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Abstract

The steady-state oxygen evolution rate was previously shown to be stimulated by the disaccharide trehalose in PSII
suspension. Here we showed a similar increase in the rate of oxygen evolution in PSII core complexes from spinach in
solution and in proteoliposomes in the presence of trehalose. Using direct electrometrical technique, we also revealed that
trehalose had no effect on the kinetics of electron transfer from Mn to redox-active-tyrosyl radical, Yz (S; — S, transition),
while it accelerated the kinetics of electrogenic proton transport during S; — S3 and S4 — Sy transitions of the water-
oxidizing complex (WOC) induced by the first, second, and third laser flashes in dark-adapted PSII samples. These

observations imply that the effect of trehalose occurrs due to its interaction with the WOC.

Additional key words: effective functioning; osmolyte; photoelectric response; vectorial transfer.

Introduction

Photosystem II of oxygenic photosynthesis is a thylakoid
membrane-embedded protein complex that catalyzes the
light-induced transfer of electrons from water to plasto-
quinone accompanied by the production of molecular
oxygen and the release of plastoquinol into the membrane
phase. PSII is a large protein complex composed of 17
transmembrane and 3 peripheral subunits and ~100
cofactors (Ferreira et al. 2004, Guskov et al. 2009, Umena
et al. 2011). PSII turnover involves a donor [the water
oxidizing complex (WOC), redox-active tyrosine Yz of the
D1 subunit of reaction center (RC), chlorophylls (Chl) of
the RC] and an acceptor [pheophytin, a bound plasto-
quinone (Qa), and an exchangeable plastoquinone (Qg)]
side components (Wydrzynski and Satoh 2005, Renger
and Kiihn 2007, Shevela et al. 2012). An electron leaving
a specific RC Chl a molecules designated as Pgso is
transferred via the pheophytin to the primary quinone
acceptor, Qa, and subsequently to the terminal plasto-
quinone Qg. Electron transfer to Qg produces a semi-
quinone anion; it is stabilized at the Qg site and acts as the
acceptor in the second electron transfer that reduces the

semiquinone to quinol (QgH>), which then diffuses out of
the Qg pocket into the quinol pool (Shinkarev and Wraight
1993, Shinkarev 2004).

Water oxidation chemistry occurs in the WOC, which
consists of an inorganic MnsCaOs cluster and its sur-
rounding protein matrix. During each catalytic turnover,
the Mn cluster cycles via five kinetically characterized
intermediate states labeled S; (i = 0—4) (Kok ef al. 1970,
Shinkarev 2004, Wydrzynski and Satoh 2005, Dau and
Haumann 2007, Renger and Kiihn 2007, Shimada et al.
2011). Since the S; state (basic state) is the most stable in
the dark, the first four flashes cause transitions S; — S,,
S> — S3, S3— S, and So— S; and as a consequence, two
water molecules are split into four electrons, four protons,
and dioxygen at the catalytic center — the manganese
cluster (Kawakami et al. 2011, Muh and Zouni 2011,
Najafpour et al. 2016, Vinyard and Brudvig 2017). The
molecular oxygen is released during the S; — Sy transition
via intermediate state S4. The WOC is the most fragile site
within PSII and is easily susceptible to oxidative damage.
In this regard, the study of influence of the protectors
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on the PSII complexes is of particular interest. Trehalose,
a nonreducing disaccharide, which is naturally produced
by several species of eubacteria, archaea, some fungi,
certain invertebrates, green algae, and plants, has attracted
increased attention due to its unique physical-chemical
properties. The latter include relative inertness of the
glycosidic linkage, the existence of both crystalline and
amorphous state, thermostability, high glass transition
temperature, high stability over a wide pH range, and high
hydrophilicity (Williams et al. 1992, Bakaltcheva et al.
1994, Hincha et al. 1996, Crowe et al. 2001, Crowe 2002,
Apostolova et al. 2005, Jun et al. 2008, Palazzo et al. 2008,
Francia et al. 2009, Iturriaga et al. 2009, Fernandez et al.
2010, Luo et al. 2010, Ohtake and Wang 2011, Chang et
al. 2014, Lunn et al. 2014, Malferrari et al. 2014, 2016).
As for influence of trehalose on isolated PSII complexes,
stabilization of PSII-mediated electron transport by the
addition of this disaccharide has been demonstrated in
oxygen-evolving PSII core preparations (Williams and
Gounaris 1992). On the basis of FTIR spectroscopy data
(Polander and Barry 2012), it was suggested that trehalose
excludes water molecules from the solvation layer of the
WOC. Recently it was shown that trehalose in solution
significantly stimulates the steady-state rate of O;
evolution in both PSII membrane fragments and PSII core
complexes from plants (Mamedov et al. 2015). The

Materials and methods

Purification of PSII samples: PSII core complexes with
an active water-oxidation system were prepared from
spinach by solubilizing PSII membrane fragments (Ford
and Evans 1983) with dodecyl-f-D-maltoside as described
in Haag et al. (1990). These preparations contain antenna
(43, 47 kDa), RC (D1/D2/cytochrome bsso) proteins, and
33 kDa extrinsic protein. For inactivation of the WOC, a
suspension of PSII with 5 uM Chl was titrated to pH 8.3
for 10 min, and then the pH was readjusted to the desired
value. O, evolution in these samples was <10% of the
controls [=1,400 pumol(O,) mg(Chl)~ ' h™1].

Preparation of proteoliposomes: Reconstitution of PSII
complexes into lipid vesicles was carried out by mixing the
liposomes resulting from sonication of commercially
available soybean phospholipids (Sigma, type IV-S) in
50 mM HEPES-NaOH buffer (pH 7.5) containing 1.4%
(w/v) octyl-B-D-glucopyranoside with PSII complexes at
the lipid/protein ratio of 50:1 (w/w) and incubation for
30 min in the dark. Removal of detergent was performed
using a Sephadex-50 column (Mamedov et al. 1999). The
proteoliposome suspension was pelleted at 140,000 x g at
4°C for 1 h in a Coulter Optima L-90K (Beckman, USA)
ultracentrifuge, and the pellet was resuspended in 25 mM
MES-NaOH (pH 6.5) buffer containing 15 mM NaCl,
10 mM CaCl,, 0.3 M sucrose. Potassium ferricyanide
(1 mM), as an electron acceptor for Qa~ , was entrapped

INFLUENCE OF TREHALOSE ON THE PHOTOSYSTEM II

authors proposed that prevention of the time-dependent
degradation of PSII samples in the presence of this
disaccharide could be explained by stabilization of the RC.
A significant activation of electron transfer on both the
acceptor and the donor sides of PSII accompanied by a
two-fold increase in the rate of oxygen photo-consumption
was revealed upon addition of 1 M trehalose (the latter
effect was ten and 40 times lower upon the addition of 1 M
sucrose and 1 M glycine-betaine, respectively, in compa-
rison to trehalose) (Yanykin et al. 2015). In addition,
investigation of the effect of trehalose on photoinhibition
in apo-WOC-PSII preparations showed that trehalose
increases the capability of manganese (both exogenous
and endogenous) to donate electrons to reaction center and
strengthens the protective properties of Mn during photo-
inhibition, probably due to disaccharide-induced structural
changes at the oxidizing side (Yanykin et al. 2016).

In this work, we investigated the influence of trehalose
on the WOC in spinach PSII core particles using
polarography and direct electrometrical techniques. The
latter allows to detect vectorial transfer of charges by
proteins operating as generators of transmembrane electric
potential (Ay) (Semenov et al. 2006). The data obtained
indicate that the effect of trehalose occurs mainly due to its
interaction with the WOC.

within the aqueous inner space of liposomes. All
procedures were performed at 4°C.

Oxygen evolution: The rates of oxygen evolution under
continuous illumination [1,000 pmol(photon) m= s7!] of
PSII core particles in solution and in proteoliposomes were
measured at 25°C using a Clark-type oxygen electrode at a
concentration of 5 pg(Chl) mL™' in the absence and
presence of trehalose. The oxygen evolution rates of the
samples were 1,400 £ 80 pmol(O,) mg(Chl)™' h™'. Polaro-
graphic detection of O, evolution upon illumination of
samples by series of saturating light flashes was performed
at the concentration of 500 ug(Chl) mL". The light flashes
were made with a xenon L4633 flash lamp (Hamamatsu,
Japan).

Voltage transients: Generation of the voltage transients
(Ay) was recorded by direct electrometric technique with
resolution of 200 ns as described in Drachev et al. (1979)
and Semenov et al. (2006). The technique includes an
arrangement of specimens on the surface of a collodion
phospholipid-impregnated film separating two partitions
of the measuring cell. The measuring membrane should be
very thin to possess large electric capacitance for the
recording of fast charge translocation. During the enzyme
functioning, PSII creates Ay on the vesicle membrane,
which is then proportionately divided with the measuring
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membrane and thus can be detected by Ag/AgCl electrodes
situated on its different sides. Typically, the measuring
membrane has high resistance of 2-3 GQ, and the mea-
sured v decays with a time constant of several seconds.
The amplitude of the photoelectric signal is proportional to
the dielectrically weighted distances between redox
cofactors within protein matrix. A pulsed Nd-YAG laser

Results

Peculiarities of PSII core particles after incorporation
into liposomes: The S, state of the WOC is the most stable
in the dark, and hence in the dark-adapted PSII, maximum
oxygen evolution was initially observed in response to the
third flash (Fig. 1). The oscillation pattern proved that the
PSII core particles in proteoliposomes were similarly
synchronized in the dark as in PSII in solution (Haumann
et al. 1997, Mamedov et al. 1999). In contrast to the
steady-state conditions, where the rate of oxygen evolution
in the presence of trehalose both in solution and in
proteoliposomes increased (Table 1), the effect of this
disaccharide on the O, evolution induced by short flashes
was not observed (data not shown).

Electrometrically detected electric responses induced
by the first laser flash in dark-adapted liposome-
reconstituted intact PSII core complexes are shown in
Fig. 24. The asymmetric orientation of PSII in vesicles
(WOC is facing the external surface of the proteoliposomal
membrane) was previously demonstrated on the basis

OXYGEN EVOLUTION, a.u.
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Fig. 1. Oxygen oscillation pattern observed in dark-adapted
liposome-reconstituted PSII core particles in a buffer solution
containing 25 mM MES (pH 6.5), 15 mM NaCl, 10 mM CaClz,
0.3 M sucrose, 1 mM potassium ferricyanide. Flash duration:
500 ps, 0.5 Hz repetition.

Table 1. Effect of trehalose (1 M) on the steady-state oxygen
evolution in PSII core complexes.

Sample [umol(O2) mg(Chl)™ h™]
PSII in solution 1,400
PSII in solution + trehalose 3,340
Proteoliposomes with PSII 1,300

Proteoliposomes with PSII + trehalose 3,000
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(YG-481, Quantel, France, A = 532 nm,pulse half-width
15 ns, flash energy of 40 mJ cm2) was used as a source of
light flashes. The kinetic curves were processed and
decomposed into exponentials using program packages
Pluk (Kalaidzidis et al. 1997) and Origin (OriginLab
Corporation, USA).

of negligible influence of sodium dithionite on the
amplitude of the photoresponse (Mamedov et al. 2006,
Gopta et al. 2008). Qg was absent in PSII preparations
used in the present work (see Haag et al. 1990). Under
these conditions, a stable charge separation (S2Y zPss0Qa ")
in proteoliposomes is observed upon every flash in the
presence of ferricyanide (Haumann et al. 1997, Mamedov
et al. 1999). The slow decay of the flash-induced voltage
transient suggest that at least ~80% of PSII reaction centers
were still active in reducing tyrosyl radical Yz by
electrons from the WOC. In Mn-depleted PSII complexes,
where the first flash generates YzPgs0Qa as a result of Pego*
reduction by tyrosine Yz, the second and subsequent
charge separation can only generate Pego'Qa™ state
followed by recombination of this radical pair (Conjeaud
and Mathis 1980, Gerken et al. 1989, de Wijn and van
Gorkom 2002) with characteristic time of 60 ps (Fig. 2B).

Electrogenic reactions of the WOC in the presence of
trehalose: The asymmetric incorporation of purified PSII
core particles into closed lipid vesicles (Gopta et al. 2008)
enabled us to investigate the effect of trehalose exclusively
on the water-oxidizing side. To resolve electrogenic
reactions correlated with the turnover of the WOC, we
took the differences of photoelectric responses obtained on
consecutive flashes with dark-adapted samples. Using
direct electrometrical technique, electrogenic reactions
related to S; — S5, S; — S3, and S4 — Sy transitions of the
WOC induced by the first, second and third laser flashes
were previously observed in dark-adapted PSII cores in the
absence of trehalose (Haumann et al. 1997, Mamedov et
al. 1999, 2010).

Fig. 3 depicts the photoelectric responses induced by
the first laser flashes in proteoliposomes containing intact
(1) and Mn-depleted (2) PSII particles in the presence of
trehalose. The difference between traces 1 and 2 is shown
in the inset. The difference revealed additional electro-
genic rise component observed in the dark-adapted intact
sample. This component was absent in Mn-depleted
centers. The relative contribution of this component was
~3% of electrogenic component attributed to formation of
the ion-radical pair Yz'Qa. In the presence of trehalose,
the electrogenic rise was well approximated by monoexpo-
nential component with lifetime ~40 ps and was attributed
to electron transfer from Mn to the tyrosine radical Yz
(S1 — S, transition). In doing so, the amplitude and the
lifetime of this phase was similar to that of electrogenic
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Fig. 2. Photoelectric response in dark-adapted, liposome-reconstituted intact PSII core particles induced by the first laser flash (4).
Photoelectric response induced by the third flash in the Mn-depleted PSII complexes (B). The assay medium containing 25 mM MES
(pH 6.5), 15 mM NaCl, 10 mM CaClz, 1 M trehalose, and 1 mM potassium ferricyanide were used. Arrows indicate laser flashes.
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phase observed under the same conditions in the absence
of trehalose (see Table 2). Note that starting from the dark-
stable S;-state, the first flash induces the S; — S, transition
which involves Mn oxidation without proton release
(Haumann et al. 2005, Dau and Haumann 2007).
Difference of photoelectric responses induced by the
second and the fifth laser flashes (trace 2-5) of dark-
adapted PSII core complexes incorporated into liposomes
in the presence of 1 M trehalose (after normalization of the
fast amplitudes corresponding to the formation Yz'Qa") is
shown in Fig. 44. The second flash induced S, — S3
transition, while the fifth flash mainly induced S; — S;
transition, similarly to the first flash, but without

contributions from the non-heme iron. The difference
presented in Fig. 44 revealed component with relative
contribution ~5% of Yz"Qa~ formation and a characteristic
time of ~150 ps. In the absence of trehalose, the S; — S3
transition revealed a similar relative amplitude but the
kinetics of an additional rising electrogenic component
was slower (Table 2); the characteristic time of this
component was 240-270 us. It is believed that during
S; — Sj; transition, proton release from the Mn complex
and its transfer along a specific proton-conducting
pathway towards the water bulk phase is coupled to Ay
generation (Haumann et al. 1997, Mamedov ef al. 1999,
Petrova et al. 2013).

Table 2. Electrogenic reactions at the water-oxidizing side of PSIL. “The figures are taken from (Haumann et al. 1997, Mamedov et al.

1999, Petrova et al. 2013), ™ this work.

Conditions Relative contributions (% of Yz'Qa~ formation) and lifetimes (in parentheses)
of electrogenic reactions during S-state transitions
Si—S2 S2— Ss3 S4— So

PSII core particles” ~3 (3065 ps) 5-7 (240-270 ps) 4-6 (~4-6 ms)

PSII core particles + trehalose™ ~3 (40-50 ps)

5 (150160 ps)

~5.3 (~2.0-2.2 ms)
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Fig. 4. Differences between photoelectric responses induced by
the laser flashes after normalization of the fast amplitude
corresponding to the formation Yz'Qa™. 2-5 (4) and 3-5 (B),
flashes 2 (3) minus 5 from dark-adapted material; 2r—5r (insert)
and 3r-5r (insert), flashes 2 (3) minus 5 from repetitive
excitation. Note the different time scales in panels 4 and B.

As a control, the difference of voltage transients
induced by the second and fifth flashes upon conditions of
repetitive excitation was registered in the presence of 1 M
trehalose (Fig. 44, 2r—5r). This difference was close to
zero, as expected for an about equal contribution of all
S-transitions on both flashes (Haumann et al. 1997,
Petrova et al. 2013).

The difference between photoelectric responses
induced by the third and fifth flashes from dark-adapted
PSIT core samples in the presence of 1 M trehalose
(Fig. 4B, 3-5) revealed much slower additional kinetic
component induced by the third flash. The relative

Discussion

Trehalose stabilizes the structure of proteins and lipid
bilayers and serves as a medium for various biological
reactions (Crowe et al. 1984, Harrigan et al. 1990, Crowe
et al. 2001, Villarreal et al. 2004, Kan et al. 2015).
Chemically, trehalose forms hydrogen bonds with polar
residues in proteins and phospholipids in cell membranes,
and may therefore substitute for water that normally
comprises the ‘hydration shell’ surrounding biomolecules
(Carpenter and Crowe 1989, Jain and Roy 2009, Crowe et
al. 2014). Among the oligosaccharides, trehalose has the
highest ability for hydration (Villarreal et al. 2004).

We have previously shown that trehalose stimulates the
steady-state rate of oxygen evolution in PSII complexes in
a buffer solution (Mamedov et al. 2015). Here presented
results (Table 1) about similarity of the rate of oxygen
evolving activities of PSII cores in solution and in
proteoliposomes imply that the effect of this disaccharide
could be related to its influence on the donor side of PSII.
This conclusion has been supported by the following
reasons. First, the addition of trehalose had no effect on the
overall rate of Qs reoxidation, as assessed by single flash-
induced Chl fluorescence decay kinetics in the presence of
artificial electron acceptor in PSII core particles
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contribution of this component (which is mainly due to S4
— So transition) was ~5% of Yz'Qa~ formation with a
characteristic time of ~2.2 ms. The difference between
voltage transients induced by the third and fifth flashes of
the PSII samples in the absence of trehalose revealed a
similar relative amplitude (~5% of Yz'Qa") of this compo-
nent but with about twofold slower kinetics (Table 2).

The difference between photoelectric responses 3 and
5 from repetitive excitation (Fig. 4B, 3r—5r) was negligible
in accordance with an about equal contribution of all
S-transitions on each flash.

The So — S transition of the WOC induced by the
fourth flash most likely involved oxidation of the Mn
complex by radical Yz as well as charge-compensating
deprotonation of an amino acid residue located in the
vicinity of the manganese cluster (Haumann et al. 2005,
Dau and Haumann 2007). The subtraction of the fifth from
the fourth flash-induced photoelectric signal did not reveal
any difference (data not shown). Since the fifth flash is
considered similar to the first flash, the photoelectric
signals in both cases are due to the sum of charge separa-
tion steps including electron transfer between Pgso and Qa,
reduction of Peso™ by Yz, and subsequent re-reduction of
Yz by Mn. In doing so, the proton released during the So
— S, transition is electrically silent (Haumann ez al. 1997,
Semenov et al. 2008, Petrova et al. 2013).

The relative amplitudes and characteristic times of the
individual S-transitions in PSII core complexes in the
absence and in the presence of trehalose are summarized
in Table 1.

(Mamedov et al. 2015). An analogous data was earlier
obtained for PSII membrane fragments in the case of
sucrose and glycerol (Halversson and Barry 2003). On the
other hand, since the phospholipid membrane is
impermeable for trehalose, added disaccharide can only
interact with the water-oxidizing side of PSII. The
similarity of the steady-state rates of oxygen evolution in
solution and in proteoliposomes (Table 1) indicate in favor
of this assumption. The results obtained with PSII
membrane fragments by measurements of the steady-state
oxygen-evolving activities and S, state of the WOC by
EPR spectroscopy also indicate the effect of cosolvents
(sucrose, glycerol) on the donor side (Halversson and
Barry 2003).

As it was shown earlier (Haumann et al. 1997,
Mamedov et al. 1999, Petrova et al. 2013), in dark-adapted
PSII samples, only S, — S3; and S4 — Sy transitions,
induced by the second and third laser flashes, respectively,
and attributed to proton transport from immediate
environment of the Mn complex to the water bulk phase,
are coupled to Ay generation. The kinetics of these
processes is slowed down in a D,O containing assay
medium (H,O-D,0O exchange).



The present work showed that trehalose accelerated the
rate of the electrogenic proton transport during S; — S3 and
S4 — So transitions, while the kinetics of transfer of an
electron from the manganese complex to the redox-active
tyrosyl radical, Y7 (S; — S;transition) within the protein,
was not affected (Table 2).

In addition to reaction center D1 subunit, the 33 kDa
extrinsic protein (also referred to as the Mn-stabilizing
protein) connecting the WOC active site to the aqueous
phase, also participates in a proton-transfer network
(Shutova et al. 2007, McEvoy and Brudvig 2008, Shoji et
al. 2013, Najafpour et al. 2016). Proton transfer requires
precise distance and orientation of the chain of hydrogen-
bonded water molecules and can conceivably be controlled
by protein dynamics. In doing so, the S, — Szand S4— Sy
transitions can be more susceptible to structural pertur-
bation induced by dehydration (Noguchi and Sugiura
2002).

Experiments carried out at similar viscosity for
trehalose (1 M) and sucrose (1.42 M) (Ohtake and Wang
2011) at 23°C imply that observed findings are probably
due to specific physical and chemical properties of
trehalose. The increase in viscosity, due to addition of
glycerol or sucrose, has a potential to slow the rate of
chemical reactions that are diffusion-limited or involve
large scale translational motion (Uribe and Sampedro
2003). There is no electron or proton transfer reactions in
PSII that is known to involve such a large-scale
translational motion (Halversson and Barry 2003). A
candidate reaction, for a diffusion-associated effect, might
be protonation of the twice reduced secondary quinone
acceptor Qg induced by the second laser flash, but PSII
preparations used did not contain Qg. It seems therefore
less likely that an increase in viscosity would increase the
steady-state oxygen evolution rate in PSII core particles
and this is in harmony with data obtained in the case of
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