DOI: 10.1007/s11099-015-0157-7 PHOTOSYNTHETICA 54 (1): 148-151, 2016

BRIEF COMMUNICATION

Lanthanum improves salt tolerance of maize seedlings
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Abstract

In this study, the effects of lanthanum were investigated on contents of pigments, chlorophyll (Chl) fluorescence,
antioxidative enzymes, and biomass of maize seedlings under salt stress. The results showed that salt stress significantly
decreased the contents of Chl and carotenoids, maximum photochemical efficiency of PSII (F,/Fn), photochemical
quenching (qp), and quantum efficiency of PSII photochemistry (®psy), net photosynthetic rate (Px), and biomass. Salt
stress increased nonphotochemical quenching (qn), the activities of ascorbate peroxidase, catalase, superoxide
dismutase, glutathione peroxidase, and the contents of malondialdehyde and hydrogen peroxide compared with control.
Pretreatment with lanthanum prior to salt stress significantly enhanced the contents of Chl and carotenoids, Fy/Fm, qp, qn,
Dpsir, P, biomass, and activities of the above antioxidant enzymes compared with the salt-stressed plants. Pretreatment
with lanthanum also significantly reduced the contents of malondialdehyde and hydrogen peroxide induced by salt stress.
Our results suggested that lanthanum can improve salt tolerance of maize seedlings by enhancing the function of
photosynthetic apparatus and antioxidant capacity.
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Salt stress adversely affects the growth and survival of
plants (Ferreira-Silva et al. 2012). Particularly, PSII is
vulnerable to salt stress, which results in the reduction in
photosynthesis and plant production (Mehta et al. 2010).
This is mainly because salt stress induces the over-
production of reactive oxygen species (ROS), which
induces oxidative damage to plants (Rubio et al. 2009).
Fortunately, plants can protect themselves against
oxidative damage through the antioxidant defense system,
including superoxide dismutase (SOD) and ascorbate
peroxidase (APX), etc.

Lanthanum (La) is an important rare Earth's element.
In plants, it has been documented that La can promote
root organogenesis (Guo ef al. 2012), mediate secondary
metabolite synthesis (Zhou et al. 2012), promote nitrogen
metabolism (Huang et al. 2013), efc. Increasing evidence

has demonstrated that La can improve salt tolerance of
plants by enhancing antioxidant metabolism (Xu et al.
2007). In addition, the effects of salt stress on P, Chl
fluorescence, and the contents of photosynthetic pigments
have been well documented in many crops (Zheng et al.
2009, Sarkar et al. 2013). However, little is known how
La influences the above mentioned parameters. Thus, the
aim of this study was to investigate the effects of La on
the contents of Chl and Car, Chl fluorescence, antioxidant
metabolism, and biomass of maize seedlings under salt
stress, and provide information for its application in order
to promote salt tolerance of maize.

Seeds of maize (Zea mays L., cv. Xindan 29) were
germinated in Petri dishes with filter paper moistened
by distilled water and grown in an artificial climate
chamber under a day/night temperature of 25/15°C,
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Table 1. The effects of different concentrations of LaCl; on the contents of MDA, Chl, and biomass under salt stress. The plants were
treated as follows: CK — half-strength Hoagland’s solution; CK + 10 uM La — half-strength Hoagland’s solution + 10 uM LaCls;
CK + 30 uM La — half-strength Hoagland’s solution + 30 uM LaCls; CK + 60 uM La — half-strength Hoagland’s solution + 60 pM
LaCls; CK + 90 uM La — half-strength Hoagland’s solution + 90 uM LaCls; NaCl — 100 mM NaCl; NaCl + 10 uM La — 100 mM
NaCl + 10 uM LaCls; NaCl + 30 uM La — 100 mM NaCl + 30 uM LaCls; NaCl + 60 uM La — 100 mM NaCl + 60 pM LaCls; NaCl +
90 uM La — 100 mM NaCl + 90 pM LaCls. The plants were pretreated with LaCls for 24 h, and then exposed to half-strength
Hoagland's solution or salt stress for 6 d. Values represent mean = SE, different letters indicate statistical difference at P<0.05 in the
same column. Chl — chlorophyll; DM — dry mass; FM — fresh mass; La — lanthanum; MDA — malondialdehyde.

Treatment MDA [nmol g"(FM)] Chl [mg g '(FM)] Biomass [g(DM) per plant]
CK 5.5+0.394 1.83+£0.15° 1.92+0.17°
CK+10uM La 5.3+£0.414 1.91+0.18° 1.96 £0.17°
CK +30uM La 4.5+0.38¢ 2.15+0.21° 2.17+0.20*
CK +60 uM La 5.4 £ 0.469 1.85+£0.19° 2.00£0.18b
CK+90 uM La 5.9 +£0.48¢ 1.77 £0.16° 1.88+£0.19%
NaCl 19.3 £1.752 1.16 £0.124 1.40£0.124
NaCl+10puMLa 17.8+1.53° 1.25+0.134 1.46 +0.114
NaCl+30uM La  13.9+1.50° 1.44 £ 0.14° 1.70 £ 0.15¢
NaCl+60 uM La  15.8 £1.26° 1.20 £ 0.124 1.52+0.134
NaCl+90 uM La 20,9+ 1.98 1.03 +0.10¢ 1.33+0.13°

500 umol(photon) m2 s™! PAR, and a 10-h photoperiod.
When the first leaf was fully expanded, the seedlings
were transferred into plastic boxes filled with half-
strength Hoagland's solution. The roots of seedlings were
kept in the half-strength Hoagland's solution and plastic
boxes were wrapped by black plastic cloth. The pH of
Hoagland’s solution was maintained close to 6.5 every
day. The half-strength Hoagland's solution was changed
every two days. When the third leaf was fully expanded,
the seedlings of uniform height and growth were selected
for experiments. The roots of plants were placed in
beakers containing 100 mL of 100 mM NaCl solution and
wrapped with aluminium foil for 6 d under above
conditions. The NaCl solution was prepared by adding
NaCl into half-strength Hoagland's solution. In order to
study the effect of La, a group of plants was pretreated
with 30 uM LaCl; for 24 h and then exposed to half-
strength Hoagland's solution (CK+La) or salt stress
(NaCl+La) for 6 d. The LaCl; solution was prepared by
adding LaCl; into half-strength Hoagland's solution;
30 uM LaCl; used in this study was selected from diffe-
rent concentrations (10, 30, 60, and 90 uM) by prelimi-
nary experiments (Table 1). Control plants were treated
with half-strength Hoagland's solution alone (CK).

After 3 and 6 d of treatment, the top fully expanded
leaves were collected and immediately used to measure
the contents of Chl and Car according to the method of
Lichtenthaler and Wellburn (1983). A Yaxin-1161G
fluorometer (Yaxin, China) was used to measure Chl
fluorescence parameters from 10:00 to 12:00 h after 3 and
6 d of treatment. For dark adaptation, leaves were
covered for 30 min. Then F/Fy, qp, qn, and ®ps were
measured by the fluorometer and calculated according to
Hanachi et al. (2014).

For the assays of antioxidative enzymes, the top fully
expanded leaves after 3 and 6 d of treatment were

collected and frozen in liquid nitrogen, and then kept at —
80°C. SOD (EC 1.15.1.1) activity was assayed according
to Giannopolitis and Ries (1977) by monitoring the
inhibition of photochemical reduction of nitroblue
tetrazolium (NBT) at 560 nm. One unit of SOD was
defined as a 50% inhibition of the reduction of NBT.
Glutathione peroxidase (GPX, EC 1.11.1.9) activity was
measured according to He ef al. (2006) at 470 nm. One
unit of GPX activity was defined as 1 pmol(GSH) min™'.
APX (EC 1.11.1.11) activity was measured according to
Nakano and Asada (1981) by monitoring the decrease in
absorbance at 290 nm for 1 min. One unit of APX acti-
vity was defined as the oxidation of 1 umol(ascorbate)
min~!. Catalase (CAT, EC 1.11.1.6) activity was mea-
sured according to the decomposition of H,O» at 240 nm
for 1 min. All the enzyme activities were calculated per
protein content. The specific activity for above enzymes
was expressed as U mg~!(protein). Protein concentration
was measured according to Bradford (1976). Malon-
dialdehyde (MDA) content was measured according to
Hodges et al. (1996). Hydrogen peroxide content was
estimated by the method of Prochazkova ef al. (2001). Px
was determined by photosynthesis measuring system
(Licor-600, USA) from 10:00 to 12:00 h after 3 and 6 d
of treatment. For the measurement of biomass, the whole
plants were dried in an air oven at 80°C until a constant
mass to obtain dry mass (DM).

Statistical analysis of the data were performed by
using the statistical program SPSS /3.0 (SPSS, Chicago,
USA). The results presented were the means of five
replications and the standard errors (SE). Means were
compared by one-way analysis of variance and Duncan's
multiple range test at the 5% level of significance.

Compared with CK, pretreatment with 30 uM LaCls
alone significantly decreased the MDA content and
increased biomass and Chl content at different LaCl;

149



R.Q. LIU et al.

Table 2. The effects of LaCls on the contents of Chl, Car, MDA, and H202, the values of Fv/Fm, qp, qn, ®psu, PN, biomass, and the
activities of APX, CAT, SOD, and GPX in leaves under salt stress. The plants were treated as follows: CK — half-strength Hoagland’s
solution; CK + La — half-strength Hoagland’s solution + 30 uM LaCls; NaCl — 100 mM NaCl; NaCl + La — 100 mM NaCl + 30 uM
LaCls. The plants were pretreated with LaCls for 24 h, and then exposed to half-strength Hoagland's solution or salt stress for 6 d.
Values represent mean + SE, different letters indicate statistical difference at P<0.05 in the same row. APX — ascorbate peroxidase;
Car —carotenoids; CAT — catalase; Chl — chlorophyll; DM — dry mass; FM — fresh mass; Fv/Fm — maximum photochemical efficiency
of PSII; GPX — glutathione peroxidase; H2O2 — hydrogen peroxide; La — lanthanum; MDA — malondialdehyde; Pn — net
photosynthetic rate; ®psy — effective quantum yield of PSII; qn — nonphotochemical quenching; qp — photochemical quenching;

SOD - superoxide dismutase.

Parameter Time [d] CK CK+ La NaCl NaCl + La
Car [mg g”'(FM)] 3 0.71 £0.08"  0.85+0.072 0.42 + 0.044 0.56 = 0.06°
6 0.63+0.06"  0.73 +0.082 0.31 +0.024 0.45 £ 0.04¢
Chl [mg g”'(FM)] 3 1.94+£0.19> 225+0.21° 1.30 +0.164 1.69 £ 0.16°
6 1.90+£0.16> 2.11+0.18 1.15+0.104 1.59 £0.13¢
Fv/Fm 3 0.74£0.08"  0.81+0.09 0.61 £ 0.064 0.67 =0.08¢
6 0.82+0.07*  0.82+0.08* 0.60 £ 0.05¢ 0.70 £ 0.10°
qr 3 0.50 £0.06*  0.58 +0.06 0.28 = 0.064 0.41 £0.06¢
6 0.48 £0.05*  0.55+0.06* 0.24 +0.024 0.36 = 0.04¢
qN 3 0.30+£0.02¢  0.32+0.03° 0.40 £ 0.04° 0.49 £ 0.052
6 0.33£0.03¢  0.36 +0.04° 0.45 +0.05° 0.55 £ 0.05%
Dpsit 3 0.37+0.03*  0.47 +0.04* 0.17 + 0.024 0.27 £0.03¢
6 0.39+0.03>  0.45+0.05* 0.14 + 0.024 0.25 £ 0.03¢
Px [umol(CO2) m=2 s7!] 3 7.14+£0.65>  8.72+0.812 439 +0.374 5.67 +0.48¢
6 6.55+0.61" 7.93+0.73 3.25+0.334 4.94 £ 0.44¢
Biomass [g(DM) per plant] 6 2.00+0.19 227+0.212 1.45+0.134 1.76 £0.18°
APX [U mg~!(protein)] 3 1.11+£0.12¢  1.74+0.15¢ 2.22£0.20° 3.26+£0.312
6 1.26 £0.11¢  1.59+0.13¢ 2.51+0.28° 3.14 £0.26%
SOD [U mg™!(protein)] 3 1.23+£0.119  1.55+0.12¢ 1.93+£0.19° 2.72 £0.25°
6 1.05+£0.09¢  1.38+0.14° 1.96 +0.21° 2.55+0.222
CAT [U mg'(protein)] 3 0.92+0.10¢9  1.20+0.13° 1.44 +£0.13° 2.10+£0.222
6 0.87+0.109  1.09+0.11° 1.67 +0.17° 2.13+0.20?
GPX [U mg!(protein)] 3 0.15+0.02¢ 023 +0.02° 0.22 £0.02° 0.30 +0.03*
6 0.13£0.02¢  0.18+0.02° 0.25+0.03° 0.35+0.032
MDA [nmol g"}(FM)] 3 5.12+£0.61¢  4.92+0.43° 15.63 £ 1.44*  10.51 +1.10°
6 6.05+0.55¢  5.00+0.47¢ 17.72 £1.59*  11.74 +1.26°
H202 [umol g™ '(FM)] 3 0.52+£0.06° 0.45+0.05° 2.35+0.28% 1.37+0.17°
6 0.61 £0.07°  0.40 +0.044 2.52 £0.242 1.57 £0.15°

concentrations (Table 1). Compared with salt stress alone,
application of 30 uM LaCl; significantly decreased the
MDA content and increased biomass and the Chl content
under salt stress. These results suggested that 30 pM
LaCl; was a suitable concentration to study the effect of
La on salt tolerance of maize seedlings.

Many studies have demonstrated that the function of
photosynthetic apparatus is sensitive to salt stress, as
indicated by Chl fluorescence parameters (Aremu et al.
2014). Our results showed that salt stress significantly
decreased Fy/Fm, qp, and ®psy (Table 2). This indicated
that salt stress also reduced the PSII activity and PSII
reaction centres were damaged, which had been proven
by other study (Hanachi et al. 2014). However, we found
that salt stress increased qn (Table 2), which indicated
that maize seedlings could protect the photosynthetic
apparatus against salt stress by enhancing thermal
dissipation (Aremu et al. 2014). Zheng et al. (2009)
reported that salt stress decreased Fy/Fum, qp, and ®psyy, and
increased qn in the leaves of wheat, which was consistent
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with our results in maize. Compared with salt stress
alone, pretreatment with LaCl; followed by salt stress
significantly increased the values of F./Fum, qp, qn, and
Dpgpr (Table 2). These results suggested that LaCls could
alleviate the negative effects of salt stress on the function
of photosynthetic apparatus of maize seedlings by
increasing the PSII activity and enhancing thermal
dissipation.

Salt stress significantly reduced the contents of Chl
and Car, which, in turn, decreased Pn and biomass
(Table 2). Compared with salt stress alone, pretreatment
with LaCl; followed by salt stress significantly increased
the contents of Chl and Car, which, in turn, increased Pn
and biomass (Table 2). Increasing evidence showed that
La could significantly increase the contents of Chl and
Car in plants, which was consistent with our results
(Hong et al. 2001, Xu et al. 2007). Hong et al. (2001)
reported that La participated in the biosynthesis of Chl by
improving the assimilation of Mg. Jiang et al. (2008)
suggested that La was an activator of enzymes involved



in the synthesis of Chl and indirectly improved the
synthesis of Chl. Besides, Xu ef al. (2007) reported that
La could protect Chl from damage induced by salt stress.
Therefore, we proved that La can increase the content of
Chl by improving its biosynthesis and reducing its
damage under salt stress.

Many studies reported that the damage of photo-
synthetic apparatus was mainly because of oxidative
stress induced by various stresses (Zhang et al. 2010). In
our study, salt stress enhanced the production of MDA
and H,O,, which suggested that the reduction in the
function of photosynthetic apparatus occurred also
mainly due to the oxidative damage induced by salt stress
(Table 2). In addition, salt stress also significantly
increased the activities of APX, CAT, SOD, and GPX,
which indicated that seedlings could protect themselves
against oxidative damage by enhancing the activities of
antioxidant enzymes (Table 2). Pretreatment with LaCl;
followed by salt stress significantly increased the
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