Morphological, anatomical and physiological traits of *Euryodendron excelsum* as affected by conservation translocation (augmentation vs. conservation introduction) in South China

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

Southern Research Station, USDA Forest Service, Asheville, NC 28804, North Carolina, USA

Department of Earth and Environment, Florida International University, Miami, Florida 33199 USA

****Fairchild Tropical Botanic Garden, Miami, Florida 33156 USA****

Abstract

Euryodendron excelsum is a rare and endangered evergreen tree in South China. We conducted two experimental translocations (augmentation and conservation introduction) on this species and assessed morphological, anatomical and physiological traits of leaves after translocation. The introduction plants showed smaller specific leaf area, less developed palisade tissues, smaller palisade/spongy tissue ratio, stomata density and anthocyanin content, lower values of maximal quantum yield of PSII photochemistry, photochemical quenching coefficient, net photosynthetic rate, light-saturated net photosynthetic rate, light-saturation point, but higher light-compensation point. These differences in traits help explain why augmented plants grew faster than introduced plants. We found that *E. excelsum* can adapt to wide ranges of light intensity and water availability, including conditions encountered at the introduction site. Our findings suggest that some endemic and endangered plants with narrow distribution may adapt to different habitat conditions by rapidly altering their morphological, anatomical, and physiological traits.

Additional key words: assisted colonisation; morphological response; physiological response; reintroduction.

Introduction

Species around the globe are disappearing at an unprecedented rate because of several factors including narrow distribution ranges, reproduction obstacles, over-exploitation, and habitat degradation (Maschinski and Haskins 2012, Mounce et al. 2017). These factors are generally exacerbated by climate change. An important method of preventing species extinction is conservation translocation (Hoegh-Guldberg et al. 2008, Seddon 2010, IUCN 2013). Conservation translocations can be facilitated by the *ex situ* collection of endangered species in botanical gardens through the provision of propagules or individual plants (Ren et al. 2012). There are three main types of conservation translocation: augmentation, reintroduction, and conservation introduction (Menges 2008, Liu et al. 2015). In augmentation, plants are added to an existing population in order to increase the population size or genetic diversity. In reintroduction, individuals of a species are planted into an area formerly inhabited by the species. In conservation introduction, plants are moved into new areas that are not part of the historic distribution of the species (IUCN 2013, Ren et al. 2014, Liu et al. 2015).

The monitoring of plant reintroductions is currently inadequate (Godefroid et al. 2011, Maschinski and Haskins 2012, Liu et al. 2015). In particular, plant functional traits and their responses to translocation sites, though important to explain reintroduction success or failure (Ren et al. 2010, Catoni and Gratani 2013), are seldom studied (Godefroid and Vanderborght 2011, Ren et al. 2014).

Received 15 November 2017, accepted 20 July 2018.

Corresponding author; phone: +86-20-37252916; fax: +86-20-37252831; e-mail: renhai@scbg.ac.cn

Abbreviations: AQY – apparent quantum yield; Chl – chlorophyll; E – transpiration rate; EHZ – Ehuangzhang Nature Reserve; F₀ – minimal fluorescence yield of the dark-adapted state; F₀′ – minimal fluorescence yield of the light-adapted state; Fm – maximal fluorescence yield of the dark-adapted state; Fm′ – maximal fluorescence yield of the light-adapted state; Fv/Fm – maximal quantum yield of PSII photochemistry; ILUE – instantaneous light-use efficiency; In-Ds – Introduction-Dry season; In-Ws – Introduction-Wet season; IUCN – International Union for Conservation of Nature; LCP – light-compensation point; LSP – light-saturation point; NPQ – nonphotochemical quenching; Pmax – light-saturated net photosynthetic rate; Pn – net photosynthetic rate; Rm – respiration rate; SCBG – South China Botanical Garden; WUE – instantaneous water-use efficiency; ΦPSII – photochemical quenching coefficient.

Acknowledgments: The authors thank Dr. Nan Liu and Mr. Zhifang Lin for valuable suggestions and thank Mrs. Chunqing Long, Mrs. Rufang Deng, and Mrs. Xiaoying Hu for index measurements. This research was supported by the National Natural Science Foundation of China (31570422), Guangzhou Science and Technology Program (201710010137), and the Guangdong Science and Technology Program (2016A030303044). Thanks are also due to Prof. Bruce Jaffee for English editing and constructive comments.
Information on the physiological and morphological traits of rare and endangered plants could also be useful for both in situ conservation and ex situ conservation under climate change (Busch et al. 2011, Catoni and Gratani 2013).

Euryodendron excelsum H. T. Chang is an evergreen tree (Fig. 1) of the family Theaceae; the genus is monotypic. Worldwide, there are only about 100 individuals of this species, and these occur at ten isolated sites in Yangchun City, Guangdong Province, South China. Two populations in neighboring Guangxi Zhuang Autonomous Region have become extinct because of human destruction. E. excelsum is ranked as the second most endangered plant in China (Shen et al. 2007), listed on the first grade class protected plants in China (Shen et al. 2009), and classified as critically endangered by the International Union for Conservation of Nature (IUCN) (Barstow 2017).

Plants of E. excelsum are subject to habitat fragmentation, but showed a high level of genetic variations both within and between populations (Luo et al. 2005, Su et al. 2009). E. excelsum seeds are not dormant, with up to 70% germination rates. The survival rate of cuttings is about 20% (Shen et al. 2016). E. excelsum grows slowly, but arbuscular mycorrhizal fungi can increase seedling survival and growth (Shen and Wang 2011). The ecophysiological traits of E. excelsum and its reintroduction possibilities have not been studied yet.

In this study, we conducted two translocation experiments. One experiment involved augmentation of an existing population, and the other included conservation introduction. The latter can be treated as an ex situ collection as well as it is located in a botanical garden. We compared the morphological, anatomical, and physiological traits of E. excelsum plants at the augmentation vs. introduction sites. We hypothesized that E. excelsum plants can adapt to different environments by changing their morphological and physiological traits.

Materials and methods

Study area: The study was conducted simultaneously at two sites. One site was at the Ehuangzhang Nature Reserve, Yangchun City, Guangdong Province, China (hereafter referred to as EHZ, the augmentation site) and the other was at the South China Botanical Garden (hereafter referred to as SCBG, the conservation introduction site), Guangdong Province, South China. SCBG had a fragment of secondary forest similar to that found at EHZ where E. excelsum originally grew. This natural habitat at SCBG has been subject to minimum human disturbance. Based on the climate change report, the climate at SCBG is predicted to become warmer and wetter within the next 20 years (Zhou et al. 2013). We hope to establish an E. excelsum population at SCBG as an ex situ conservation collection and a measure to address the climate change challenge to the species.
EHZ (21°54′36″N, 111°33′29″E) in Yangchun City is an original distribution area of *E. excelsum*. It has a lower subtropical monsoon climate, with a mean annual temperature of 21.7°C and a total annual rainfall of 2,003 mm (Yangchun Meteorological Station). The elevation is about 160 m. The soil is oxisolic with a high sand content in the upper layer and a pH ranging from 6.0 to 6.8 (Shen et al. 2009).

SCBG (23°35′30″N, 112°57′22″E) is about 230 km outside of the original distribution area of *E. excelsum*. It also has a lower subtropical monsoon climate, with a mean annual temperature of 20.8°C and a total annual rainfall of 1,612 mm (South China Botanical Garden Meteorological Station). The elevation is about 58 m. The soil is lateritic soil with a pH ranging from 4.5 to 6.0. It is slightly cooler and drier than EHZ.

Plant material: The *E. excelsum* plants used in this study were propagated from seeds collected from populations at EHZ. These seeds were germinated and seedlings were grown in a nursery. The soil used in the nursery were collected from areas nearby wild *E. excelsum* plants. In April 2012, 20 healthy, 3-year-old plants of *E. excelsum* i.e., *E. excelsum* plants used in this study were cut into small pieces, immersed in methanol and HCl (99:1, v/v), and kept at 4°C in the dark for 5 d. Absorption of the extract was measured at 663, 645, and 440 nm with a UV-visible spectrophotometer (UV-3802, Unico, China), and the contents of Chl *a*, Chl *b*, and Car were then calculated (Wang et al. 2016).

To determine the anthocyanin content, the leaves were cut into small pieces, immersed in methanol and HCl (99:1, v/v), and kept at 4°C in the dark for 5 d. Absorption of the extract was measured at 530 and 650 nm with a UV-visible spectrophotometer, and the anthocyanin content was calculated (Reddy et al. 1995; Wang et al. 2016).

Chl fluorescence parameters: One mature leaf and one young leaf from each of five randomly selected plants from each site were randomly selected. The following Chl fluorescence parameters of PSII were measured with a portable fluorescence spectrometer (PAM-2100, Heinz Walz, Effeltrich, Germany): the minimal fluorescence yield of the dark-adapted state (*F₀*), maximal fluorescence yield of the dark-adapted state (*Fₘ*), minimal fluorescence yield of the light-adapted state (*F₀'*) maximal fluorescence yield of the light-adapted state (*Fₘ'*) and steady-state fluorescence yield (*Fₛ*). These leaves were dark-adapted for 30 min in leaf clamps before measurement. *F₀* and *Fₘ* were measured in the early morning before dawn, while other parameters were measured between 08:30–11:00 h (Wang et al. 2016). *F₀* was measured under a light intensity of 0.5 μmol(photon) m⁻² s⁻¹, and *Fₘ* was induced by 0.8-s pulse of saturating light (PPFD of 2,700 μmol m⁻² s⁻¹). The leaves were continuously irradiated with an actinic light of 138 μmol(photon) m⁻² s⁻¹ for measurement of fluorescence quenching components. *Fₘ* was determined when the leaf reached a steady-state fluorescence, and the steady-state fluorescence *Fₛ* was then recorded within 5 min. To measure *F₀*, the leaves were irradiated with a weak 5-s red light. The maximum quantum yield of PSII photochemistry [Φₚₛ = (Fₘ – F₀)/Fₘ], photochemical quenching coefficient [Φₚₚₛ = (Fₘ – Fₛ)/(Fₘ – F₀)], and nonphotochemical quenching [NPQ = (Fₘ – Fₛ/Fₘ)] were calculated (Souza et al. 2004).

Photosynthetic light-response curve and photosynthetic parameters: A photosynthetic light-response curve was measured under constant conditions (CO₂ concentration of 400 μmol mol⁻¹, 25°C) with a portable photosynthesis system (LI 6400; LI-COR, Lincoln, NE, USA) on a sunny day. The photosynthetic capacity was measured at a PPFD of 1,400; 1,200; 1,000; 800, 500, 300, 150, 100, 50, 30, 15, and 0 μmol m⁻² s⁻¹. The light-saturated net photosynthetic rate (*Pₘ*), respiration rate (*Rₘ*), apparent quantum yield (AQA), light-compensation point (LCP), light-saturation point (LSP), instantaneous water-use efficiency (WUE =...
presented.

Statistical analysis: When mean values were compared, a t-test (paired samples, two-tailed) in SPSS was used to assess the differences between young and mature leaves, augmentation and introduction, and dry and wet seasons. A $P_{\leq 0.05}$ was considered statistically significant. Unless noted otherwise, means and standard deviations (SD) are presented.

Results

Plant survival rate and growth: After two years, survival rate of the transplanted plants was 100% at EHZ (the augmentation site) and 90% at SCBG (the introduction site). The initial height of all plants was 35.1 ± 2.1 cm. In June of 2015 (38 months after transplanting), the plants were taller at EHZ (85.2 ± 5.1 cm) than at SCBG (56.5 ± 8.3 cm, mean \pm SD). These results indicate that both survival rate and growth of augmentation plants were greater than that of the introduction plants.

Leaf morphological and anatomical traits: In all cases (dry vs. wet season, augmentation vs. introduction), leaf area was smaller, specific leaf area was greater, and leaf thickness was lesser in young leaves than that at mature leaves (Table 1). Leaf area, specific leaf area, and leaf thickness of both young and mature leaves were lower at the introduction site than at the augmentation site in both dry and wet seasons (Table 1).

Although stomata density was greater for young than for mature leaves, the stomata of young leaves were smaller and were mostly closed (Fig. 2). The structure of the palisade tissue was developed in mature leaves but not in young leaves, and the ratio of palisade tissue/spongy tissue was lower in young leaves than that of mature leaves (Table 1).

Compared to the introduction plants, the augmentation plants had a greater specific leaf area, more developed palisade tissues, a greater palisade tissue/spongy tissue ratio, and a greater stomata density (Table 1).

Leaf pigment contents: For both introduction and augmentation plants in both wet and dry seasons, Chl and Car contents were lower and the anthocyanin content was higher in young than that in mature leaves (Table 2).

The Chl, Car, and anthocyanin contents were greater in the augmentation plants than that of introduction plants in both dry and wet seasons. The Chl content of the introduction plants did not significantly differ between dry and wet season, while the Chl content of augmentation plants was greater in the wet season than that in the dry season. The anthocyanin content was greater in the augmentation plants than that of introduction plants in the dry season (Table 2).

Table 1. Morphological and anatomical traits of Euryodendron excelsum leaves as affected by leaf age (young and mature), site (augmentation and introduction), and season (dry and wet). Data for within each row, different leaf age indicate significant differences between leaf ages at $P_{<0.05}$. Within each row, different letters indicate significant differences between sites. Different letters within the same site and season indicate significant differences between leaf ages. Asterisks indicate significant differences between sites within the same season and site. Significant differences between seasons, and asterisks within the same season and site indicate significant differences between leaf ages at $P_{<0.05}$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>In-Ds</th>
<th>In-Ws</th>
<th>Au-Ds</th>
<th>Au-Ws</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf area [cm2]</td>
<td>5.89 ± 1.28</td>
<td>9.86 ± 1.72</td>
<td>8.38 ± 3.99</td>
<td>11.01 ± 1.64</td>
</tr>
<tr>
<td>Specific leaf area [g m$^{-2}$]</td>
<td>88.36 ± 8.69</td>
<td>119.91 ± 3.73</td>
<td>73.82 ± 3.99</td>
<td>98.70 ± 4.63</td>
</tr>
<tr>
<td>Blade thickness [μm]</td>
<td>35.55 ± 1.38</td>
<td>60.99 ± 1.17</td>
<td>55.55 ± 4.96</td>
<td>64.05 ± 3.22</td>
</tr>
<tr>
<td>Thickness of palisade tissue [μm]</td>
<td>126.68 ± 4.31</td>
<td>187.91 ± 3.73</td>
<td>119.47 ± 3.53</td>
<td>64.05 ± 3.22</td>
</tr>
<tr>
<td>Thickness of spongy tissue [μm]</td>
<td>58.73 ± 4.66</td>
<td>98.70 ± 14.63</td>
<td>64.05 ± 3.22</td>
<td>59.66 ± 2.28</td>
</tr>
<tr>
<td>Stomata density [number mm$^{-2}$]</td>
<td>94.18 ± 5.46</td>
<td>94.48 ± 5.46</td>
<td>73.42 ± 3.09</td>
<td>73.42 ± 3.09</td>
</tr>
<tr>
<td>Stomata density [number mm$^{-2}$]</td>
<td>713.07 ± 110.39</td>
<td>81.18 ± 7.31</td>
<td>81.18 ± 7.31</td>
<td>81.18 ± 7.31</td>
</tr>
<tr>
<td>Stomata area ratio</td>
<td>1,801.48 ± 61.88</td>
<td>756.18 ± 54.49</td>
<td>756.18 ± 54.49</td>
<td>756.18 ± 54.49</td>
</tr>
<tr>
<td>Stomata/spongy tissue ratio</td>
<td>0.63 ± 0.16</td>
<td>0.63 ± 0.16</td>
<td>0.63 ± 0.16</td>
<td>0.63 ± 0.16</td>
</tr>
<tr>
<td>Leaf area / thickness of palisade tissue ratio</td>
<td>166.32 ± 25.98</td>
<td>166.32 ± 25.98</td>
<td>166.32 ± 25.98</td>
<td>166.32 ± 25.98</td>
</tr>
</tbody>
</table>
Concentration of *Euryodendron excelsum*

Chl fluorescence parameters: F_{v}/F_{m} and Φ_{PSII} values were lower but NPQ values were higher for young leaves than for mature leaves. F_{v}/F_{m} and Φ_{PSII} values were lower but NPQ values were higher in the dry season than that in the wet season (Fig. 3). F_{v}/F_{m} and Φ_{PSII} values of the PSII were significantly greater in the augmentation plants than that of introduction plants.

For introduction plants, the NPQ value was greater in the dry season than that in the wet season for young leaves, but the opposite was true for mature leaves.

Photosynthetic light-response curve and photosynthetic parameters: P_N increased rapidly as light intensity increased and then reached a steady state (Fig. 4). P_N was lower for young leaves than for mature leaves under different light intensities and reached saturation values at lower light intensities in young than that in mature leaves. Whether in the dry season or wet season, P_N of leaves of the same age was greater for augmentation plants than for introduction plants under the same light intensity (Fig. 4).

The average P_{max} and ILUE values of the young leaves of augmentation and introduction plants were similar in the dry and wet season and were lower than those of mature leaves (Table 3). Compared to the young leaves, mature leaves had lower LCP and higher LSP values.

P_{max} was lower in the young leaves than that of mature leaves of the augmentation plants in the wet season (Table 3). P_{max} was greater in the augmentation plants than that of for introduction plants. The mature leaves of augmentation plants had lower LCP and higher LSP values than the mature leaves of introduction plants.

The P_{max}, ILUE, AQY, and LSP values of the mature leaves of augmentation plants were lower in the dry season than that in the wet season, while the opposite was true for LCP and R_0 values (Table 3). The P_{max}, ILUE, and AQY values of the mature leaves of introduction plants were greater in the dry season than in the wet season.

Like P_N, transpiration rate (E) increased with light intensity. For mature leaves of augmentation plants, E was higher in the wet season than in the dry season (Fig. 5A). The maximum WUE was higher in mature leaves than that of young leaves (Fig. 5B). For mature leaves, WUE values were greater in the dry season than in wet season. E values were greater for augmentation plants than that for introduction plants (Fig. 5A).

Discussion

The adaptive differences in functional traits of young vs. mature leaves: The changes in morphological and physiological traits between young and mature leaves of *E. excelsum* should help plants survive during augmentation and introduction. As leaves mature, the increase in specific leaf area, stomata density, and number of closed stomata, and the decrease in leaf area, leaf thickness, stomata size, and ratio of palisade tissue/spongy tissue should enable the plant to capture more light energy, adapt to drought, and increase their growth rate. These changes can also help reduce damage under strong light conditions.

The young leaves of *E. excelsum* are initially red. As the leaves mature, they gradually turn green, and their Chl and Car contents increase while their anthocyanin content decreases. Given that young leaves may experience significantly greater damage from herbivory and UV light than mature leaves, the red color of young leaves can be explained by two hypotheses. The photoprotection hypothesis suggests that red pigments (anthocyanins) protect against photoinhibition or photooxidation and thus allow a more efficient resorption of nutrients (Feild et al. 2001, Hoch 2001, Chen and Huang 2013). The animal–plant interaction hypothesis suggests that red leaves usually have better chemical defenses or poorer nutrition value than that of green leaves and that the red color signals these characteristics to herbivorous insects (Dominy 2002, Archetti 2009, Chen and Huang 2013).
In addition, the high anthocyanin content and low Chl content of young leaves decrease the absorption of light energy and thereby prevent the generation of an excess of excitation energy (Manetas 2006). The higher Chl content of the mature leaves should increase their ability to absorb light energy. Although the anthocyanin content was low in mature leaves, the photosynthetic organs were well developed, and the high Car content could help prevent peroxidation injury.

The Chl fluorescence parameters of the young leaves showed that the PSII reaction center could effectively dissipate the surplus light energy by the nonphotochemical pathway; this would reduce the pressure on the PSII reaction center. In an arid environment, the enhanced PSII non-radiation dissipation capacity of *Begonia fimbristipula* leaves reduced the damage to the photosynthetic organs caused by excess light (Wang et al. 2016).

The young leaves had lower *P* max, lower LSP, and...
greater LCP values than that of the mature leaves. This could be related to the higher anthocyanin content in the young leaves. When plants are stressed by drought, high temperature, or strong light, they can protect the mesophyll by filtering and attenuating high-intensity blue-violet light in order to reduce photooxidation damage (Wang et al. 2016). The mature leaves had lower LCP and higher LSP values than the young leaves, which indicated that the mature leaves could use longer light-exposure times and a wider range of light wavelengths than that of the young leaves, which would enable the mature leaves to accumulate more dry matter than the young leaves. In the dry season, the reduced transpiration rates for mature leaves were evidently a response to the arid environment.

Differences between functional traits in plants transplanted at augmentation vs. introduction sites:
We found that the augmentation plants grew faster than introduction plants. Differences in the morphological and physiological traits between augmentation and introduction plants demonstrated the advantage of plants at its native site over the introduction site. They showed that the plants at the native habitat can capture more light, assimilate more CO₂, and grow faster than those at the introduction site. The relatively slow growth of the introduction plants in the non-native habitat was accompanied by a decrease in a leaf size, which might be a response to the slightly cooler environment.

The Chl content and Car contents were higher in the augmentation plants than that of introduction plants in both dry and wet seasons and in both young and mature leaves. Therefore, the ability to utilize light energy was greater for augmentation plants, especially under drought stress. The anthocyanin content, also greater in

Table 3. Photosynthetic parameters of *Euryodendron excelsum* leaves as affected by leaf age (young and mature), site (augmentation and introduction), and season (dry and wet).<ref>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>In-DS Young</th>
<th>Mature</th>
<th>In-WS Young</th>
<th>Mature</th>
<th>Au-DS Young</th>
<th>Mature</th>
<th>Au-WS Young</th>
<th>Mature</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<sub>max</sub> [μmol m<sup>−2</sup> s<sup>−1</sup>]</td>
<td>4.095 ± 0.349<sup>a</sup></td>
<td>4.35 ± 0.642<sup>b</sup></td>
<td>3.56 ± 0.698<sup>a</sup></td>
<td>4.47 ± 0.428<sup>b</sup></td>
<td>3.51 ± 0.492<sup>a</sup></td>
<td>4.63 ± 0.392<sup>b</sup></td>
<td>4.35 ± 0.492<sup>b</sup></td>
<td>4.47 ± 0.130<sup>b</sup></td>
</tr>
<tr>
<td>R<sub>D</sub> [μmol m<sup>−2</sup> s<sup>−1</sup>]</td>
<td>1.596 ± 0.148<sup>a</sup></td>
<td>2.007 ± 0.148<sup>b</sup></td>
<td>1.911 ± 0.115<sup>a</sup></td>
<td>1.98 ± 0.115<sup>b</sup></td>
<td>1.88 ± 0.068<sup>a</sup></td>
<td>1.92 ± 0.061<sup>b</sup></td>
<td>3.04 ± 0.152<sup>b</sup></td>
<td>3.04 ± 0.061<sup>b</sup></td>
</tr>
<tr>
<td>AQY [mol mol<sup>−1</sup>]</td>
<td>0.048 ± 0.011<sup>a</sup></td>
<td>0.068 ± 0.011<sup>b</sup></td>
<td>0.048 ± 0.011<sup>a</sup></td>
<td>0.068 ± 0.011<sup>b</sup></td>
<td>0.022 ± 0.003<sup>b</sup></td>
<td>0.022 ± 0.003<sup>b</sup></td>
<td>0.049 ± 0.011<sup>b</sup></td>
<td>0.049 ± 0.011<sup>b</sup></td>
</tr>
<tr>
<td>LCP [μmol m<sup>−2</sup> s<sup>−1</sup>]</td>
<td>75.11 ± 6.686<sup>a</sup></td>
<td>57.04 ± 6.686<sup>b</sup></td>
<td>64.12 ± 5.748<sup>a</sup></td>
<td>46.2 ± 5.748<sup>b</sup></td>
<td>57.25 ± 5.748<sup>a</sup></td>
<td>46.2 ± 5.748<sup>b</sup></td>
<td>57.25 ± 5.748<sup>a</sup></td>
<td>46.2 ± 5.748<sup>b</sup></td>
</tr>
<tr>
<td>LSP [μmol m<sup>−2</sup> s<sup>−1</sup>]</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>ILUE [μmol mmol<sup>−1</sup>]</td>
<td>2.38 ± 0.190<sup>a</sup></td>
</tr>
</tbody>
</table>

Within each row, different capital letters within the same season and same leaf age indicate significant differences between leaf ages at P < 0.05.
Values are means ± SD, Au-Ds – Augmentation-Dry season; Au-Ws – Augmentation-Wet season; In-Ds – Introduction-Dry season; In-Ws – Introduction-Wet season; AU – Augmentation; In – Introduction. The role of anthocyanins in senescing leaves of red-osier dogwood. – Plant Physiol. 127: 566-574, 2001.

Chen Y.Z., Huang S.Q.: Red young leaves have less mechanical defense than green young leaves. – Oikos 122: 1035-1041, 2013.

Chen Y.Z., Huang S.Q.: Red young leaves have less mechanical defense than green young leaves. – Oikos 122: 1035-1041, 2013.

© The authors. This is an open access article distributed under the terms of the Creative Commons BY-NC-ND Licence.