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Morphological recognition with the addition of multi-band fluorescence
excitation of chlorophylls of phytoplankton
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Abstract

The recognition of aquatic organisms plays a crucial role in the monitoring of the pollution and for the adoption of rapid
preventive actions. A compact microscopic optical imaging system is proposed in order to acquire and treat the multi-
bands fluorescence of several pigments in phytoplankton organisms. Two algorithms for automatic recognition of
phytoplankton were proposed with a minimum number of calibration parameters. The first algorithm provides a
morphological recognition based on “watershed” segmentation and Fourier descriptors, while the second one builds
fluorescence pigment images by “k-means” partition of intensity ratios. The operation of these algorithms was illustrated
by the study of two different organisms: a cyanobacteria (Dolichospermum sp.) and an alga (Cladophora sp.). The family
and the genus of these organisms were then classified into a database which is independent of the size, the orientation and

the position of the specimens in the images.

Additional key words: aquatic organism; fluorescence imaging; morphological extraction; pigment.

Introduction

Phytoplankton plays a fundamental role in the living
world. It is a dioxygen generator and the most important
carbon dioxide fixer on the Earth. However, in the case of
the blooming of algae, their development may become so
excessive that it can be harmful to other aquatic plants and
animals. This phenomenon, called hyper-eutrophication
(Codd et al. 2005, Hudnell 2008), reduces photosynthesis
and gas exchange and can cause the death of the whole
aquatic ecosystem (Vasconcelos 1999, Falconer and
Humpage 2005). Moreover, many of the invasive species
can also present a risk for human health (Batoréu et al
2005, Metcalf ef al. 2012). Especially, some cyanobacteria
are toxic due to their ability to produce dermatotoxins,
hepatotoxins or neurotoxins. The death of fishes but also
the poisoning of cattle and humans have been reported
(Quiblier et al. 2013). It appears therefore essential to
strengthen the vigilance on the control of the proliferation
of phytoplankton and toxins with the necessity to evaluate
the risk of invading species. The recognition and the
identification of aquatic organisms, necessary for such a
control, are often performed by algologist — specialists by
means of sampling and visual microscopic observations.

The number of analyses is limited and depends on the
limited number of specialists. Nevertheless, under certain
circumstances, it may be useful to develop an in situ
monitoring system which would provide an autonomous
and automatic recognition algorithm to improve the
monitoring of risky water ponds and optimize human
intervention of specialists. The development of such an
automatic system of recognition of aquatic algae and
cyanobacteria by irradiance reflectance (Gons et al. 2005),
by fluorescence measurement (Poryvkina et al. 2000), or
again by image recognition (Tang ez al. 1998), is more and
more considered.

However, only few studies have been reported on the
fluorescence imaging methods and the data treatments.
Imaging methods based on chlorophyll (Chl) a fluores-
cence have been evaluated for the understanding of photo-
synthesis mechanism (Bro et al. 1996, Lichtenthaler ef al.
2005, Lichtenthaler et al. 2007, Guidi and Degl’Innocenti
2011, van Wittenberghe et al. 2013), to detect the stress in
plants (Zarco-Tejada et al. 2009) or to describe the
dynamical and spatial behavior in plants (Chaerle et al.
2007). From the sensor’s point of view, most of the
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fluorescence studies are based on macroscopic and
averaging spectral studies using spectrofluorimetry
(Yentsch and Phinney 1985, See et al. 2005, Richardson et
al. 2010, Ziegmann et al. 2010). These methods are usually
very efficient to estimate the concentration of Chl a in an
aquatic environment (Seppald et al. 2000, Seppéld et al.
2007) but remain not selective enough to distinguish algae
or cyanobacteria species. Only recognition at the family
level is possible.

In this study, we presented a multi-band fluorescence
imaging system in order to study two different aquatic
organisms as examples: a Chlorophycea (Cladophora sp.)
and a Cyanobacteria (Dolichospermum sp.). The first step
is to take fluorescence images of different pigments of this

Materials and methods

Sample preparations: Cyanobacteria (Dolichospermum
sp.) grown in nutrient rich solution for one month have
been provided by F. P. Environnement (Merten, France).
ALATOX (chlorophyll measurement by fluorescence)
measurements showed a concentration of 8§9.68 ng(Chl)
L, ie., 2.813,700 cells mL™'. Concerning the second
aquatic organism, the Chlorophycea (Cladophora sp.), the
studied specimens was collected during the spring 2014 in
the Seille, a tributary river of the Moselle, in Metz,
Lorraine, France. The measurements were done on the
fresh specimen of Cladophora sp. In order to preserve the
properties of the living specimen, all samples were stored
in the shade at 6°C and analyzed alive.

Fluorescence imaging system: The fluorescence imaging
system was a home-made setup operating in transmission
(Fig. 1). A metallographic microscope was illuminated by
the top with a Kohler’s illumination mounting. The
excitation was provided by an ultraviolet lamp (OmniCure
S§1000, 100 W, 250-500 nm, Lumen Dynamics, Canada).
In order to select the fluorescence excitation we used band
pass filters at 400 = 10 nm (absorption of Chl @) (Chen and
Blankenship 2011), at 440 + 10 nm (absorption of Chl a
and Chl b) (Rabinowitch and Govindjee 2013) and at
475 + 10 nm (absorption of Chl ) (Shedbalkar and Rebeiz
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phytoplankton (Chl a, Chl b, and the combination of both).
By selecting the proper absorption and a fluorescence
wavelength in the range of study, the system enables to
perform images for each pigment with a high selectivity.
The image processing algorithms are then applied on the
fluorescence images but also on classical microscopy
(white light illumination) images to provide the morpho-
logic characteristics and the intensities of the pigments of
both the organisms. Finally, the treatment of the different
phytoplankton images is used to develop a database of
algae and cyanobacteria. This database has been extended
to contain 27 species but only two species were presented
in our fluorescence analysis.

1992). The excitation power densities was of about
50 mW cm2.

The data acquisitions were performed with microscope
objectives plan (Optika, Italia) x 20 (NA = 0.40), x 60 (NA
= 0.85), and x 100 (NA = 1.25). Fluorescence emission
was selected by a red broadband filters (650700 nm). This
setup enabled us to detect the Chl a which emits at a
maximum of 673 nm when diluted in organic solvent
(Wormke et al. 2007, Falco et al. 2011) and in the 680—
685 nm when it is present in alive cells (Govindjee and
Shevela 2011). Also the Chl » emits at a maximum of
651 nm (Trytek et al. 2011). For the detection, we used a
8-bit monochromatic camera with 2,048 x 1,536 pixel
CCD sensor (PixeLINK, Canada). Because of the turbidity
and the cells concentration, the solution was dropped on a
transparent sapphire cover prior to the measurements. The
focus of the microscope was done manually on the
chloroplast of the living cells and several images were
acquired at different wavelengths by turning the wheel
filters.

Data treatments: All the data processing presented
here was done on Matlab® using an image processing
library. The different operations performed in the result
section were defined as following.

UV visible lamp

Microscope % 475 nm)
objective '
o — ol
Lens 3 Emisslon filer Camera CCD

(650-700 nm)

Fig. 1. Optical set-up for fluorescence imaging.
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Image segmentation: Each image was a grayscale image
I(x,y) coded on 8 bits (intensity range). The data treatment
was later applied on the derivative of the image to subtract
the continuous component and identify the frontiers of the
cells (Chen 2007, Wang et al. 2010, 2011). Moreover, the
gradient of the images I4(x,y) was computed by taking into
account the convolution by a 2D Gaussian filter to
minimize the noise. To optimize the speed of the
algorithm, the gradient of the image was calculated by
considering the derivative on the 2D spatial components,
x (respectively y component), and smoothed by the
convolution of a Gaussian band pass filter along y (resp.
x) and the derivative of the Gaussian filter along x (resp.
y). We applied the Gaussian filter on the first neighbor
with a standard deviation ¢ = 1.3 (in pixel unit) and a
dimension of the numeric filter of GN = 4. This reduced
the noise in the image and highlighted the boundaries in
the image.

Watershed: The segmentation of images I4 was obtained
with the “watershed” function which can suppress all the
minima whose depth are less than the parameter h, using
the “imhmin” function. The parameter h must be defined
previously by the user. In our simulations, h = 0.004 gave
good segmentation on all specimens. This segmentation
process was used for the morphological recognition of
algae and for fluorescence images analysis as described
further.

Results

The microscopic acquisition of the images on
Cyanobacteria (Dolichospermum sp.) and Chlorophycea
(Cladophora sp.) were done consecutively on the same
specimens. Two automatic recognition procedures were
then applied. We named furher the images collected with
the full illumination of the lamp and no emission filter as
"white-light images”. The images taken with the selected
emission filters with the excitation (400/440/475 nm)
(Shedbalkar and Rebeiz 1992, Chen and Blankenship
2011, Rabinowitch and Govindjee 2013) and the emission
filters at 650-700 nm (Wormke et al. 2007, Falco et al.
2011, Govindjee and Shevela 2011, Trytek et al. 2011)
were called further "fluorescence images". Due to the
mobility of the living organisms and the relatively long
manual procedure, some of the fluorescence images may
have been reoriented or translated to fit the “white-light
image”. Also, in order to optimize the rate of the algorithm,
we defined cluster areas on the “white-light images” to be
applied as a pencil on the different “fluorescence images”.
The two procedures of automatic treatments were
presented further.
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Erosion: For the morphological recognition, the
“watershed” segmentation was applied on the previous
gradient of the image. The boundaries of the greatest
object can then be obtained using the “bw boundaries”
function and enable the definition of the external contour
of this object.

Fourier descriptor: The closed contour of the object
defined a list of N coordinates (Xs,yn) that can be
represented by a series of complex numbers:

Zn = Xp + iV (1

The contour can be represented by a periodic function
of period N. Then the contour can be approximated by:

~ - 2mjkm
B = 7+ LI a exp (P5) @)

with Z the average signal, and a;, the Fourier coefficients.
We computed the function using Fast Fourier Transform
function and defining kmax = 10. The coefficients were
permuted in such a way as to be independent of the
position, orientation and normalized in order to be
independent of the scaling factor (Hall 1979). The Fourier
descriptors defined also one contour for one sample with
many coefficients.

k-means: In order to analyze the different intensities of the
fluorescence images, the image was treated by k-means
function to make a partition of k = 10 clusters of intensities
(Yao et al. 2013).

Automatic recognition of morphological parameters:
The automatic recognition process enabled to extract
several morphological characteristics of the organisms that
can be collected into a database. First, the procedure was
applied on “white-light images” of Chlorophycea
(Cladophora sp., Fig. 24) and Cyanobacteria (Dolicho-
spermum sp., Fig. 2C). The "watershed" segmentation on
the image derivative are presented in Fig 2B and D,
respectively. As several other impurities and pollution may
corrupt the sample, the aquatic organism was supposed to
be the largest region of the segmented image. Conse-
quently, all the other regions were later removed by
erosion algorithm. The analysis of Cladophora sp.
(Fig. 2B) showed that the algae overfilled the edges of the
CCD image. Moreover, one could note that minor
impurities link the two specimens together, which
generates an unrealistic specimen. As a consequence, this
kind of images did not present an interest for
morphological analysis and was only analyzed by
fluorescence imaging. Concerning Dolichospermum sp.
(Fig. 2D), the whole profile of the cyanobacteria could be
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observed on the images with minor impurities and it was
therefore a correct image for the outline algorithm. This
later specimen was then used in the following steps.

To illustrate the Fourier descriptor method, four
different images of Dolichospermum sp. were presented
with x 60 magnification (Fig. 34—C) and with x 100
magnification (Fig. 3D). The cyanobacteria were classified
using the Fourier coefficients (Fig. 4B,C), respectively,
with the real part and the imaginary part of normalized
coefficients. The imaginary part appeared not to be very
significant in this case because it described mainly defects
on the edge and heterogeneities. On the contrary, the real
part defined from 20 coefficients was very significant for

AUTOMATICAL RECOGNITION OF PHYTOPLANKTON

Fig. 2. On the left, "white light" and unfiltered
microscopic image with x 20 and x 60 magnification
objective respectively for Cladophora sp. (4) and
Dolichospermum sp. (C), and on the right, same
image after derivation. Gaussian filter and segmen-
tation by watershed function with h = 0.004 (B,D).

10 uym

Fig. 3. Extracted images of the largest regions of the
merged watershed segmentation of Dolichospermum
sp. Cyanobacteriae. Images 4, B, and C are acquired
with x 60 magnification and D is acquired with x 100
magnification objective.

this cyanobacterium. The highest intensities were obtained
for the coefficients 1 and —1. Based on this process, we
determined the shape of the organisms (Fig. 44). The
rotation of © for each shape was also considered in order
to improve the database. As a consequence, eight Fourier
descriptors were extracted (Fig. 44). Owing to the Fourier
descriptor method, several characteristic morphological
parameters, such as length, width, perimeter, and surface
could be extracted. In addition, the ratios between these
different parameters were also valuable characteristic
parameters of algae for the database.

Therefore, the shapes of Dolichospermum sp. extracted
as described previously, could be used to distinguish other

437



M. LAUFFER et al.

A

1F
W
- |
z
O
w
a
w
N
-
=
=
x
o)
z

At

-2 - 0 1 2
NORMALIZED SCALE

w
|
=z
O
@
o
w L i i
N
|
s
z C
o
z

0 e

o N/
-10 -5 0 5 10

NORMALIZED FOURIER COEFFICIENTS

Fig. 4. Top of figure, normalized shapes of the four specimens of
Dolichospermum sp. (A) with the replicate of each by n rotation,
and, at the bottom, amplitudes vs. frequencies of the Fourier
coefficients of the four outlines on the real part (B), and on the

imaginary part (C).
Discussion
The imaging system and algorithms described in the

present paper were developed to improve the recognition
of aquatic organisms. The segmentation based on morpho-
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aquatic organisms which are not filamentous as unicellular
organisms or colonial organisms. In particular, the width
appeared to be a specific parameter for a Dolichospermum
sp. recognition but the length of the filament could vary
depending on the cyanobacteria specimen observed. One
can also notice that the use of the higher magnification
objective enabled to obtain with more details of the shape
of the spherical cells which compose the filaments
(Fig. 3D). Such a procedure was applied at x 100 magnifi-
cation (Fig. 3D) and x 60 magnification (Fig. 34—C). With
the x 100 magnification, it was possible to determine very
few segmented regions which could limit the recognition
error but such a procedure remained technically more
difficult for an operator or an automatic focusing.

Automatic recognition by multi-bands fluorescence
excitation: It was clearly visible that the regions, which
exhibited high fluorescence intensities, were localized in
the chloroplasts (Fig. 5). In this case, the fluorescence
emission brought information about the composition of the
alga but also about the shape of the chloroplasts. These
new parameters were characteristic of the alga and gave
additional accuracy in the framework of a morphological
recognition. One can also notice that the impurities in
between the cells did not emit any fluorescence. It is
known that the Chlorophyceae contains a majority of Chl a
and Chl b (Fig. 5). However, the absolute intensity was
difficult to use for a sensor since the excitation and
emission wavelengths are very close to each other for the
different Chl pigments (and the pass-band filters was not
narrow enough) which could induce errors from parasitic
or scattering light (Fig. 5C). As a consequence and in order
to avoid such errors, the fluorescence ratios of the
pigments on each segment area were used. These ratios
appeared to be specific to a given alga (Cladophora sp. in
this case) and were an operational parameter for automatic
recognition (Fig. 74).

A similar treatment was also applied on Dolicho-
spermum sp. The fluorescence imaging of the three
pigments (Chl @, Chl b and the combination of two) are
presented in Fig. 6. In this case, the cyanobacteria
contained Chl @ and Chl @ + b but no fluorescence of Chl b
which was well represented by the fluorescence imaging.
As already pointed out in the case of Chlorophycea, the
shape of the chloroplasts in Fig. 64 was well delimited by
the fluorescence of Chl a. Then, the spherical shape of
these chloroplasts can be observed which was a
characteristic of Dolichospermum sp.

logical characteristics is close to the visual recognition by
the algologists and enables to extract size and shape of
algae and cyanobacteria (van den Hoek 1963, Komarek



and Anagnostidis 2000, Wacklin 2009). The different
morphological parameters extracted from the segmen-
tation of the images have been used to create a database
usable for automatic recognition of aquatic organisms
(27 species). As demonstrated previously, the use of this
database should enable the simple automatic recognition
of phytoplankton and cyanobacteria by a non-specialist.
Moreover, the multispectral imaging provided addi-
tional information. For Cladophora sp., the fluorescence
showed the predominant presence of Chl a and the
secondary presence of Chl b. These observations con-
firmed the classical composition of pigments in
Chlorophyceae (Wilhelm and Lenarz-Weiler 1987).
Together with the intensity and emission wavelength, the
fluorescence imaging enabled to extract the shape of
chloroplast which can be different from the shape of the
filament or the cells. Such additional morphological
information can then be extracted to extend the database.

AUTOMATICAL RECOGNITION OF PHYTOPLANKTON
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Fig. 5. Fluorescence images of Cladophora sp. with
an excitation at 440 nm for chlorophyll a + b (4), at
475 nm for chlorophyll b (B), at 400 nm for
chlorophyll a independently (C) and image of
segmentation by "k-means" of the fluorescence
images of the three bands [chlorophyll (a+b),
chlorophyll b, and chlorophyll a] (D).

Fig. 6. Fluorescence images of Dolichospermum sp.
with an excitation at 440 nm for chlorophyll a + b
(4), at 475 nm for chlorophyll b (B), at 400 nm for
chlorophyll @ independently (C) and image of
segmentation by "k-means" of the fluorescence
images of the three bands [chlorophyll (atb),
chlorophyll b, and chlorophyll a] (D).

In the second experiment, the presence of Chl @ and the
absence of Chl b confirmed the classical composition of
pigments in cyanobacteria (Kiihl 2005). Chl b is not
referred as a pigment in cyanobacteria and no intensity of
fluorescence was detected. In the same way, the
segmentation of fluorescence intensities revealed that the
majority of pigments was Chl a and the inner cell showed
well-defined shape of chloroplasts from where the fluo-
rescence emission originated. Therefore, morphological
characteristics can also be extracted from the segmentation
and processing of the fluorescence intensity images.

The fluorescence intensities ratio plotted in three
dimensions along the three bands of Chl @, » and
combination of two was shown in Fig. 7. Such a spectral
signature is unique for each organism and can be used for
algae recognition. Moreover, the use of this parameter
limited the errors of interpretation eventually originating
from absolute intensity study as in the case of
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Fig. 7. Fluorescence intensity ratios in 3D normalize between 0
and 1, and obtained from k-mean areas of the image and
corresponding to the three emission bands [chlorophyll a,
chlorophyll (a+b), and chlorophyll b] observed in Cladophora
sp. above (4) and Dolichospermum sp. below (B).

Dolichospermum sp. That way, in the case of Cladophora
sp., the ratio between Chl b and Chl a was specific. Despite
a weak quantity of emission in Dolichospermum sp., the
typical intensity profile deduced from the three bands map
led to the establishment of characteristic data for these
cyanobacteria.

From a practical point of view, the main difficulty for
such an automatic recognition in natural environment is
linked to the turbidity of water and the presence of
impurities in the aquatic environment (Kutser 2006). To
overcome this problem, morphological treatments are
based on selected regions which must correspond to the
target species only. The selection of the largest region after
segmentation treatment by watershed and eventually an
increase of the magnification generally avoided the
problem linked to impurities. Concerning the problem of
turbidity, it can be resolved with a wide dilution of the
swab. An increase of the magnification could also limit
this problem but the acquisition becomes more and more
difficult due to the optical focalization.

As described previously, the narrowness of absorption
and emission bands of Chl pigments (Shedbalkar and
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Fig. 8. Algorithm for automatic recognition of phytoplankton,
described by morphological processing and ratio of fluorescence
intensities.

Rebeiz 1992, Wormke et al. 2007, Chen and Blankenship
2011, Falco et al. 2011, Govindjee and Shevela 2011,
Trytek et al 2011, Rabinowitch and Govindjee 2013)
enabled to perform a multi-band imaging observation.
Inthe same way, this recognition model based on Chls, can
be extended to other molecules, such as carotenoids or
phycobilins (French and Young 1952, McConnell et al.
2002, Stamatakis et al. 2014).

Conclusion: The microscopic ‘white-light images’ and
‘fluorescence images’ of phytoplankton exhibited morpho-
logical and fluorescence characteristics of phytoplankton
that enabled to identify the families and the genus of each
specimen. The core method was to process the images
using two automatic recognition algorithms. The morpho-
logical treatments were independent of the size and
orientation of the specimens during acquisition and
required only one parameter for segmentation. The
outlines of the organisms were analyzed with Fourier
descriptors. The analysis of fluorescence images provided
the ratios of pigments in the cell and the chloroplasts. The
morphological parameters, the Fourier descriptors and the
information on pigment ratios were implemented to
provide a database of aquatic organisms.

Two different solutions containing different organisms
were tested with this automatic recognition system
(Fig. 8). By means of this process, Dolichospermum sp.
and Cladophora sp. were successfully recognized from a
morphological point of view thanks to the optical
microscopy analysis of their shape and from a fluorescence
emission point of view by the determination of their
chlorophyll compositions related to the shapes of their
chloroplasts.
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