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Molecular characterization of 5-chlorophyll a/b-binding protein genes from
Panax ginseng Meyer and their expression analysis during abiotic stresses
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Abstract

The chlorophyll a/b-binding protein (CAB) serves in both photosystems (PS), I and 11, as a coordinator of antenna pigments
in the light-harvesting complex (LHC). The CABs constitute abundant and important proteins in the thylakoid membrane
of higher plants. In our study, five CAB genes, which contained full-length cDNA sequences from the 4-year-old ginseng
leaves (Panax ginseng Meyer), were isolated and named PgCAB. Phylogenetic comparison of the members of the
subfamily between ginseng and higher plants, including Arabidopsis, revealed that the putative functions of these ginseng
CAB proteins were clustered into the different family of Arabidopsis CABs; two PgCABs in LHCII family and three
PgCABs in LHCI family. The expression analysis of PgCABs consistently showed dark-dependent inhibition in leaves.
Expression analysis during abiotic stress identified that PgCAB genes responded to heavy metal, salinity, chilling, and UV
stresses differently, suggesting their specific function during photosynthesis. This is the first comprehensive study of the

CAB gene family in P. ginseng.
Additional key words: gene expression; gene isolation.
Introduction

Sunlight is the source of nearly all the metabolic energy
driving life processes in all organisms by the photo-
synthetic process which converts light into chemical
energy in photosynthetic organisms, such as cyano-
bacteria, green algae, and higher plants (Wientjes et al.
2013). All oxygenic photosynthetic organisms have PSI
and PSII, numbered according to the historical order in
which they were discovered. Excitation of PSII produces a
strong oxidant capable of splitting water; operation of PSI
leads to formation of a reductant that is powerful enough
to reduce NADP" (Foyer and Noctor 1999). Light
harvesting is the first step in the process of photosynthesis,
therefore the light-harvesting antenna has to be regulated
in response to physiological status and environmental
signals. Chlorophyll (Chl) ligated to light-harvesting
complex (LHC) proteins and carotenoids mainly serve as
antenna in algae and higher plants (Green and Durnford
1996, Chitnis 2001, Gobets and van Grondelle 2001,
Melkozernov 2001, Wientjes et al. 2013).

The evolution of the photosynthetic machineries is
closely connected to the extended LHC protein super-
family. The LHC protein superfamily comprises several
families, including LHC protein, LHC-like protein, the red
lineage CAB-like protein, and the S subunit of PSII
(PSBS) protein family (Engelken et al. 2010, 2012). The
LHC protein family is divided into the subfamilies of the
Chl a-binding (CAA) proteins, the Chl a/b-binding (CAB)
proteins, the Chl a/c-binding (CAC) proteins, and the
lesser known LHC clades including LHCx and LHCz.
Higher plants possesses only CAB, therefore CAB is
regarded as LHC, light-harvesting Chl a/b-binding protein
(Jansson 1992, 1999; Tao et al. 2011). CAB is the most
abundant membrane protein in nature (Bassi ef al. 1997,
Jansson 1999) and encoded by nuclear genes, synthesized
on cytoplasmic ribosomes, imported across the two
membranes of the chloroplast envelope, and finally
inserted into the thylakoid membrane, in contrast to a
number of chloroplast-encoded hydrophobic proteins in
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PSI and PSII cores (Green et al. 1991). CAB proteins
associated with PSI are named Lhca (or LHCI), and the
ones associated to PSII are named Lhcb (or LHCII)
(Engelken et al. 2012). Lhcb is the major CAB and
accounts about 50% of the total Chl in the plants,
indicating its importance. It is involved in both short- and
long-term adaptations to different light and temperature
conditions.

Since the identification of Lhc gene in pea (Pisum
sativum) (Bedbrook et al. 1980), the CAB proteins have
been identified in higher plants and distinct types of LHC
were recognized. In Arabidopsis thaliana, ten CAB
proteins are encoded in its genome, four of them are
associated with PSI (Lhcal-Lhca4) and six with PSII
(Lhcb1-Lheb6) (Jansson 1999, 2006). In tomato (Lyco-
persicum esculentum), 16 CAB proteins have been isolated
and/or characterized, six of them are associated with PSI
(Lhcal-Lhca4), and ten with PSII (Lhcbl-Lhcb6)
(Pichersky et al. 1985, 1987, 1988, 1989, 1991; Hoffman
et al. 1987, Schwartz et al. 1991, Schwartz and Pichersky
1990). In tobacco (Nicotiana tabacum L.), two CAB
proteins have been isolated and/or characterized, one of
them associated with PSI (Lhcal), and the other with PSII

Materials and methods

Nucleotide sequencing and sequence analysis: In order
to identify genes from the previously constructed ex-
pressed sequence tags (EST) libraries from four-year-old
ginseng leaf (Kim ef al. 2006), homologous sequences of
CAB EST were searched against the GenBank databases
using a BLASTX algorithm. A pTriplEx phagemid for CAB
cDNA was excised from the ApTriplEx2 and used as a
template for sequence analysis. Nucleotide and amino acid
sequence analyses were performed using the DNASIS
program (Hitachi, Japan).

These deduced amino acid sequences were utilized to
search for homologous proteins via BLAST network
services at the NCBI. ClustalX with default gap penalties
was used to perform multiple alignments of CABs isolated
in ginseng and previously registered in other species. A
phylogenetic tree was constructed by the neighbor-joining
method, and the reliability of each node was established by
bootstrap methods using MEGA4 software. Secondary
structures were analyzed by Self-Optimized Prediction
from Multiple Alignment (SOPMA) (Geourjon and
Deléage 1995). The protein properties were estimated
using ProtParam (Gasteiger et al. 2005) and the
hydropathy value was calculated by the method described
by Kyte and Doolittle (1982). Identification of conserved
motifs within CAB was predicted by Multiple EM for
Motif Elicitation (MEME) (Bailey et al. 2009). The
subcellular localization for N-terminal signal was
predicted by iPSORT (Bannai et al. 2002). A three-
dimensional (3-D) model was prepared using CAB as a
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(Lhcbl) (Palomares et al. 1991). In spinach (Spinacia
oleraceae L.), four CAB proteins have been isolated
and/or characterized, and all are associated with PSII
(Lhcbl, Lheb4, Lheb6) (Henrysson et al. 1989, Spangfort
et al. 1990).

Panax ginseng Meyer is a perennial herb in the family
Araliaceae and is cultivated for its highly valued root used
for medicinal purposes. Previously, we have reported one
CAB gene (In et al. 2005), but no other report on CAB gene
in ginseng has been published, despite the importance of
the light sensitivity of ginseng (Harding 1908, Parmenter
et al. 2000, In et al. 2010). Ginseng needs to be cultivated
under special conditions to meet its requirements of about
30% full sunlight (Kim et al. 2014a), growing well only in
shadow under canopy or under artificial shade structures
(Kim et al. 2015). In this study, we identified five CAB
proteins encoded in P. ginseng, two are associated with
PSIT (Lheb2 and Lheb5) and three with PSI (Lhcal and
Lhcb4). The present study examined the phylogenetic
relationship of ginseng CAB and Arabidopsis Lhc genes
and their relatives in order to contribute to the
understanding of the possible role of ginseng CAB.

template on a SWISS-MODEL Workspace in automated
mode (Arnold et al. 2006). The generated 3-D structure
was visualized using the UCSF Chimera package.

Plants and application of stress conditions: P. ginseng
cv. “Hwang-Sook” seeds (provided by Ginseng Bank)
were used. Three-week-old plantlets were used for
treatments and nucleic acid extractions, as described by
Kim et al. (2008). For chemical stress, the plantlets were
placed for various periods in Murashige and Skoog (MS)
media containing: 50 uM CuSOQy4, 20% sucrose, or 100 mM
NacCl. Chilling stress was applied by exposing the plantlets
to 4°C. For the UV treatment, the plantlets were irradiated
under UV-C lamps at 1.35 uE m™2s7! (below 280 nm). In
all cases, stress treatments were carried out in the MS
media and ten plantlets were treated with each stress for
1, 4, 24, and 48 h. Control plants were held in a growth
room at 25°C under a 16-h photoperiod. Light condition
for control and treated plants was 40 pmol(photon) m s ™',
The plantlets from all completed treatments were
immediately frozen in liquid nitrogen and stored at —70°C
until required.

Three-year-old ginseng plants, grown hydroponically
in a controlled greenhouse, were used for a dark treatment.
Control plants were grown under a regime of 16 h of light
and 8 h of dark and sampled under light conditions,
whereas the dark treatment (covered with a black box)
lasted for 2 and 3 d (Kim et al. 2014D).
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Real-time quantitative RT-PCR: Total RNA was
extracted from seedlings of P. ginseng using an RNeasy
mini kit (Qiagen, Valencia, CA, USA). For RT-PCR,
200 ng of total RNA was used as a template for reverse
transcription using oligo(dT);s primer (0.2 mM) and AMV
reverse transcriptase (10 U pl™!) (INTRON Biotechnology,
Inc., South Korea) according to the manufacturer’s
instructions. Real-time quantitative PCR was performed
using 100 ng of cDNA in a 10-pl reaction volume using
SYBR® Green Sensimix Plus Master Mix (Quantace,
Watford, England). Specific primers for each of PgCABs
were used to perform real-time PCR (Table 1S, supplement
available online). A constitutively expressed -actin gene
with primer (forward) 5’-CGT GAT CTT ACA GAT AGC
TTG ATG A-3' and (reverse) 5’-AGA GAA GCT AAG
ATT GAT CCT CC-3' was used as internal reference. The
thermal cycler conditions recommended by the manu-
facturer were used as follows: 10 min at 95°C; followed
40 cycles of 95°C for 10 s; 60°C for 10 s; and 72°C for
20 s. The fluorescent product was detected at the last step
of each cycle. Amplification, detection, and data analysis

Results

Isolation and sequence analysis of five PeCABs: From
our EST library, that was previously constructed from leaf
of four-year-old P. ginseng (Kim et al. 2006), we identified
five cDNA clones encoding the CAB gene. We named these
genes PgCABI to PgCABS5 (P. ginseng Chl a/b-binding
protein). The corresponding characteristics of each
PgCABs are indicated in Table 1. The full-length cDNA
sequences were assigned to GenBank under the accession
numbers (KP874095-KP874099). In addition, the tertiary
structure of matured proteins without transit peptides were
observed by 3-D modeling (Fig. 1). PgCABI1, PgCAB3,
PgCABA4, and PgCABS5 were composed of three o helixes,
which are involved in the interaction with a closed pigment,
resulting in formation of dimers (Kiilbrandt et al. 1994,
Melkozernov and Blankenship 2004). The motif 2, which is
mostly conserved within the PgCABs was also identified in
each model that contains the conserved LHC motif.

Table 1. Characteristics of ginseng CABs. Length (number of
amino acid residues), molecular mass, and isoelectric point (pI)
of PgCAB proteins deduced from the open reading frames for
mature protein.

Protein ~ Length Molecular mass [kDa]  pl
[amino acids]

PgCABI1 239 25.82 5.13

PgCAB2 262 28.08 5.51

PgCAB3 222 24.49 6.08

PgCAB4 222 24.49 5.52

PgCAB5 218 23.73 5.59
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were carried out with a Rotor-Gene 6000 real-time rotary
analyzer (Corbett Life Science, Sydney, Australia).
Threshold cycle (Ct) represents the number of cycles at
which the fluorescence intensity was significantly higher
than the background fluorescence at the initial exponential
phase of PCR amplification. To determine the relative fold
differences in template abundance for each sample, the Ct
value for PgCABs was normalized to the Ct value for B-
actin and calculated relative to a calibrator using the
formula 222", Three independent biological replicates
were performed to qRT-PCR runs in triplicate. PCR
products were characterized by the melting curve analysis.
The primer efficiencies were determined according to the
method of Livak and Schmittgen (2001) to validate the
AACt method used in our experiment. The observed slopes
were close to zero, indicating that the efficiencies of the
gene and the internal control -actin were equal.

Statistical analysis: Means of three independent replicates
were statistically analyzed and compared with control
(at *p<0.05, **p<0.01, ***p<0.001) using Student’s t-test.

Homology analysis: A GenBank BlastX search revealed
that the deduced amino acid sequences of PgCABI1 share
higher degrees of identity (99 and 97%) with the CAB
protein of P. ginseng (BAE4638)and Aralia elata
(AF067217), respectively. PgCAB2 shares the highest
degrees of identity (87%) with the CAB protein of
Phaseolus vulgaris (AGV54683.1). PgCAB3 shares the
highest degrees of identity (86%) with the CAB protein of
Beta vulgaris (CAE30280). PgCAB4 shares the highest
degrees of identity (88%) with the CAB protein of
Phaseolus vulgaris (AGV54882) and PgCABS shares the
highest degrees of identity (86%) with the CAB protein of
Ricinus communis (EEF29136).

Since the complete set of CAB genes has been
characterized from Arabidopsis, the full-length protein
sequences of CAB isozymes and their relatives in higher
plants including 4. thaliana (Jansson 1999) were used to
construct a phylogenetic tree (Fig. 24). The resulting tree
generated two groups, PSI and PSII, and four distinct
branches for antenna proteins corresponding to: LHCII
type 2, LHCII type 1, CP26 protein, and LHCI-730
protein. The five PgCABs were clustered into three related
proteins. PgCAB1 and previously reported PgCAB (In et
al. 2006) belong to the LHCII type 2 protein family as
isozymes, PgCAB2 belongs to the CP26 protein family,
and PgCAB3, PgCAB4, and PgCABS belong to LHCI-730
protein family. These results undoubtedly provide impor-
tant clues for studying the function of ginseng CAB genes.
In addition, conserved motifs were found by MEME
analysis in all plant CAB isozymes (Fig. 2B). There are
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Fig. 1. The predicted 3-D structures of PgCABs. Comparative representation was performed by UCSF Chimera package and helix and
coil structures are depicted as sky-blue and purple, respectively. Motif 2 protein sequences analyzed by MEME are depicted as blue.
The top view of 4: PgCABI1, B: PgCAB3, C: PgCABA4, and D: PgCABS are shown in E to H, respectively.
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Fig. 2. 4: Sequence homology analysis of PeCABs with LHC proteins associated with Arabidopsis and higher plants. A phylogenetic
tree of PeCAB1, PgCAB2, PgCAB3, PgCAB4, and PgCABS (in bold red letter). The neighbor-joining method was used, and the branch
lengths are proportional to the divergence, with the scale of 0.1 representing 10% changes. Protein sequences were from the databases
indicated in parentheses. B: Organization of putative motifs in CAB identified by MEME. Numbered color boxes represent different
putative motifs, and the sequences of the motifs are listed in supplementary Fig. 2S (available online). Motifs 1, 2, and 3 are indicated
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Fig. 3. Superimposed hydrophobicity profiles and secondary structure predictions for each PgCAB group and homologous. Hydrophobic
domains are indicated by positive numbers, hydrophilic domains are above the line and hydrophilic domains are below the line.
A: PgCABI group associated with AtLhcb2, B: PgCAB2 group associated with AtLhcbS5. C: PgCAB3, PgCAB4 group associated with
AtLhca4, and D: PgCABS group associated with AtLhcal. (E, F, G, H): Comparison of CAB secondary structures by SOPMA. The
helix, sheet, turn, and coil are indicated in the order from the longest to the shortest.
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two motifs in the PgCABs associated to the PSI group
(PgCAB3, PgCAB4, PgCABS5), and three conserved
motifs were found in PgCABs associated to the PSII group
(PgCABI1, PgCAB2), indicating that these two motifs are
highly conserved in all analyzed CAB sequences and PSI-
dependent motif 3. All groups of CAB proteins share
significant sequence conservation ‘ELINGRLAMLGFLG
FLVPELIT’ (called ‘LHC motif), a highly hydrophobic
sequences (including Glu, Arg, and Gly residues) res-
ponsible for the core complex (Jansson 1999), within the
motif 2 region (Fig. 1SA-D, supplement available online).

The similarity of the hydrophobicity profile of the
estimated CAB protein of the four groups with the Lac
relative genes in Arabidopsis (Jansson 1999) is shown in
Fig. 34-D. It revealed that the N-terminal was very
different in each group. The vast majority of stromal and
thylakoid proteins are imported by a common default
pathway in which the imported protein is synthesized with
a cleaved N-terminal presequence, often termed ‘the
transit peptide’, and import is mediated by the concerted
action of protein translocation systems in the outer and
inner envelope membranes post-translationally (Green et
al. 1991, Jensen et al. 2007). In contrast, the C-terminal
was highly conserved, and it has been reported to be
involved in the stabilization of trimeric LHC (Kuttkat et
al. 1996).

A model from the chloroplast photosynthetic apparatus
of the PgCABs characterized in this study is presented in

Fig. 3S (available online), adapted from Allen et al. (2011).

The secondary structure analysis, conducted by
SOPMA, revealed high similarity of PgCABs to the
secondary structure of other plant CABs with close
phylogenetic relationship (Table 2), showing similar
number of alpha-helices, beta-turns, extended strands, and
random coils.

PgCAB genes were differentially expressed in diverse
organs: In order to examine the expression profiles of the
PgCAB genes in different ginseng tissues, real-time PCR
was carried out using the cDNA templates from three
organs, including leaf, stem, and roots. PgCAB1, PgCAB?2,
PgCAB3, and PgCABS5 showed similar expression pattern
in leaves, stem, and roots, whereas PgCAB4 showed that
leaf and stem expression level was equal, and lower
expression was observed in roots (Fig. 4). Under natural
conditions, the five PgCAB genes were relatively highly
expressed in all tested ginseng tissues showing preferential
expression in the leaves.

Temporal expression of PgCAB genes in response to
abiotic stresses: The expression patterns of the PgCAB
genes at different time points after treatments with
different abiotic stimuli were analyzed using real-time
PCR (Fig. 5). In contrast to the enhanced expression under
light, the dark condition caused a significant decrease of
PgCABs (Fig. 54). As a result of the copper stress

Table 2. Secondary structure characteristics of ginseng CABs and other plants with close phylogenetic relationship.

Protein Alfa-helices Beta-turns Extended strands Random coils
PgCABI1 103 33 43 86
PgCAB (BAE46383) 102 31 42 90
PgCAB2 87 31 57 113
RcCAB (EEF42554) 98 28 50 116
PgCAB3 79 25 47 97
PgCAB4 64 27 46 113
PvCAB (AGV54430) 72 21 47 112
PgCABS5 100 23 36 85
AtLhcal (AAA32759) 90 24 31 86
24

Hleaf mstem Oroot

-
o]
T

RELATIVE EXPRESSION
OF PgCABs
o ()] G
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Fig. 4. Expression of PgCAB genes in leaves, stem, and roots of
three-year-old Panax ginseng. Bars indicate the mean value + SE
from three independent experiments.

(Fig. 5B), PgCABs expression was reduced compared with
control. The NaCl stress (Fig. 5C) caused that both
PgCABI and PgCAB2 were significantly upregulated after
24 and 48 h of the treatment. PgCAB3 and PgCAB4
significantly increased after 24 h and decreased after 48 h
of the treatment, while PgCABS significantly decreased
compared with control.
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Fig. 5. Relative quantities of PgCABI, PgCAB2, PgCAB3, PgCAB4, and PgCAB5 mRNA at various time points of post-treatments with
various stresses: A: light-dark, B: 100 mM CuSOs, C: 100 mM NaCl, D: chilling, £: UV light. Bars indicate the mean value + SE from
three independent experiments. 0 h sample was used as calibrator. Means of three independent replicates were statistically analyzed and
compared with control (at *p<0.05, **p<0.01, ***p<0.001) using Student’s t-test.

Following the chilling stress (Fig. 5D), PgCABI gene
expression increased to the highest expression level at 24 h
and decreased significantly 48 h after the treatment, while
the PgCAB3 gene expression increased to its highest
expression level at 24 h and decreased significantly at 48
h after treatment. In case of PgCAB2, PgCAB4, and

Discussion

Photosynthesis is dependent on the light harvesting by
CAB-bound chlorophylls, which make up the light-
harvesting antenna. P. ginseng is grown in shadow under
a canopy, it requires low irradiance, while high light can
damage ginseng leaves easily (Kim et al. 2006).
Interestingly, Kim et al. (2006) reported much higher
abundance of CAB in ginseng leaf cDNA library
compared to other plants, such as stevia and rice ESTs,
indicating important and unique expression pattern of
CABs in ginseng leaves. However, only one PgCAB was
reported previously (In ef al. 2005).

The PSI and PSII represent the two basic types of
photosynthetic reaction centers (Nield er al. 2004), and
both photosystems cooperate in gathering light energy

PgCABS, gene expressions were extremely significantly
decreased at 48 h after treatment compared to control.
Following the UV stress (Fig. 5SE), PgCAB3 was upregu-
lated twice at 24 and 48 h after the treatment, whereas
the other PgCABs gene expressions very significantly
declined at 48 h after the treatment compared with control.

aimed at a photosynthesis-dependent carbon fixation
(Wollman 2001). The CAB proteins serve to maximize and
regulate light harvesting (Klimmek et al. 2006). PSII is
composed of a core complex, where the primary
photochemistry takes place, and a peripheral antenna
system, encoded by Lhcbl — 6 genes (Jansson 1999). The
major antenna of PSII is a trimeric LHC composed of a
combination of LhcbI — 3 gene products. The minor Lhcbs
consist of three monomers, Lhcb4 — 6, also named CP29,
CP26, and CP24 (Wientjes et al. 2013). In order to obtain
an overall picture of the five ginseng CABs and their
relationships with those of Arabidopsis and higher plants,
a phylogenetic tree was constructed. It generated two
groups (Fig. 2), PSI and PSII, four distinct branches for
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antenna proteins, LHCII type 2, LHCII type 1, CP26
protein, and LHCI-730 protein and divided the five
PgCABs into three related proteins: two are associated
with PSII (PgCAB1-2) and three with PSI (PgCAB3-5).
The exact number of CAB genes in ginseng could be
determined when all ginseng CAB genes are isolated from
its genome. Higher identity (> 80%) of each group of
CAB, rather less similarity among PgCABs (24-39%
identity) except PgCAB3 and PgCAB4 (85%), supports a
much later gene duplication event and very early stages of
gene family evolution in eukaryotic photosynthetic
organism (Green ef al. 1991). In addition, more similarity
of each PgCAB with the CABs in perennial plants, rather
than Arabidopsis, implies its important evolutionary
relationship.

PgCABs were clustered with Arabidopsis members:
PgCABI1 with AtLhcb2 (LHCII type 2 family), PeCAB2
with AtLhcb5 (LHCI CP26 protein family), PeCAB3 and
PgCAB4 with AtLhca4 (LHCI-730 protein family), and
PgCABS with AtLhca5 (LHCI-730 protein family),
providing valuable information for studying the functions
of ginseng CABs. In Arabidopsis, Lhcal and Lhca4 genes
encode the polypeptides of LHCI associated with PSI.
Lhceb2 genes encode the polypeptides of trimeric LHCII,
with a dual function as antenna for both photosystems and
regulating the dissipation of excitation energy in excess
(Horton et al. 2005, Ruban et al. 2007). Lhcb3, also called
CP26, is probably monomeric protein that is present in one
copy per PSII unit (Jansson 1999). The occurrence of
‘generic LHC motif” at the C-terminus of both PSI and
PSII CABs (indicated by asterisks in Fig. 1SA—D) suggests
its conserved role during the evolution of the LHC proteins
in higher plants and its importance for helix-helix
interaction by the Arg-Glu residues (Jansson 1999). The
transit peptide at N-terminal sequences of CAB is not
conserved (Fischer ef al. 1999).

It has been reported that expression of Lhcb occurs
exclusively in different green tissues grown in the light,
being detectable even in roots, except of dry seeds
(Matsuoka 1990, Xu ef al. 2012). The high expression of
PgCABs in leaves is consistent with the localization of the
photosynthetic apparatus. The five PgCABs were highly
expressed in leaves. PgCABI showed the highest intensity
of relative expression, followed by PgCABS5, PgCABA4,
PgCAB2, and PgCAB3. Arabidopsis Lhcs show large
differences in their expression levels. LHCII type 1,
particularly Lhebl1.3, is expressed at the highest level,
whereas LHCII type 2 family and Lhcb4.3, Lhca5—6 are
expressed at low levels (Janssen 1999). The higher
expression level of PgCABI compared to other PgCABs in
ginseng leaves is different from the pattern of homologous
AtLhcb2, which shows low expression (Jansson 1999),
suggesting their different transcriptional regulation in each
species in spite of conserved sequences. In spite of
expression in leaves, there is evidence that CAB genes are
expressed also in tissues other than green. Klimmek et al.
(2006) reported the tissue expression of poplar (Populus
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spp.) in leaves, stem, and roots. Stahl et al. (2004) reported
the expression of CAB in sugar beet (Beta vulgaris L.)
both in leaves and roots. Basset ef al. (2007) reported the
expression of CAB in leaves and roots of peach (Prunus
persica L.). Our results confirmed that the five PgCABs
were also expressed in the stem and roots (Fig. 4).
However, PgCAB genes are expressed not only in green
tissues; it would be appropriate to discuss how distinct
regulation patterns might reflect the expression of PgCABs
in different tissues. There are two possible explanations for
this finding. The tissue samples included a few
chloroplast-containing cells or some Lkhc genes are also
expressed at very low levels in cells lacking chloroplasts
(Klimmek et al. 2006).

The highest expression of PgCABS in the three-year-
old mature leaves (Fig. 4), showing difference from the
expression pattern in the four-week-old leaves, could be
explained by regulation during development (Bassett ef al.
2003, Xu et al. 2012). It is well established that light is the
most important environmental signal regulating Lhc
expression (Silverthorne and Tobin 1984, Sun and Tobin
1990, Millar and Kay 1996, Peer ef al. 1996, Weatherwax
et al. 1996, Yang et al. 1998, Humbeck and Krupinska
2003, Staneloni et al. 2008, de Montaigu et al. 2010,
Pruneda-Paz and Kay 2010, Thines and Harmon 2011).
Corresponding with dark-dependent inhibition of CAB
expression (Matsuoka 1990), the five PgCABs showed
very low expression under dark conditions (Fig. 54),
confirming the light-dependent expression of all PgCAB
genes in leaves.

Previous studies have indicated that several environ-
mental stresses affect CABs’ expression (Capel ef al. 1998,
Nott et al. 2006, Staneloni ef al. 2008). Chloroplasts are
major sites of reactive oxygen species (ROS) production
(Kwak et al. 2006, Nott et al. 2006, Galvez-Valdivieso and
Mullineaux 2010), where LHC plays a key role (Xu ef al.
2012). The photosynthetic apparatus of higher plants is
regulated in response to environmental and metabolic
conditions (Bergantino et al. 1995). The environmental
stresses, such as salinity (Munns and Termaat 1986,
Munns 2005), metal ions (Larbi e al. 2006, Krasensky and
Jonak 2012), and ultraviolet radiation (Greenberg et al.
1989, Joshi et al. 1994, 1997, 2011; Jordan 1996, 2002;
Vass et al. 2002) have been demonstrated to act primarily
at the level of the photochemical reactions (Joshi et al.
2013). However, functional studies of this gene family in
ginseng are lacking. PgCABs exhibited different
expression patterns under stress treatments. Under copper
stress, PgCABs were reduced compared with control. In
case of NaCl stress, PgCABI, PgCAB2, PgCAB3, and
PgCAB4 were enhanced after 24 h of the treatment, except
PgCABI and PgCAB2, both belonging to PSII, which were
upregulated after 48 h compared with control. Under
chilling stress, only PgCABI was enhanced after 24 h of
the treatment compared with control. The UV stress up-
regulated only PgCAB3 compared with control. PgCABs
were clustered with Arabidopsis members, suggesting that



they may have similar functions to the homologous
proteins in abiotic stress regulation.

The relative expression of the five PgCABs was
inhibited under copper and salt stresses (Fig. 54). This is
consistent with the general mechanism of copper toxicity-
induced inhibition of photosynthetic light reactions in bean
(Phaseolus vulgaris) and Elsholtzia spendens (Kiipper et
al. 2002, Pitsikkd er al. 2002, Peng et al. 2013). It is well
known that salt stress is an important environmental factor
that restricts plant growth and productivity (Boyer 1982).
The decline in growth observed in many plants subjected
to salt stress is often associated with a decrease in their
photosynthetic capacity (Long and Baker 1986, Munns
and Termaat 1986). Since it has been considered that one
of the primary sites of damage to the photosynthetic
apparatus by environmental stress is located in PSII (Baker
1991), the effects of salt stress on PSII in plants have been
often investigated. Some studies have shown that salt
stress inhibits PSII activity (Bongi and Loreto 1989,
Belkhodja et al. 1994, Everard et al. 1994). In case of salt
stress, our results were consistent with the report of Liu
and Shen (2004) in spinach (Spinacia oleracea), where
LHCII phosphorylation was inhibited, whereas it was
enhanced in green alga (Dunaliella salina). Interestingly,
in our study, the PgCABI and PgCAB2 expression levels
significantly increased compared with control. This
suggests the specific function of PSII in the regulatory role
in ginseng response to salinity and drought which also
might represent a strategy to prevent light stress-induced
damage (Lu ef al. 2002, 2003, El Rabey et al. 2015). The
relative expression pattern of the five PgCABs was
inhibited under chilling stress (Fig. 5D). Terashima ef al.
(1994) reported that low temperature inhibits the activity
of PSI much more than that of PSII in cucumber (Cucumis
sativus L.), which correlates with our results. The PgCABs
associated to PSI (PgCAB3, PgCAB4, PgCAB5) showed
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