment were calculated.

Chlorophyll (Chl) fluorescence and gas exchange
measurement: Chl fluorescence was measured on fully
expanded leaves in the early morning (07:00-07:30 h,
local time, before the sun rose), using a portable plant
efficiency analyzer (Pocket PEA, Hansatech, King’s
Lynn, UK). The light intensity was 2,500 pmol(photon)
m?2 s!. Fy/F, (maximum photochemical efficiency of
photosystem II) was recorded immediately after dark
adaptation for 20 min. For each species, nine replicates
from three individual plants were chosen to calculate the
average F,/Fp, for each treatment. The F./F,, value in the
range of 0.79-0.84 is the approximate optimal value for
many plant species. Plants show lower values when they
are under stress (Kitajima and Butler 1975, Maxwell and
Johnson 2000).

Gas exchange measurements were also taken during
the same day (08:30-11:30 h, local time) by a Li-6400
portable photosynthesis system (Li-Cor, Lincoln, NE,

USA) containing an Arabidopsis chamber. PPFD was
recorded by the quantum sensor on the Li-6400. During the
measurement periods, the PPFD values were between
1,000 and 1,500 pmol m™2 s!. Leaf areas were calculated
from photographs obtained from the leaf scans taken using
CI-400 CIAS software (Computer Imaging Analysis
Software, CID Co., Logan, UT, USA). The net photo-
synthetic rate (Px) [umol(CO,) m?2 s7!], stomatal con-
ductance (gs; in [mol m 2 s™']), and transpiration rate (E) in
[mmol(H,O) m 2 s™")], Tair and Tiear Were recorded, and the
water-use efficiency (WUE) was calculated in [pumol(CO>)
mmol !(H,0)] and the difference between air temperature
and leaf temperature (Tair — Tiear) Was calculated. For each
treatment, five leaves from five representative plants were
measured.

Relative effectiveness calculation: Generally, 6SR has
been considered as effective rainfall (>5 mm, Sala and
Lauenroth 1982), thus, we compared the effects of 1SR to
that of 6SR. To estimate how effective the 1 mm rainfall
event was, we defined the “relative effectiveness” of each
parameter under 1 mm rainfall. The ratio was calculated as
follows (taking g as an example):

g,(1mm) — g_(control)

g, relative effectiveness =
g,(6mm) — g_(control)
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Pn-relative effectiveness, E-relative effectiveness, and
WUE-relative effectiveness were calculated in the same
way. We standardized the deviation for each parameter to
values between 0 and 1 regardless of whether a parameter
increased or decreased after 1SR. This avoided the offset
between positive and negative values within the same
functional type. Thus, the relative effectiveness reflected
the average magnitude of change. The relative effective-
ness of each species was calculated, and then we obtained
the mean relative effectiveness values for each plant
functional type.

Leaf water uptake capacity: To assess the leaf water
uptake capacity of the different species, the MWA and the
LWC of excised leaves or twigs were calculated. Leaves
or twigs were sampled from the control plants after the gas
exchange measurements. The surface of each cut petiole
was quickly sealed with thermosetting adhesive to prevent
evaporation and then they were immediately placed in an
ice box and taken back to the laboratory as soon as
possible.

Leaves or twigs were divided into five groups (five

Results

Soil water content: SWCs in the control (NR), 1SR and
6SR plots were 1.35 = 0.35%, 1.36 + 0.36%, and 7.75 +
0.57%, respectively (mean + SE, n=17, F=70.1,
P<0.001). The SWC did not increase after the 1SR
application. However, SWC increased significantly after
the 6SR application.

Fv/Fm and Tair — Tiear: F\/Fy, for all species stayed within
the optimal range (0.78-0.84, Table 1) in all treatments.
significantly changed for 6 of 17 herbs and 10 of 11 shrubs
after both rainfall applications (Table 1).

Photosynthetic responses to the rainfall treatments:
The Px-relative effectiveness for all functional types was
more than 25% (Fig. 24). Notably, after 1SR, Px
significantly increased in E. cheiranthoides among the
short-life-cycle herbs, and in C. latens and H. persicum
among the non-phreatophyte shrubs (Fig. 34C). In
contrast, S. europaea among the long-life-cycle herbs and
N. tangutorum from the phreatophyte shrubs showed
unexpected decreases in Py (Fig. 3B,D).

After the 1SR treatment, the gs-relative effectiveness
varied significantly among the four functional types
(F= 3.84, P = 0.025), and reached 71.8% for non-
phreatophyte shrubs (Fig. 2B). The g; of the long-life-cycle
herbs responded to 1SR positively. In particular, the g,-
relative effectiveness of C. arenarius increased by 78%

repetitions for each species, 5—10 leaves per group) and the
fresh mass (My, g) was weighed immediately. The leaf or
twig area (S, cm?) was determined by CI-400 CIAS
software. Then the leaves or twigs were submerged in
distilled water and the cut petioles were kept above the
water surface. The leaves or twigs were towel-dried and
were weighed to obtain the water-saturated mass (Ms). The
dry mass (Mg) was recorded after the leaves or twigs had
been dried at 65°C for 48 h. MWA and LWC were
calculated as:

MWA = 1,000 (M — My)/S
LWC = (M — Mp)/(M¢ — My) x 100%

Data analysis: Minitab 16 statistics software was used to
analyze the data. Descriptive statistics were used to
calculate the means and standard errors for each replicate,
one-way analysis of variance (ANOVA) was used to test
the significant differences between treatments
(significance level was P<0.05), and Fisher’s multiple
comparison test was used to compare differences between
the variable means for the different treatments.

(Fig. 3F). However, gsof S. alopecuroides decreased after
the rainfall applications (0.65 + 0.06 mol m2 s! for
control, 0.47 = 0.04 mol m2 s™! for 1SR, 0.29 + 0.02 mol
m 2 s ! for 6SR, Fig. 3F). In the non-phreatophyte shrubs,
gs for H. persicum increased significantly after the 1SR
applications (0.07 = 0.01 mol m™2 s! for control NR,
0.13£0.01 mol m?s”! for 1SR Fig. 3G).

The E-relative effectiveness was greater than 30% for
all functional types (Fig. 2C). Two exceptions were
N. caspica among the short-life-cycle herbs (34.9 + 3.35
for control NR, 31.1 + 1.39 for ISR, and 19.5 + 0.10
mmol(H,O) m 2 s™! for 6SR, Fig. 31) and S. alopecuroides
in the long life-cycle herbs [12.8 + 0.75 for control NR,
10.6 £ 0.61 for 1SR, and 7.54 £ 0.35 mmol(H,0) m 2 s™!
for 6SR, Fig. 3J]. Their E values decreased after the
rainfall treatments. For other species, the E values were
either stable or increased after the rainfall applications
(Fig. 3-L).

WUE-relative effectiveness was greater than 50% for
all functional types, while the phreatophyte shrubs reached
76.5% (Fig. 2D). The WUE of most shrubs were more
sensitive to the rainfall applications than the herbs
(Fig. 3M—P). For example, WUE for C. lehmannianum in
the short-life-cycle herbs, H. persicum in the nonphreato-
phyte shrubs, and H. caspica and T. ramosissima in the
phreatophyte shrubs significantly decreased after 1SR
(Fig. 3M,0,P).
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Table 1. Fv/Fm and (Tair — Tiear) for 28 species. The values (mean + SE; for Fv/Fm, n = 3; for Tair— Tieat, n = 5) with different letters

indicating a significant difference among treatments (P<0.05). The data were collected in 2012.

Species Fv/Fm Tair—Tieaf [°C]
control 1 mm 6 mm control 1 mm 6 mm
A. turanica 0.858 = 0.002 0.852 £0.001 0.855+0.003 0.48 £0.11 0.55+0.19 1.09 £0.27
C. discoidea 0.839 + 0.003 0.828 £0.0052>  0.821 £ 0.004° 1.24 £ 0.09% 1.57+£0.18? 0.99 £ 0.03°
C. lehmannianum 0.825 £ 0.006 0.807 £0.013 0.810 + 0.004 0.74 £0.10 0.65+0.07 0.68+0.11
E. cheiranthoides 0.809 + 0.007 0.794 £0.012 0.803 £ 0.010 0.81 £0.08 0.78 £0.08 0.73 £0.09
E. oxyrrhynchum 0.845 +0.003 0.844 + 0.003 0.848 + 0.004 0.93 + 0.09® 1.16 £ 0.052 1.21 £0.042
E. turczaninowii 0.854 + 0.0022 0.844 + 0.003° 0.842 + 0.002° 1.44 +£0.03 1.09 +£0.20 1.14+0.10
N. caspica 0.808 + 0.0042 0.808 + 0.0042 0.789 + 0.013" 1.01 £0.14 0.98 +£0.10 0.88 +£0.04
N. micrantha 0.774+£0.0132%  0.763 £ 0.010° 0.794 £+ 0.004* 1.01 £0.22 0.79 £ 0.07 1.05+0.05
A. squarrosum 0.803 + 0.007 0.791 £ 0.005 0.800 + 0.009 0.47 +0.08 0.51+0.08 0.62 +0.11
B. dasyphylla 0.814 + 0.005 0.812 +0.008 0.819 + 0.005 1.41+0.162 1.42+£0.132 0.85 + 0.06°
C. arenarius 0.823 £ 0.005 0.781£0.015° 0.795 £ 0.004%  0.89 + 0.04 0.96 +£0.11 1.04 £ 0.03
K. caspia 0.839 + 0.006 0.834 £ 0.004 0.836 + 0.003 1.08 £0.052 0.68 £0.07° 0.92 + 0.092b
L. gmelinii 0.822 + 0.004 0.828 +0.004 0.830 + 0.005 0.99 £0.17 1.06 £0.11 1.05+£0.04
P. harmala 0.835 £ 0.005° 0.852 + 0.0028 0.847 £ 0.004*  0.50+0.07 0.76 £0.13 0.79 £0.06
S. alopecuroides 0.864 + 0.001 0.858 £ 0.004 0.850 + 0.007 0.56 + 0.02° 0.63 + 0.05° 0.77 £0.022
S. europaea 0.817 £ 0.002 0.809 + 0.004 0.810 + 0.006 0.38 £ 0.05° 0.53 +£0.022 0.59 +£0.032
T. terrester 0.813 £ 0.0012>  0.808 + 0.003° 0.814 +£0.001*  0.73+0.03 0.67 £0.09 0.78 £0.21
C. latens 0.840 + 0.002 0.836 £ 0.006 0.844 + 0.005 0.99 +0.022 0.89 + 0.03b 0.75+0.01¢
C. leucocladum 0.801 +0.003 0.812 £ 0.007 0.804 + 0.005 0.57 £ 0.06° 0.62 + 0.032b 0.72 £0.022
H. ammodendron 0.784 + 0.004 0.792 + 0.003 0.784 + 0.009 0.11 £0.05° —0.12+£0.09° —0.11 = 0.05°
H. persicum 0.789 + 0.005° 0.797 + 0.002° 0.816+0.003*  —0.13+0.088 —-0.36+0.04* —0.74+0.11°
K. foliatum 0.842 £ 0.0012 0.833 £ 0.003° 0.823 £ 0.004°  0.29 +0.03> 0.29 + 0.02° 0.39 +£0.032
R. songarica 0.836 + 0.006° 0.849 + 0.0042 0.849 + 0.0022>  0.57 £ 0.05° 0.68 + 0.032b 0.80 +£0.052
A. sparsifolia 0.845 + 0.008 0.831 £ 0.004 0.844 + 0.007 0.65+0.09 0.70 £ 0.01 0.68 £0.04
H. caspica 0.837 £ 0.004 0.832 £ 0.004 0.836 + 0.008 0.17 £0.10° 0.22 + 0.06° 0.52+0.102
H. halodendron 0.840 + 0.005 0.847 £ 0.005 0.833 £ 0.007 0.85 + 0.07% 0.91 £0.052 0.63 £ 0.07°
N. tangutorum 0.836 + 0.009 0.849 + 0.005 0.841 + 0.005 0.31+£0.01° 0.44+0.01% 0.49 +0.08*
T. ramosissima 0.857 + 0.003 0.854 £ 0.002 0.854 £ 0.001 0.19+0.03° 0.30£0.01° 0.46 +0.03?
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Fig. 2. Relative effectiveness of (4) net photosynthetic rate (Pn), (B) stomatal conductance (gs), (C) transpiration rate (£), and (D) water-
use efficiency (WUE) for four plant functional types. Different letters indicate significant differences among the four plant functional
types for gs-relative effectiveness (P<0.05). Short-life-cycle herbs (T1), long-life-cycle herbs (T2), non-phreatophyte shrubs (T3), and
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Leaf water uptake capacities: Leaves from the four plant

- A
functional types showed different leaf water uptake E Frad9 Froos
capacitiecs. MWA and LWC showed similar gradual g 15t ? a ab
decline trends for the four functional types, with the < I b
maximum value occurring in the short-life-cycle herbs and % =
the minimum value in the phreatophyte shrubs (Fig. 4). 0 5

The short-life-cycle herb, C. discoidea, which is covered
with dense trichomes, had the highest MWA (30.6 mg
cm2) and LWC (81.6%). H. halodendron and H. caspica
(phreatophyte shrubs) have smooth leaves and the lowest
MWA (1.55 mg cm 2) and LWC (3.27%). Compared to the
plants with no trichomes, plants with sparse and dense
trichomes showed a notable increasing trend in LWC (Fig.
5B). These results suggested that more water was absorbed
by hairy leaves than non-hairy leaves.

Regression analysis: Py was significantly related to g in
control NR and 1SR treatments [NR: y = 37.35 x + 0.82
(R* = 0.927), 1SR: y = 40.35 x — 3.75 (R* = 0.553), and
6SR: y=10.65x + 10.13 (R?> = 0.016), Fig. 64]. For long-
life-cycle herbs, the relationships between Py and g5 were
weak [NR: y = 6.65 x + 7.34 (R? = 0.144), 1SR mm:
y=4.66 x+8.05(R*~0), and 6SR: y =527 x + 10.73 (R?
= 0.114), Fig. 6B]. No linear relationship was found for
non-phreatophyte and phreatophyte shrubs (Fig. 6C.,D).
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Fig. 4. Maximum water absorption (MWA) (4) and leaf water
content (LWC) (B) of the four plant functional types (mean +
SE). Different letters attached to columns indicate significant
differences among the different plant functional types (P<0.05).
Error bars represent standard errors of the mean, n =8, 9, 6, and
5 for short-life-cycle herbs (T1), long-life-cycle herbs (T2), non-
phreatophyte shrubs (T3), and phreatophyte shrubs (T4),
respectively. The data were collected in 2012.
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Discussion

The results of the correlation analysis suggested that Px
was more dependent on g, under water deficit conditions.
The non-phreatophyte shrubs had significantly higher
gs-relative effectiveness values (71.8%) than the other
three functional types (less than 50%). This was mainly
because of the small change in g; even after 6SR rainfall.
The roots of non-phreatophyte shrubs are located between
the herb roots and the phreatophyte shrub roots (Xu and Li
2009). Therefore they face a fierce competition from herbs
for shallow water and are far away from the groundwater.
Thus non-phreatophyte shrubs suffer the greatest water
deficits in this ecosystem. In order to reduce water loss
from transpiration, the non-phreatophyte shrubs had
uniformly lower g values and significantly higher WUE
than the other functional types. Although WUE-relative
effectiveness for all functional types was greater than 50%,
it was 76.5% higher in the phreatophyte shrubs. In many
phreatophyte shrub species, the 1SR application reduced
WUE to a level that was similar to that after 6SR. The
results implied that even a 1SR event was meaningful to
phreatophyte shrubs.

Trichomes played a very important role in sustaining
water conditions in the desert plants. The leaves of most
herbs (12 of 17) had either sparse or dense trichomes. In
general, a sandy soil retains a lower water content com-
pared to a silty clay-loam soil. Correspondingly, eight of
the nine species that live in the silty clay-loam soil had
non-trichome leaves (K. caspia had sparse trichomes). The
high trichome density helped plants to avoid excessive
water loss under water stress conditions (Fu ef al. 2013).
Therefore, £ of many species increased after rainfall
treatments. Even 1 mm of rainfall could provide a

relatively wet micro-environment for surrounding photo-
synthetic cells; there would be also a change in the water
vapor pressure of the air inside and outside the leaf
(Asbjornsen et al. 2011). The (Tair — Tiear) in 16 of the

" A F=052, P=0.801
[&)
j@)]
E 15¢ 1 T
< T T T
=z
=
0

B F=247,P=0.105
a

45| l

= aTb J
g 30F b T
o 1
1
15 +
0
L1 L2 L3

LEAF SURFACE TRAITS

Fig. 5. Maximum water absorption (MWA) (4) and leaf water
content (LWC) (B) for the different leaf surface traits (mean +
SE). Different letters attached to columns indicate significant
differences among different leaf surface traits (P<0.05). Error
bars represent standard errors of the mean, n = 16, 6, and 6 for no
trichomes (L1), sparse trichomes (L2), and dense trichomes (L3),
respectively. The data were collected in 2012.
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Fig. 6. Relationship between net photosynthetic rate
(Pn) and stomatal conductance (gs) for each
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functional type. Error bars represent standard errors
of the mean, n = 5. The data were collected in 2012.
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28 species were significantly changed by the rainfall appli-
cation improving plant water retention and water absorp-
tion. The results also showed that the plants without
trichomes could benefit from small rainfall events.

In addition, the F./Fy, for all species stayed within the
optimal range (around 0.8), and this implied that the plants
could utilize small rainfall events even if they were not
under severe water stress.

Conclusion: The 1 mm rainfall events had a limited, but
positive influence on desert plants. For most herbs, Px, gs,
and E were stable or increased after 1 mm rainfall. The
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