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Abstract

The aim of this study was to determine the impact of increased copper contents on selected physiological processes in one-
year-old Pinus sylvestris L. needles from a former German timber storage area in Warcino Forest District, a subject to an
environmental quality survey. Samples were collected from the area with the high copper content in the soil. The control
area was a nearby pine tree stand showing unimpeded growth. The significant growth inhibition was found in dwarf shoots
and whole needles, increased water content, and reduced dry mass were also observed. The chlorophyll content was
lowered, while 20% higher electrolyte leakage was found. Chlorophyll @ fluorescence indicated only higher values of the
nonphotochemical quenching in P. sylvestris from the Cu-site. Significant differences were shown in the rate of gas
exchange measured by changes in carbon dioxide or oxygen concentration. The intensity of photosynthesis in needles of
P. sylvestris from the Cu-site measured by CO, uptake was considerably higher than that of oxygen production. The rate
of respiration in the needles from the Cu-site measured by the amount of released CO, was higher only by 15%, while
according to O, consumed, the rate increased by 30% in relation to the control. Our results suggest that the copper
accumulation in P. sylvestris needles affected the morphology and physiology of the studied organs.
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In their natural environment, plants are exposed to
numerous substances that have a positive or negative
impact on plant metabolic processes, depending on their
concentration. The occurrence of heavy metals in the
environment constitutes a serious problem at the present
days. The main sources of pollution include industrial
development, the application of mineral fertilisers, and
plant protection products, as well as municipal waste.
Heavy metals in soils pose a risk to the chemical balance
and may lead to the degradation of the environment. The
impact of high concentrations of heavy metals may entail
creating stressful conditions for plants. Every stressor
induces changes in plant cell metabolism, resulting in

disruption of homeostasis. Stressors may activate modifi-
cation mechanisms, which allow the plant to develop
features and adaptations determining higher resistance
(Tukendorf and Wojcik 1995, Clijsters et al. 1999,
Baranowska-Morek 2003, Siwek 2008).

The factors that determine the accumulation of heavy
metals in soils, particularly, their solubility and bioacces-
sibility, include soil pH, organic substances, hydroxides,
clay minerals, and interactions with other elements. The
harmful effect of heavy metals manifests itself when they
occur in the environment at particular concentrations. The
response of plants to heavy metals depends on the plant's
individual vulnerability, the duration of exposure, the
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intensity of stress, and the form in which the metals are
accessible. Moreover, not only a proper concentration of
an element in the tissues is required for the normal
development of a plant, but also the suitable proportion of
this element to other substances present in the soil (Yruela
2005, Gruca-Krolikowska and Wactawek 20006).

Macronutrients (N, P, K, S, Ca, Mg) and micro-
nutrients (Fe, B, Mo, Zn, Cu, Mn) occurring as natural
components of the environment, are essential for the
normal functioning of a plant. Copper is acquired and
transported in the form of copper ions or chelates most
intensively by young plants. In the soil, it occurs in
combinations with organic substances, clay minerals, and
precipitates, such as sulphates, sulphides, and carbonates.
It takes part in defensive mechanisms, biochemical
reactions as a cofactor of enzymes and an electron carrier
(Yruela 2005). It is also involved in the metabolism of
nitrogen compounds and sugars, regulates DNA and RNA
production processes, and plays a role in cell wall
lignification (Ouzounidou et al. 1992, Wisniewski et al.
2003, Alaoui-Sossé et al. 2004, Valko et al. 2005). An
excess of copper causes disruption in plant growth, plant
pigment production, photosynthesis, and respiration, as
well as in the rearrangement of protein and lipid structures
(Maksymiec 1997, Vinit-Dunand et al. 2002, Burkhead
2009).

The copper content in plants is considerably varied
depending on the plant organ and developmental stage,
species, and variety, as well as climatic conditions
(Ostrowska et al. 2006). According to Vries and Heijj
(1991) and Schachtman et al. (1998), the concentration of
nutrients in the photosynthetic apparatus of plants
indicates the content of their supply of mineral elements.

Scots pine (Pinus sylvestris L.) is an evergreen tree
species from the Pinaceae family. It reaches an average
height of approximately 30 m. It has stiff, hard, pointed,
finely serrated, and spirally curved needles. Set in pairs on
dwarf shoots, they are often used in bioindication research
(Dmuchowski and Bytnerowicz 1995, Kurczynska et al.
1997, Yilmaz and Zengin 2004, Parzych and Sobisz 2012).

In this study, we investigated the impact of the high
copper concentration in soil on several physiological
processes in Scots pine (P. sylvestris). We compared two
forest stands in the Warcino Forest District, Poland, one
stand with high copper contents and poorly growing pine
trees (Cu-site) and a reference area with pine trees showing
unimpeded growth (control).

The study area in the Warcino Forest District was
characterized by highly acidic pH and acidic contents of
mineral soils (pH in KCl = 4.03—4.98). Base saturation
assumed low values, reaching a maximum —27% in the
bedrock. The content of organic carbon in the soil under
weakly growing pine trees was low and did not exceed
0.93%. The control soil carbon content in the well-
developed organic level was 16.62%. The mineral fraction
of soil was predominated by sand (& = 0.05-2 mm), which
content ranged from 92 to 98%. The clay (J < 0.002 mm)
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fractions content ranged from 1 to 3%. Soil texture may
limit the water supply to plants during periods of dry
weather. The former German timber storage area is
characterized by the higher copper content, the origin of
which is associated with long-term use of wood
preservatives. In the past, this area functioned as a
repository of wood harvested in the surrounding stands.
The average copper content in the content of mineral
humus under weakly growing pine trees was 175 mg kg ™!
(soil) and under the control stand it was 41 mg kg'(soil).
In the area of the former German timber storage area, not
covered by plants, the copper content in the humus reached
913 mg kg!(soil), whereas the organic carbon content was
0.73% (Wanic et al. 2013).

Plant material in the form of annual shoot increments
of Scots pine (P. sylvestris L.) was sampled from the
former wood storage area, where exceeded limits of copper
content were reported (Cu-site), and from areas with pine
tree showing unimpeded growth (control) in the Warcino
Forest District.

Biometric analysis of dwarf shoots and needles was
performed using a magnifying glass with a scale (Hund
Wetzlar FLQ150, Wetzlar, Germany).

The fresh mass (FM) was determined for each of the
studied needles on scales (Ohaus Adventurer Pro Av 264c,
Melrose, USA). The needles were subsequently frozen in
—80°C and lyophilised in a lyophiliser (Scanvac
CoolSafe™ 55-4 PRO, Lynge, Denmark). The lyophilised
leaves were weighed in order to establish the dry mass
(DM) and calculate the water content.

In order to perform mineralisation, dried (Wamed
SUP-100, Warsaw, Poland) and weighed (Radwag WPA
60/C, Warsaw, Poland) to an accuracy of + 0.0001 g of
needles were placed in glass flasks of a digestion apparatus
(Velp Scientifica DK20, Usmate, Italy). They were
subsequently poured over with 65% HNO; and left to
dissolve at a temperature of 25°C. The samples were then
gradually heated for 30 min at a temperature of 100°C and
120°C and for 120 min at temperature 140°C, until they
reached full mineralisation. Excess acid was removed by
heating the material without leading to its complete
evaporation. Mineralised material was transferred to
scaled test tubes, which were then filled up to 10 ml with
deionised water (Direct-Q 3 UV, Millipore, USA). Copper
content was determined with an atomic absorption
spectrometer (Analyst 200, PerkinElmer, Waltham, USA),
using HCL lamps.

Two morphologically similar P. sylvestris needles
were placed in polypropylene falcon tubes in 30 ml of de-
ionised water with specific conductance of 0.05 uS cm™.
Tubes were then placed on a shaker (Rocker Labnet
International, New York, USA) and Vortex (Biomix
BVX-10, Blizne Jasinski, Poland) for 3 h. After that time,
the electroconductivity of diffusates (Lz) was measured
using a multifunction device (CX-701 Elmetron, Zabrze,
Poland). After the measurement, plant material was frozen
at —80°C to cause the degradation of plasma membranes.



The material was successively defrosted and subjected to
the same shaking procedure as alive P. sylvestris needles;
the electroconductivity of the whole electrolyte content in
the tissue was measured (Lm). The percentage of
electrolyte leakage through plasma membranes was
calculated according to the following formula: EL [%] =
(Lz/Lm) x 100, where EL is an electrolyte leakage, Ly is
an electrolyte leakage from the dead cells, and Lz is an
electrolyte leakage from the living cells.

The net photosynthetic rate (Px) and respiration (R) of
one-year-old P. sylvestris needles were determined using
an infrared gas analyser ADC-225 MK-3 (ADC Bio-
Scientific Ltd., Herts, UK). The intensity of the light during
the measurements was 100 umol(photon) m? s7'. The
temperature during measurements was constant and kept
at 25°C. The rates of these two processes were determined
in air containing 21% of oxygen, with CO, concentration
at 300400 pmol mol™', in a closed system (Rut et al.
2010). The net photosynthetic rate and respiration were
expressed in pmol(CO,) g '(DM) h™! taken up/released.

The rate of these processes was also measured using
the Clark electrode (Hansatech Instruments Ltd., Norfolk,
UK). The electrode was placed in a 5-ml chamber LD/2,
where a constant temperature of 25°C was maintained. The
electrode was connected to a data-reading device CBID.
Computer software ‘Acquire’ was employed for data
reading and analysis. The measurement conditions were
the same as in measurements with the infrared gas
analyser. The rates of photosynthesis and respiration were
expressed in pmol(0,) g '(DM) h™! released/taken up.

The content of chlorophyll (Chl a and b) was deter-
mined in dimethyl sulfoxide (Sigma Aldrich, England)
using Barnes ef al. (1992) method at a wavelength of 665
and 648 nm, with spectrophotometer Aquarius 9500 (Cecil
Instruments, Cambridge, UK). The amount of Chl was
converted into a concentration in DM.

The functioning of PSII was examined with the use of
fluorometer (Fluorescence Monitoring System — 1,
Hansatech Instruments Ltd., Norfolk, UK). Dark-
acclimated needles after 30 min were exposed to excitation
light 600 pmol(photon) m2 s™'. The values of the fol-
lowing parameters were analysed: (/) the fluorescence
intensity indicators: minimal Chl fluorescence, when all
dark-adapted PSII reaction centers are open (Fo), photo-
chemical efficiency of PSII (F./Fi) (van Kooten and Snel
1990), and (2) fluorescence quenching parameters: photo-
chemical quenching (qp) and nonphotochemical quenching
(NPQ) (Maxwell and Johnson 2000).

The significance of differences between mean values £
SD (n =5) were assessed by analysis of variance (ANOVA/
MANOVA) using Tukey's test at p<0.05. Calculations were
made in STATISTICA 10.0 software.

EFFECT OF COPPER ON PINUS SYLVESTRIS

Biometric analysis of P. sylvestris needles and dwarf
shoots showed statistically significant differences in their
length. Pine dwarf shoots and needles were markedly
longer in the plants growing at control site compared with
the needles of plants occurring at Cu-sites (Table 1).

Higher DM values were noted in the plants from the
control compared to Cu-site. As regards water content,
lower values were found in the plants from the control site,
while higher amounts were found in the Cu-site plants
(Table 1).

A statistically significant increase in the copper content
was observed in P. sylvestris needles from the Cu-site
relative to the control plants (Table 1).

Significant increases in cell membrane permeability
were noted in needles from the Cu-site in relation to the
plants from the control site. In the case of P. sylvestris from
the Cu-site, the values of electrolyte leakage fluctuated
from 90 to 100%, which is nearly 20% more of total
electrolyte content in tissues in relation to the outflow of
ions in samples from the control (Table 1).

Significant differences were noted in the gas-exchange
rates measured by changes in carbon dioxide and oxygen
concentration in P. sylvestris needles. The intensity of
photosynthesis measured by the amount of carbon dioxide
taken up was much higher in P. sylvestris needles from the
control than that in the needles of plants growing at the Cu-
site (Fig. 1).

Table 1. Comparison of morphological and physiological para-
meters in Pinus sylvestris needles from control area of the
Warcino Forest District and Cu-site. Values are means (+ SD),
n = 5. Means followed by the different letter in each row are
significantly different (p<0.05). DM - dry mass; Chl —
chlorophyll; Fo — minimal fluorescence yield of the dark-adapted
state; Fv/Fm — maximal quantum yield of PSII photochemistry;
NPQ - nonphotochemical quenching; qer — photochemical
quenching coefficient.

Parameter Control ~ Cu-site
Dwarf shoot length [mm]  5.82° 3.85°
Needle length [mm] 54.328 41.75°
DM [g] 0.018 0013
Water content [%] 46.09° 52.122
Cu [ng g (DM)] 6.36° 7.78
Electrolyte leakage [%] 72b 932
Chl a [mg g {(DM)] 425 2.24b
Chl (a+b) [mg g '(DM)]  5.23° 2.80°
Chl a/b 4.342 4.00?
Fo 230.702 197.902
Fv/Fm 0.8282 0.8292
NPQ 0.068Y 0.0912
qr 0.9382 0.940*
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Fig. 1. Net photosynthetic (Pn) and respiration (R)
rates of Pinus sylvestris needles from control area of
the Warcino Forest District and Cu-site, expressed in
CO2 or Oz uptake/output for plant dry mass. * —
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The net photosynthesis of needles measured by the
amount of released oxygen obtained from the plants of the
two sites with different Cu content showed no significant
difference (Fig. 1). The rate of photosynthesis measured
by carbon dioxide consumption in needles from the Cu-
site was considerably lower than that measured by changes
in oxygen concentration. Plants grown at the control site
showed comparable CO, and O, rates (Fig. 1).

The R of the needles growing at the Cu-site was
markedly higher compared with those from the plants of
the control site (Fig. 1). The R of the Cu-site plants was
higher merely by 15% when measuring the amount of
released CO,. However, the rate of the studied process
which one R increased by 30% in the case of measured
oxygen consumption (Fig. 1). No significant differences
were noted in the rate of R measured by the oxygen con-
sumption or CO; release between the control and the Cu-
site. The R measured by CO; release was slightly higher
than the rate of this process measured by oxygen uptake.

The content of Chl a and b in P. sylvestris needles was
significantly lower at the Cu-site compared with that of the
control area (Table 1). The analyses of selected fluores-
cence parameters showed no statistically significant
differences in the studied P. sylvestris needles. The only
exception was the parameter of NPQ, which showed
higher values in P. sylvestris from the Cu-site compared
with the control (Table 1).

The occurrence of heavy metals in the environment and
their easy access through the root system and leaves cause
aserious problem for plants, interfering with their
metabolic and physiological processes. Prior to the
manifestation of copper toxicity, the inhibition of plant
growth and the reduction of yield occurs (Jiang et al. 2001,
Gupta and Abdullah 2011). Ouzounidou et al. (1994),
Monni et al. (2000), MacFarlane and Burchett (2002), and
Elleuch et al. (2013) found that copper contamination
disturbs physiological processes from the seed germi-
nation phase to the growth phase. The studies carried out
in the Warcino Forest District showed that the length of
pine dwarf shoots and whole needles and needle biomass
of P. sylvestris were substantially higher in the control
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Cu-site

R significant differences from control plants at p<0.05.
Means + SD, n = 5.

areas than that in the plants occurring on polluted soils
(Cu-site), which suggested an inhibitory effect of copper
(Table 1).

According to Kopittke and Menzies (2006), copper
hinders mass production in roots to a larger extent than in
shoots and leaves of Vigna unguiculata, and the restriction
of shoot growth is higher due to the nutrient deficiency
ensuing from the reduced nutrient uptake in damaged roots
rather than the direct effect of toxic metal. Rouphael et al.
(2008) believe that heavy metals disrupt the transport and
absorption of nutrients, exerting phytotoxic effects on
organisms. In the case of P. sylvestris from the Warcino
Forest District, increased Cu accumulation was observed
in the needles. The toxic effect of Cu on life processes
results from its interaction with the functional groups of
molecules that are found in cells, particularly, proteins and
polynucleotides (Yruela et al. 2008, Moreira et al. 2015).
The toxic effect mainly involves the damage of cells and
inhibition of their growth (Liu et al. 2004). As aresult, cell
division and elongation of new cells in the growth zones
of roots and aboveground plant parts are restrained and cell
membrane permeability is altered (Kukkola ef al. 2000,
Schiitzendiibel and Polle 2002, Liu ef al. 2009, Bouazizi et
al. 2010). High Cu concentrations seemed to have a detri-
mental effect on the functioning of plasma membranes in
the cells of P. sylvestris needles. In the experiment,
electrolyte leakage from the needle cells of plants growing
on soils with high Cu content increased by 20% compared
with the control needles obtained from the tree stand
showing unimpeded growth (Table 1). According to Hall
(2002), cell membranes are the first structures to be
affected by heavy metals. Their disintegration allows the
permeation of metals and augments the outflow of ions,
which disturbs water and ion balance. Damages are
induced, among others, by protein oxidation and changes
in the composition and fluidity of plasma membrane lipid
components.

The direct effects of heavy metals are observed in the
functioning of chloroplasts, the destabilisation of cell
membranes, the inhibition of Chl synthesis, and the
disruption of the Calvin cycle (Clijsters et al. 1999). As



reported by Monni et al. (2001), Empetrum nigrum plants
growing in the vicinity of a copper and nickel smelting
Harjavalta plant in south-western Finland contained
markedly lower Chl concentrations than plants growing
away from the contaminated sites. Narrowed leaves, as
well as progressive chlorosis and necrosis were observed
at high Cu concentrations in Trigonella foenum-graecum
(Elleuch et al. 2013). Caspi et al. (1999) showed an
inhibitory effect of Cu on Chl synthesis in the leaves of
barley. In the case of the studied needles from the Warcino
Forest District, a reduced content of Chl a and » was
demonstrated. The total Chl content at the Cu-site was less
than half compared with those from control areas
(Table 1). High accumulation of heavy metals causes the
destruction of Chl-protein complexes, disrupts mineral
nutrition, and decreases the energy balance of cells (Baron
et al. 1995, Chen et al. 2000, Pilon et al. 2006, Rouphacl
et al. 2008). Another result of an excessive Cu concen-
tration is the deactivation of ferredoxin via oxidation of
thiol groups (SH) of this enzyme by Cu. Studies by
Stolarska et al. (2006) have shown that the application of
Cu salts at concentrations exceeding 0.05 mmol kg !(soil)
causes a significant decrease in Chl concentration, CO;
assimilation rate, and water-use efficiency in photo-
synthesis. The consequence was a reduced plant producti-
vity, the suppressed growth of the root system and foliage
development. The lowered photosynthesis measured by
CO; uptake in P. sylvestris needles from the timber storage
area might be caused by a higher Cu content in the needles
compared with the plants from the control site. Increased
Cu concentration and its accumulation in the aboveground
parts of pines is most likely due to the higher content of
this metal in the soil at the former timber storage site
(Wanic ef al. 2013). An excess of Cu in plants causes
disruption in the Calvin cycle (lowered activity of Rubisco
and other enzymes of this cycle) (Williams and Mills 2005,
Yruela 2009, Padua et al. 2010).

The lower rate of photosynthesis may be associated
with the reduced Chl content in P. sylvestris needles from
the poorly growing-tree stand and might occur due to
difficulties with the uptake of other macronutrients
(necessary for the Chl synthesis) from soils with higher Cu
contents or due to the larger losses of absorbed photon
energy dissipated as heat via the xanthophyll cycle
(Osmond et al. 1997) (Table 1). The noted increase of the
R, determined by the quantity of CO, released and oxygen
taken up, may result from a higher demand for ATP in P.
sylvestris needles from the contaminated tree stand which
was aimed for reparation of the damage caused by the
excess of copper (Fig. 1).

Study of the kinetics of Chl a fluorescence by
fluorimeter is one of the best ways to explore the function
of PSII and its reactions in response to changes in
environmental conditions and plant growth (Kalaji and
Nalborczyk 1991, Kalaji ef al. 2012a,b, 2014; Peng et al.
2012). Copper ions in excess cause reduction of PSII
activity (Patsikka et al. 1998). PSII efficiency is associated

EFFECT OF COPPER ON PINUS SYLVESTRIS

with the thylakoid membranes of chloroplasts (Pétsikka et
al. 2002) and the quantum yield of PSII electron transport
(Vinit-Dunand et al. 2002). Copper has inhibitory effects
on plastoquinone through reduction and interference with
electron donation to photochemical reactions in PSII
(Jegerschold et al. 1995, Yruela et al. 1993, 1996). Fy
parameter indicates the excitation energy loss during
transmission of the antenna energy to PSII (Baker and
Rosenquist 2004). This parameter characterizes fluores-
cence emission of the excited Chl molecules in PSII
antenna when all PSII reaction centers are open and ready
to accept new electrons. The variable values of Fo may be
the result of an increased number of inactive reaction
centers, where electrons cannot be transferred out by
reduced plastoquinone, low energy transfer from the
LHCII to PSII reaction center or caused by the dissociation
of LHCII from PSII core, or D1 protein degradation and
inactivation in PSII reaction centers (Havaux 1993,
Rintaméki et al. 1995). F./F, and qp reflect the true
efficiency of PSII by the amount of light energy absorbed
by PSII to the energy consumed by an open reaction
centers. They are responsible for reducing the amount of
electrons in the stabilization of CO, (Maxwell and Johnson
2000, Lichtenthaler et al. 2005). The values of F./Fp, in
higher plants are close to 0.83 (Bjorkman and Demmig
1987), and the qp values range between from 0 to 1
(Maxwell and Johnson 2000). NPQ associated with heat
losses can range from 0 to infinity depending on the
species and acting stressor (Lichtenthaler et al. 2004,
Porcar-Castell 2011) and is responsible for excess light
energy that is harmlessly dissipated as heat (Miiller et al.
2001). Copper ions caused reduction of light-saturated
PSII coincided with increased NPQ, which is normally
associated with xanthophyll cycle-dependent energy
dissipation in higher plants (Ruban and Horton 1999,
Ebbert et al. 2001). In our study, the needles of P.
sylvestris from the Cu-site compared with the control ones
showed high photochemical efficiency of PSII (Table 1).
Only NPQ significantly increased in the needles of
P. sylvestris from the Cu-site relative to the value of the
control (Table 1). No changes in the values of other
parameters of fluorescence may indicate a physiological
adaptation of plants to cope with oxidative stress (Shaw et
al. 2014). Copper ions may target chloroplast membrane
H*-ATPases, thus lowering the demand for H' and
electron transport, indirectly resulting in excitation energy
entrapment in PSII. Inhibitory effects of Cu ions on
ATPases and ion channels are known from several plant
systems (Demidchik ez al. 1997, 2001; Maksymiec 1997).
Chloroplasts have developed flexible mechanisms to cope
with changes in demand for energy. They are activated in
stressful environmental conditions and metabolic
disorders. Their purpose is sustainable production and
consumption of ATP and NADPH by increasing the
production of intermediates or preventing the accumu-
lation of excess intermediates. The mismatch in the
regulation restricts photosynthesis (Cruz et al. 2005,
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Kramer and Evans 2011).

In the presence of excessive quantities of heavy metals,
the symptoms of toxicity may be produced by a number of
interactions at cellular and molecular levels. At cellular
level, they may be involved not only in detoxification, but
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