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Abstract  
 
The recognition of aquatic organisms plays a crucial role in the monitoring of the pollution and for the adoption of rapid 
preventive actions. A compact microscopic optical imaging system is proposed in order to acquire and treat the multi-
bands fluorescence of several pigments in phytoplankton organisms. Two algorithms for automatic recognition of 
phytoplankton were proposed with a minimum number of calibration parameters. The first algorithm provides a 
morphological recognition based on “watershed” segmentation and Fourier descriptors, while the second one builds 
fluorescence pigment images by “k-means” partition of intensity ratios. The operation of these algorithms was illustrated 
by the study of two different organisms: a cyanobacteria (Dolichospermum sp.) and an alga (Cladophora sp.). The family 
and the genus of these organisms were then classified into a database which is independent of the size, the orientation and 
the position of the specimens in the images.  
 
Additional key words: aquatic organism; fluorescence imaging; morphological extraction; pigment. 
 
Introduction 
 
Phytoplankton plays a fundamental role in the living 
world. It is a dioxygen generator and the most important 
carbon dioxide fixer on the Earth. However, in the case of 
the blooming of algae, their development may become so 
excessive that it can be harmful to other aquatic plants and 
animals. This phenomenon, called hyper-eutrophication 
(Codd et al. 2005, Hudnell 2008), reduces photosynthesis 
and gas exchange and can cause the death of the whole 
aquatic ecosystem (Vasconcelos 1999, Falconer and 
Humpage 2005). Moreover, many of the invasive species 
can also present a risk for human health (Batoréu et al 
2005, Metcalf et al. 2012). Especially, some cyanobacteria 
are toxic due to their ability to produce dermatotoxins, 
hepatotoxins or neurotoxins. The death of fishes but also 
the poisoning of cattle and humans have been reported 
(Quiblier et al. 2013). It appears therefore essential to 
strengthen the vigilance on the control of the proliferation 
of phytoplankton and toxins with the necessity to evaluate 
the risk of invading species. The recognition and the 
identification of aquatic organisms, necessary for such a 
control, are often performed by algologist – specialists by 
means of sampling and visual microscopic observations. 

The number of analyses is limited and depends on the 
limited number of specialists. Nevertheless, under certain 
circumstances, it may be useful to develop an in situ 
monitoring system which would provide an autonomous 
and automatic recognition algorithm to improve the 
monitoring of risky water ponds and optimize human 
intervention of specialists. The development of such an 
automatic system of recognition of aquatic algae and 
cyanobacteria by irradiance reflectance (Gons et al. 2005), 
by fluorescence measurement (Poryvkina et al. 2000), or 
again by image recognition (Tang et al. 1998), is more and 
more considered. 

However, only few studies have been reported on the 
fluorescence imaging methods and the data treatments. 
Imaging methods based on chlorophyll (Chl) a fluores-
cence have been evaluated for the understanding of photo-
synthesis mechanism (Bro et al. 1996, Lichtenthaler et al. 
2005, Lichtenthaler et al. 2007, Guidi and Degl’Innocenti 
2011, van Wittenberghe et al. 2013), to detect the stress in 
plants (Zarco-Tejada et al. 2009) or to describe the 
dynamical and spatial behavior in plants (Chaerle et al. 
2007). From the sensor’s point of view, most of the  
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fluorescence studies are based on macroscopic and 
averaging spectral studies using spectrofluorimetry 
(Yentsch and Phinney 1985, See et al. 2005, Richardson et 
al. 2010, Ziegmann et al. 2010). These methods are usually 
very efficient to estimate the concentration of Chl a in an 
aquatic environment (Seppälä et al. 2000, Seppälä et al. 
2007) but remain not selective enough to distinguish algae 
or cyanobacteria species. Only recognition at the family 
level is possible.  

In this study, we presented a multi-band fluorescence 
imaging system in order to study two different aquatic 
organisms as examples: a Chlorophycea (Cladophora sp.) 
and a Cyanobacteria (Dolichospermum sp.). The first step 
is to take fluorescence images of different pigments of this 

phytoplankton (Chl a, Chl b, and the combination of both). 
By selecting the proper absorption and a fluorescence 
wavelength in the range of study, the system enables to 
perform images for each pigment with a high selectivity. 
The image processing algorithms are then applied on the 
fluorescence images but also on classical microscopy 
(white light illumination) images to provide the morpho-
logic characteristics and the intensities of the pigments of 
both the organisms. Finally, the treatment of the different 
phytoplankton images is used to develop a database of 
algae and cyanobacteria. This database has been extended 
to contain 27 species but only two species were presented 
in our fluorescence analysis. 

 
Materials and methods 
 
Sample preparations: Cyanobacteria (Dolichospermum 
sp.) grown in nutrient rich solution for one month have 
been provided by F. P. Environnement (Merten, France). 
ALATOX (chlorophyll measurement by fluorescence) 
measurements showed a concentration of 89.68 μg(Chl) 
L1, i.e., 2.813,700 cells mL1. Concerning the second 
aquatic organism, the Chlorophycea (Cladophora sp.), the 
studied specimens was collected during the spring 2014 in 
the Seille, a tributary river of the Moselle, in Metz, 
Lorraine, France. The measurements were done on the 
fresh specimen of Cladophora sp. In order to preserve the 
properties of the living specimen, all samples were stored 
in the shade at 6°C and analyzed alive. 
 
Fluorescence imaging system: The fluorescence imaging 
system was a home-made setup operating in transmission 
(Fig. 1). A metallographic microscope was illuminated by 
the top with a Kohler’s illumination mounting. The 
excitation was provided by an ultraviolet lamp (OmniCure 
S1000, 100 W, 250–500 nm, Lumen Dynamics, Canada). 
In order to select the fluorescence excitation we used band 
pass filters at 400 ± 10 nm (absorption of Chl a) (Chen and 
Blankenship 2011), at 440 ± 10 nm (absorption of Chl a 
and Chl b) (Rabinowitch and Govindjee 2013) and at 
475 ± 10 nm (absorption of Chl b) (Shedbalkar and Rebeiz 

1992). The excitation power densities was of about 
50 mW cm2. 

The data acquisitions were performed with microscope 
objectives plan (Optika, Italia) × 20 (NA = 0.40), × 60 (NA 
= 0.85), and × 100 (NA = 1.25). Fluorescence emission 
was selected by a red broadband filters (650–700 nm). This 
setup enabled us to detect the Chl a which emits at a 
maximum of 673 nm when diluted in organic solvent 
(Wörmke et al. 2007, Falco et al. 2011) and in the 680–
685 nm when it is present in alive cells (Govindjee and 
Shevela 2011). Also the Chl b emits at a maximum of 
651 nm (Trytek et al. 2011). For the detection, we used a 
8-bit monochromatic camera with 2,048 × 1,536 pixel 
CCD sensor (PixeLINK, Canada). Because of the turbidity 
and the cells concentration, the solution was dropped on a 
transparent sapphire cover prior to the measurements. The 
focus of the microscope was done manually on the 
chloroplast of the living cells and several images were 
acquired at different wavelengths by turning the wheel 
filters. 

 
Data treatments: All the data processing presented 

here was done on Matlab® using an image processing 
library. The different operations performed in the result 
section were defined as following.

 

 
 

Fig. 1. Optical set-up for fluorescence imaging.
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Image segmentation: Each image was a grayscale image 
I(x,y) coded on 8 bits (intensity range). The data treatment 
was later applied on the derivative of the image to subtract 
the continuous component and identify the frontiers of the 
cells (Chen 2007, Wang et al. 2010, 2011). Moreover, the 
gradient of the images Id(x,y) was computed by taking into 
account the convolution by a 2D Gaussian filter to 
minimize the noise. To optimize the speed of the 
algorithm, the gradient of the image was calculated by 
considering the derivative on the 2D spatial components, 
x (respectively y component), and smoothed by the 
convolution of a Gaussian band pass filter along y (resp. 
x) and the derivative of the Gaussian filter along x (resp. 
y). We applied the Gaussian filter on the first neighbor 
with a standard deviation σ = 1.3 (in pixel unit) and a 
dimension of the numeric filter of GN = 4. This reduced 
the noise in the image and highlighted the boundaries in 
the image. 
 
Watershed: The segmentation of images Id was obtained 
with the “watershed” function which can suppress all the 
minima whose depth are less than the parameter h, using 
the “imhmin” function. The parameter h must be defined 
previously by the user. In our simulations, h = 0.004 gave 
good segmentation on all specimens. This segmentation 
process was used for the morphological recognition of 
algae and for fluorescence images analysis as described 
further. 
 

Erosion: For the morphological recognition, the 
“watershed” segmentation was applied on the previous 
gradient of the image. The boundaries of the greatest 
object can then be obtained using the “bw boundaries” 
function and enable the definition of the external contour 
of this object.  
 
Fourier descriptor: The closed contour of the object 
defined a list of N coordinates (xn,yn) that can be 
represented by a series of complex numbers: 

௡ݖ ൌ ௡ݔ ൅  ௡                                                                        (1)ݕ݅

The contour can be represented by a periodic function 
of period N.  Then the contour can be approximated by: 

௠ݖ̂ ൌ ̅ݖ ൅ ∑ ܽ௞
௞௠௔௫
ି௞௠௔௫ exp ቀ

ଶగ௝௞௠

ே
ቁ                                     (2) 

with ̅ݖ the average signal, and ܽ௞ the Fourier coefficients. 
We computed the function using Fast Fourier Transform 
function and defining kmax = 10. The coefficients were 
permuted in such a way as to be independent of the 
position, orientation and normalized in order to be 
independent of the scaling factor (Hall 1979). The Fourier 
descriptors defined also one contour for one sample with 
many coefficients. 
 
k-means: In order to analyze the different intensities of the 
fluorescence images, the image was treated by k-means 
function to make a partition of k = 10 clusters of intensities 
(Yao et al. 2013).  

 
Results  
 
The microscopic acquisition of the images on 
Cyanobacteria (Dolichospermum sp.) and Chlorophycea 
(Cladophora sp.) were done consecutively on the same 
specimens. Two automatic recognition procedures were 
then applied. We named furher the images collected with 
the full illumination of the lamp and no emission filter as 
"white-light images”. The images taken with the selected 
emission filters with the excitation (400/440/475 nm) 
(Shedbalkar and Rebeiz 1992, Chen and Blankenship 
2011, Rabinowitch and Govindjee 2013) and the emission 
filters at 650–700 nm (Wörmke et al. 2007, Falco et al. 
2011, Govindjee and Shevela 2011, Trytek et al. 2011) 
were called further "fluorescence images". Due to the 
mobility of the living organisms and the relatively long 
manual procedure, some of the fluorescence images may 
have been reoriented or translated to fit the “white-light 
image”. Also, in order to optimize the rate of the algorithm, 
we defined cluster areas on the “white-light images” to be 
applied as a pencil on the different “fluorescence images”. 
The two procedures of automatic treatments were 
presented further. 

 

Automatic recognition of morphological parameters: 
The automatic recognition process enabled to extract 
several morphological characteristics of the organisms that 
can be collected into a database. First, the procedure was 
applied on “white-light images” of Chlorophycea 
(Cladophora sp., Fig. 2A) and Cyanobacteria (Dolicho-
spermum sp., Fig. 2C). The "watershed" segmentation on 
the image derivative are presented in Fig 2B and D, 
respectively. As several other impurities and pollution may 
corrupt the sample, the aquatic organism was supposed to 
be the largest region of the segmented image. Conse-
quently, all the other regions were later removed by 
erosion algorithm. The analysis of Cladophora sp. 
(Fig. 2B) showed that the algae overfilled the edges of the 
CCD image. Moreover, one could note that minor 
impurities link the two specimens together, which 
generates an unrealistic specimen. As a consequence, this 
kind of images did not present an interest for 
morphological analysis and was only analyzed by 
fluorescence imaging. Concerning Dolichospermum sp. 
(Fig. 2D), the whole profile of the cyanobacteria could be  
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Fig. 2. On the left, "white light" and unfiltered
microscopic image with × 20 and × 60 magnification 
objective respectively for Cladophora sp. (A) and 
Dolichospermum sp. (C), and on the right, same 
image after derivation. Gaussian filter and segmen-
tation by watershed function with h = 0.004 (B,D). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Extracted images of the largest regions of the
merged watershed segmentation of Dolichospermum
sp. Cyanobacteriae. Images A, B, and C are acquired 
with × 60 magnification and D is acquired with × 100 
magnification objective. 

 
observed on the images with minor impurities and it was 
therefore a correct image for the outline algorithm. This 
later specimen was then used in the following steps. 

To illustrate the Fourier descriptor method, four 
different images of Dolichospermum sp. were presented 
with × 60 magnification (Fig. 3AC) and with × 100 
magnification (Fig. 3D). The cyanobacteria were classified 
using the Fourier coefficients (Fig. 4B,C), respectively, 
with the real part and the imaginary part of normalized 
coefficients. The imaginary part appeared not to be very 
significant in this case because it described mainly defects 
on the edge and heterogeneities. On the contrary, the real 
part defined from 20 coefficients was very significant for 

this cyanobacterium. The highest intensities were obtained 
for the coefficients 1 and 1. Based on this process, we 
determined the shape of the organisms (Fig. 4A). The 
rotation of π for each shape was also considered in order 
to improve the database. As a consequence, eight Fourier 
descriptors were extracted (Fig. 4A). Owing to the Fourier 
descriptor method, several characteristic morphological 
parameters, such as length, width, perimeter, and surface 
could be extracted. In addition, the ratios between these 
different parameters were also valuable characteristic 
parameters of algae for the database.  

Therefore, the shapes of Dolichospermum sp. extracted 
as described previously, could be used to distinguish other  
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Fig. 4. Top of figure, normalized shapes of the four specimens of 
Dolichospermum sp. (A) with the replicate of each by n rotation, 
and, at the bottom, amplitudes vs. frequencies of the Fourier 
coefficients of the four outlines on the real part (B), and on the 
imaginary part (C). 

aquatic organisms which are not filamentous as unicellular 
organisms or colonial organisms. In particular, the width 
appeared to be a specific parameter for a Dolichospermum 
sp. recognition but the length of the filament could vary 
depending on the cyanobacteria specimen observed. One 
can also notice that the use of the higher magnification 
objective enabled to obtain with more details of the shape 
of the spherical cells which compose the filaments 
(Fig. 3D). Such a procedure was applied at × 100 magnifi-
cation (Fig. 3D) and × 60 magnification (Fig. 3AC). With 
the × 100 magnification, it was possible to determine very 
few segmented regions which could limit the recognition 
error but such a procedure remained technically more 
difficult for an operator or an automatic focusing.  

 
Automatic recognition by multi-bands fluorescence 
excitation: It was clearly visible that the regions, which 
exhibited high fluorescence intensities, were localized in 
the chloroplasts (Fig. 5). In this case, the fluorescence 
emission brought information about the composition of the 
alga but also about the shape of the chloroplasts. These 
new parameters were characteristic of the alga and gave 
additional accuracy in the framework of a morphological 
recognition. One can also notice that the impurities in 
between the cells did not emit any fluorescence. It is 
known that the Chlorophyceae contains a majority of Chl a 
and Chl b (Fig. 5). However, the absolute intensity was 
difficult to use for a sensor since the excitation and 
emission wavelengths are very close to each other for the 
different Chl pigments (and the pass-band filters was not 
narrow enough) which could induce errors from parasitic 
or scattering light (Fig. 5C). As a consequence and in order 
to avoid such errors, the fluorescence ratios of the 
pigments on each segment area were used. These ratios 
appeared to be specific to a given alga (Cladophora sp. in 
this case) and were an operational parameter for automatic 
recognition (Fig. 7A). 

A similar treatment was also applied on Dolicho-
spermum sp. The fluorescence imaging of the three 
pigments (Chl a, Chl b and the combination of two) are 
presented in Fig. 6. In this case, the cyanobacteria 
contained Chl a and Chl a + b but no fluorescence of Chl b 
which was well represented by the fluorescence imaging. 
As already pointed out in the case of Chlorophycea, the 
shape of the chloroplasts in Fig. 6A was well delimited by 
the fluorescence of Chl a. Then, the spherical shape of 
these chloroplasts can be observed which was a 
characteristic of Dolichospermum sp.  
 
 

Discussion 
 
The imaging system and algorithms described in the 
present paper were developed to improve the recognition 
of aquatic organisms. The segmentation based on morpho-

logical characteristics is close to the visual recognition by 
the algologists and enables to extract size and shape of 
algae and cyanobacteria (van den Hoek 1963, Komárek  
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Fig. 5. Fluorescence images of Cladophora sp. with 
an excitation at 440 nm for chlorophyll a + b (A), at 
475 nm for chlorophyll b (B), at 400 nm for 
chlorophyll a independently (C) and image of 
segmentation by "k-means" of the fluorescence 
images of the three bands [chlorophyll (a+b), 
chlorophyll b, and chlorophyll a] (D). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Fluorescence images of Dolichospermum sp.
with an excitation at 440 nm for chlorophyll a + b
(A), at 475 nm for chlorophyll b (B), at 400 nm for 
chlorophyll a independently (C) and image of 
segmentation by "k-means" of the fluorescence 
images of the three bands [chlorophyll (a+b), 
chlorophyll b, and chlorophyll a] (D). 

 
and Anagnostidis 2000, Wacklin 2009). The different 
morphological parameters extracted from the segmen-
tation of the images have been used to create a database 
usable for automatic recognition of aquatic organisms 
(27 species). As demonstrated previously, the use of this 
database should enable the simple automatic recognition 
of phytoplankton and cyanobacteria by a non-specialist.  

Moreover, the multispectral imaging provided addi-
tional information. For Cladophora sp., the fluorescence 
showed the predominant presence of Chl a and the 
secondary presence of Chl b. These observations con-
firmed the classical composition of pigments in 
Chlorophyceae (Wilhelm and Lenarz-Weiler 1987). 
Together with the intensity and emission wavelength, the 
fluorescence imaging enabled to extract the shape of 
chloroplast which can be different from the shape of the 
filament or the cells. Such additional morphological 
information can then be extracted to extend the database.  

In the second experiment, the presence of Chl a and the 
absence of Chl b confirmed the classical composition of 
pigments in cyanobacteria (Kühl 2005). Chl b is not 
referred as a pigment in cyanobacteria and no intensity of 
fluorescence was detected. In the same way, the 
segmentation of fluorescence intensities revealed that the 
majority of pigments was Chl a and the inner cell showed 
well-defined shape of chloroplasts from where the fluo-
rescence emission originated. Therefore, morphological 
characteristics can also be extracted from the segmentation 
and processing of the fluorescence intensity images.  

The fluorescence intensities ratio plotted in three 
dimensions along the three bands of Chl a, b and 
combination of two was shown in Fig. 7. Such a spectral 
signature is unique for each organism and can be used for 
algae recognition. Moreover, the use of this parameter 
limited the errors of interpretation eventually originating 
from absolute intensity study as in the case of  
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Fig. 7. Fluorescence intensity ratios in 3D normalize between 0 
and 1, and obtained from k-mean areas of the image and 
corresponding to the three emission bands [chlorophyll a, 
chlorophyll (a+b), and chlorophyll b] observed in Cladophora 
sp. above (A) and Dolichospermum sp. below (B). 
 
Dolichospermum sp. That way, in the case of Cladophora 
sp., the ratio between Chl b and Chl a was specific. Despite 
a weak quantity of emission in Dolichospermum sp., the 
typical intensity profile deduced from the three bands map 
led to the establishment of characteristic data for these 
cyanobacteria.  

From a practical point of view, the main difficulty for 
such an automatic recognition in natural environment is 
linked to the turbidity of water and the presence of 
impurities in the aquatic environment (Kutser 2006). To 
overcome this problem, morphological treatments are 
based on selected regions which must correspond to the 
target species only. The selection of the largest region after 
segmentation treatment by watershed and eventually an 
increase of the magnification generally avoided the 
problem linked to impurities. Concerning the problem of 
turbidity, it can be resolved with a wide dilution of the 
swab.  An increase of the magnification could also limit 
this problem but the acquisition becomes more and more 
difficult due to the optical focalization.  

As described previously, the narrowness of absorption 
and emission bands of Chl pigments (Shedbalkar and  
 

 
 
Fig. 8. Algorithm for automatic recognition of phytoplankton, 
described by morphological processing and ratio of fluorescence 
intensities. 
 
Rebeiz 1992, Wörmke et al. 2007, Chen and Blankenship 
2011, Falco et al. 2011, Govindjee and Shevela 2011, 
Trytek et al 2011, Rabinowitch and Govindjee 2013) 
enabled to perform a multi-band imaging observation. 
Inthe same way, this recognition model based on Chls, can 
be extended to other molecules, such as carotenoids or 
phycobilins (French and Young 1952, McConnell et al. 
2002, Stamatakis et al. 2014). 

 
Conclusion: The microscopic ‘white-light images’ and 
‘fluorescence images’ of phytoplankton exhibited morpho-
logical and fluorescence characteristics of phytoplankton 
that enabled to identify the families and the genus of each 
specimen. The core method was to process the images 
using two automatic recognition algorithms. The morpho-
logical treatments were independent of the size and 
orientation of the specimens during acquisition and 
required only one parameter for segmentation. The 
outlines of the organisms were analyzed with Fourier 
descriptors. The analysis of fluorescence images provided 
the ratios of pigments in the cell and the chloroplasts. The 
morphological parameters, the Fourier descriptors and the 
information on pigment ratios were implemented to 
provide a database of aquatic organisms. 

Two different solutions containing different organisms 
were tested with this automatic recognition system 
(Fig. 8). By means of this process, Dolichospermum sp. 
and Cladophora sp. were successfully recognized from a 
morphological point of view thanks to the optical 
microscopy analysis of their shape and from a fluorescence 
emission point of view by the determination of their 
chlorophyll compositions related to the shapes of their 
chloroplasts.  
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