Photosynthesis response to severe water deficit in terminal stems of *Myriolimon ferulaceum*

M.À. CONESA* and J. GALMÉS

Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Ctra. Valldemossa km. 7.5, 07122 Palma, Balearic Islands

Abstract

M. ferulaceum is a leafless species and close relative to *Limonium* inhabiting the same harsh environments in the rocky coast and salt marshes, with discontinuous distribution in western and central coast of the Mediterranean Basin and southern Iberian Peninsula. In order to test for the drought adaptive importance of photosynthesis in stems, and to decipher advantages and drawbacks of stem vs. leaf photosynthesis under drought conditions, *M. ferulaceum* was grown under the well-watered and severe water deficit conditions used in previous experiments with *Limonium*. Growth, stem anatomy, photosynthesis and gas exchange, and Rubisco-related traits were measured. Growth capacity in *M. ferulaceum* was higher than that of many *Limonium* under well-watered conditions, where limitations to photosynthesis were mostly biochemical. However, severe water deficit conditions had a higher impact in the leafless species, where the main photosynthesis limitation was stomatal conductance. High intrinsic water-use efficiency under well-watered conditions and high mesophyll conductance to stomatal conductance ratio under severe water deficit conditions were the main drivers of growth capacity in *M. ferulaceum*.

Additional key words: biomass; limitation analysis; *rbc*L; Rubisco kinetics; water consumption; water stress.

Introduction

Drought stress, frequently associated with high temperature and radiation, is the most important constraint to plant survival and consequently one of the main drivers of plant adaptation to the environment (Chaves et al. 2003, 2009). Diverse strategies to overcome drought stress have been described across species, environments, and growth forms (e.g. Ludlow 1989, Chaves et al. 2002, Lawlor and Cornic 2002, Munns, 2002, Bréda et al. 2006, McDowell et al. 2008, Nardini et al. 2014). Although the leaf is the main photosynthetic organ in plants, some C$_3$ species from arid and semiarid habitats cope with drought through different degrees of deciduousness (e.g. Nilsen and Sharifi 1997, Galmés et al. 2005, Correa and Ascensão 2017). In such cases, the photosynthesis (*P$_s$*) of green stems has an important role in plant survivorship (Nilsen 1995, Aschan and Pfanz 2003, Ávila et al. 2014).

Two photosynthetic syndromes have been proposed in green stems of nonsucculent plants, namely, stem net *P$_s$* and stem recycling *P$_N$*. The former occurs in stems with high stomata densities. The latter includes the cortical *P$_s$* in stems with poor or no stomata, and is also expected to occur in plants with stem net *P$_N$* (Ávila et al. 2014). Recycling *P$_N$* involves a large proportion of refixation of the respired CO$_2$. Depending on the species, it can be an important part of the overall plant carbon economy, although leaf *P$_s$* usually constitutes the main bulk. The stem net *P$_N$* is frequent in leafless desert and Mediterranean species in which the stems are the main photosynthetic organs substituting the leaf function (reviewed in Ávila et al. 2014, Vandegehuchte et al. 2015). Moreover, the stem stomatal conductance (*g$_s$*) is proportionally lower than that of the leaf (Osmond et al. 1987, Comstock and Ehleringer 2002, Bréda et al. 2003, Ávila et al. 2014).

This research was supported by the project AGL2009-07999 (Plan Nacional, Spain) awarded to JG. The authors thank Arantzazu Molins and Marcel Font for Rubisco kinetics and specificity factor measurements, respectively, and Miguel Truyols and collaborators of the UIB Experimental Field and Greenhouses (UIB Grant 15/2015) for their support. *M. ferulaceum* field pictures courtesy of Pere Fraga Arguimbau.
1988, Nilsen and Bao 1990, Tinoco-Ojanguren 2008) resulting in higher intrinsic water-use efficiency (WUE, as P$_v$/g.) for the stem as compared to the leaf (Santiago et al. 2016). As compared to leaves, it has been suggested that the adaptive importance of green stems is higher in minimizing carbon loss through respiration rather than minimizing water loss (Berveiller et al. 2007, Ávila et al. 2014).

The Balearic species of Limonium inhabit harsh environments in saline soils in the rocky coast and marshes of the archipelago, where drought and salinity limit survivorship of most species. Due to the low plant occurrence, Limonium species are highly exposed to insolation and abrasion of the saline winds from the sea. Previous studies demonstrated important adaptations allowing to withstand severe drought conditions (Galmés et al. 2007a,b, 2017; Conesa et al. 2019). There is a large diversity in leaf size among species, and those with larger leaves have a higher growth capacity and higher water-use efficiency (Conesa et al. 2019). To further study the importance of leaves in the adaptation to the harsh environment of Limonium, it would be ideal to compare leafed and leafless Limonium species inhabiting the same environment. However, there are no leafless Limonium species in the western Mediterranean.

Myriolimon ferulaceum is a leafless species that inhabits rocky coast and marsh habitats in the Balearic Islands. This species was included within the genus Limonium (i.e. L. ferulaceum) until recently, when it was placed within a new genus based on discordant morphology, karyology, and phytochemistry (Lledó et al. 2003, 2005). As compared to Limonium plant habit, consisting in a dense and foliose subshrub cushion with seasonal reproductive branches, M. ferulaceum has numerous prostrate to ascendant, articulate stems up to 65 cm long, densely branched in the upper third (Erben 1993, Fig. 1S), that are maintained all year round constituting the body of the plant. Consequently, photosynthesis and gas exchange in this C$_3$ species is performed by stems, which have many stomata (Fig. 2S).

Given the importance of a leaf size in the response to harsh conditions previously reported in Limonium and its coordination with Rubisco kinetics (Galmés et al. 2014, 2017; Conesa et al. 2019), in this study we aimed to understand how the leafless strategy in the close relative M. ferulaceum can be also relevant under the same harsh conditions. To do so, we performed an experiment growing M. ferulaceum plants under the same well-watered and severe water deficit conditions as in previous studies on Limonium, and measured growth, water consumption and water-use efficiency, photosynthesis and gas exchange, Rubisco kinetics, and stem anatomy traits. Results showed the importance of densely branched stem structures in substituting leaf function, and denoted the modifications in stem anatomy allowing to withstand stressful conditions.

Materials and methods

Plant growth, water treatments, water consumption, and climatic conditions: Seeds from Myriolimon ferulaceum (L.) Lledó, Erben & M.B. Crespo were collected from natural populations in Minorca and germinated. Afterwards, ten plants were grown outdoors at the University of the Balearic Islands, individually in 3-L pots filled with a 4:1 (v/v) mixture of peat-based horticultural substrate (Prohumin-Potting Soil Klasmann-Deilmann, Projar S.A, Valencia, Spain) and perlite (granulometry A13, Projar S.A). All pots were filled to reach the same mass. Five more pots were prepared and used to calculate maximum soil water content. To do so, pots were irrigated at full capacity and left to drain plastic covered for 12 h into a room at 20°C, and weighed. The soil water content at full capacity was obtained by subtracting to the latter mass the masses of the empty pot and the dry soil. The dry mass of the soil was obtained after drying it to constant mass in trays in an air-forced oven at 70°C. Values used for calculations were the average of the five pots. The pot water content at full capacity was 2,251 g. During the experiment, the mass of the dry soil and the empty pot was used to calculate the amount of water in any pot at any moment.

Plants were initially fertilized with slow-release fertilizer and, once a week, irrigation was performed with 50% Hoagland’s solution instead of water, to prevent nutrient deficiencies. After germination, irrigation was supplied at the field capacity during the spring season (15 March to 28 June) to ensure a correct plant establishment and a minimum plant size. During the summer season (29 June to 13 September), five plants were still maintained at field capacity (WW treatment), and in the remaining five, irrigation was gradually reduced during two weeks to reach a pot water content close to 45% of field capacity, and maintained below this level during the entire experiment (WD treatment). To do so, pots of both treatments were weighted and lost water replaced every 2–3 d. During the months with water treatments established, the pot water content ranged from 73% (just before irrigation; 1,643 g water in pot soil) to 100% (just after irrigation; 2,251 g water in pot soil) in WW, and from 30% (just before irrigation; 675 g water in pot soil) to 45% (just after irrigation; 1,013 g water in pot soil) in WD (Fig. 3S). Water consumption per plant (WC) corresponds to the sum of all the masses of replaced water during the three months with water treatments established.

Climatic conditions during the experiment were those typical of Mediterranean summer, with average daily temperature varying (minimum–maximum) during the experiment between 23.6–30.6°C in July, 21.6–27.2°C in August, and 17.6–23.4°C in September; daily sum of PAR ranging 6,790–15,681 µmol(photon) m$^{-2}$ s$^{-1}$ in July, 6,500–14,615 µmol(photon) m$^{-2}$ s$^{-1}$ in August, and 3,241–11,905 µmol(photon) m$^{-2}$ s$^{-1}$ in September; and average air relative humidity ranging 36–65% in July, 45–74% in August, and 48–83% in September.

Growth and plant water-use efficiency measurements: At the end of the experiment, 183 d after germination and after 77 d with water treatments established, all plants were cut separating stems and roots. The root ball was submerged in water overnight to ease soil separation from the roots, and gentle combed under water tab pressure. Stem and root fractions were placed in different paper envelopes and dried to constant mass in an air-forced oven.
at 70°C to obtain the total plant biomass (B_t). Since the leafless plant habit of *M. ferulaceum*, the ratio between root and stem biomass corresponds to the root/shoot ratio (R/S). The water-use efficiency at the whole plant level (WUE_b) was calculated as the ratio between B_t and WC.

Stem relative water content (RWC) at mid-morning was determined as in Galmés et al. (2007a), at the same day as photosynthesis measurements and on the same or similar terminal stems used for gas exchange and chlorophyll (Chl) fluorescence. Five replicates per treatment were obtained from different individuals.

Stem gas exchange and Chl a fluorescence were measured simultaneously with an open infrared gas-exchange analyzer system equipped with a 2-cm² leaf chamber with a built-in fluorometer (Li-6400-40, Li-Cor Inc., USA). Measurements were performed from 9:00 to 12:00 h during August, i.e. two months after the onset of the drought treatment, on intact terminal stems of five individuals; clamped terminal stems were completely developed under treatment.

Gas flow was set at 250 μmol mol⁻¹ and environmental conditions in the leaf chamber consisted of a PPFD of 1,500 μmol (photon) m⁻² s⁻¹ (with 10% blue light), a vapor pressure deficit of 1.2–2.5 kPa, and a leaf temperature of 25°C. After inducing steady-state photosynthesis for at least 30 min at an ambient CO₂ concentration (Cₐ) of 400 μmol mol⁻¹ (air), the photosynthesis response to varying substomatal CO₂ concentration (Cₐ) was measured as explained in Galmés et al. (2007b). Net photosynthesis response curves to varying substomatal CO₂ concentration (Pₐ-Cₐ) consisted of 12 measurements per curve, and five Pₐ-Cₐ were performed per treatment on different individuals. After gas-exchange measurements had been taken, the stems were sectioned and the projected area was measured by scanning it with a standard flat-bed scanner (Epson Stylus CX6600, Seiko Epson Corp., Japan), and measuring the green area on the scanned image with Image J (Ambràmoff et al. 2004). Total stem surface area was determined by multiplying the projected area by π(3.14) and divided by 2. Corrections for the leakage of CO₂ into and out of the leaf chamber of the Li-6400-40 have been applied to all gas-exchange data, as described by Flexas et al. (2007).

Simultaneous measurements of Chl a fluorescence were made at each Cₐ of the Pₐ-Cₐ curve. The fluorometer was set to multipulse with target intensity = 10 and ramp depth = 40%. The quantum efficiency of the PSI-driven electron transport was determined using the equation Φ₁ = (Fₐ – Fᵢ)/Fₐ, where Fᵢ is the steady-state fluorescence in the light [PPFD of 1,500 μmol (photon) m⁻² s⁻¹] and Fₐ is the maximum fluorescence obtained with a light-saturating pulse [8,500 μmol (photon) m⁻² s⁻¹]. As Φ₁ represents the number of electrons transferred per photon absorbed by PSI, the rate of electron transport (J) can be calculated as: \(J = \Phi_1 \times \text{PPFD} \times \alpha \times \beta \), where \(\alpha \) is the leaf absorbance and \(\beta \) is the distribution of absorbed energy between the two photosystems. The product \(\alpha \times \beta \) was determined from the relationship between Φ₁ and \(\Phi_{\text{CO}_2} \) obtained by varying \(\Phi_{\text{CO}_2} \) under nonphotorespiratory conditions in a nitrogen atmosphere containing less than 2% (v/v) O₂ (Martins et al. 2013). Values of \(\alpha \times \beta \) averaged 0.34 with insignificant differences between treatments.

From combined gas-exchange and Chl a fluorescence measurements, mesophyll conductance to CO₂ (gₘ) was estimated at each Cₐ according to Harley et al. (1992) as:

\[
g_m = P_{\text{CO}_2} / (C_a - \Gamma^* \cdot [(J + 8(P_s + R_o))/((J - 4(P_s + R_o))].
\]

Half of the rate of mitochondrial respiration in the darkness (R₀) was used here as a proxy for the rate of mitochondrial respiration in the light (Rᵢ). Rₒ was measured at predawn (from 4:00 to 6:00 h) using the Li-6400-40. Measuring conditions in the leaf cuvette were: Cᵢ of 400 μmol mol⁻¹ (air), leaf temperature of 25°C, and vapor pressure deficit of 1.0–1.5 kPa. The chloroplast CO₂ compensation point (Γ*) was calculated from the in vivo Rubisco specificity factor (S_o) value at 25°C (obtained as indicated below) and the ambient oxygen concentration (O₂, 210,000 μmol mol⁻¹) as: \(\Gamma^* = 0.5 \cdot O_2/S_o \).

Pₐ-Cₐ curves were transformed into Pₒ vs. chloroplastic CO₂ concentration (Cₐ) curves using the estimated values of gₘ, at each Cₐ. From Pₐ-Cₐ curves, the maximum velocity of carboxylation (Vₐmax) and the maximum capacity for electron transport rate (Jₐmax) were calculated as in Bernacchi et al. (2002), but using the values for the kinetic parameters of Rubisco for *M. ferulaceum*, obtained as indicated below. The Farquhar, von Caemmerer, and Berry model (Farquhar et al. 1980) was fitted to the data by applying iterative curve-fitting (minimum least square difference) using Microsoft Excel Solver tool.

The in vivo photosynthetic carboxylation efficiency was inferred from the Pₒ/Cₐ ratio, being Pₒ the gross CO₂ assimilation rate, calculated as the sum of Pₐ and Rₒ.

Analysis of quantitative limitations of photosynthetic CO₂ assimilation: The quantitative limitation analysis of Grassi and Magnani (2005), as applied in Tomàs et al. (2013), was used to separate the controls on Pₒ resulting from limited stomatal conductance (lₛ), mesophyll diffusion (lₘ), and photosynthetic capacity (lₚₚ) under WW and WD. The limitations of the different components, lₛ, lₘ, and lₚₚ were calculated as:

\[
l_s = \frac{[g_{\text{co}_2} \cdot g_o \cdot (\delta P_s / \delta C_o)]}{[g_{\text{gco}_2} \cdot (\delta P_s / \delta C_o)]}.
\]

\[
l_m = \frac{[g_{\text{co}_2} \cdot g_o \cdot (\delta P_i / \delta C_i)]}{[g_{\text{gco}_2} \cdot (\delta P_i / \delta C_i)]}.
\]

\[
l_p = \frac{[g_{\text{co}_2} \cdot g_o \cdot (\delta P_i / \delta C_i)]}{[g_{\text{gco}_2} \cdot (\delta P_i / \delta C_i)]}.
\]

where gₘ is the stomatal conductance to CO₂, gₒ is the mesophyll conductance according to Harley et al. (1992), and gₚₚ is the total conductance to CO₂ from ambient air to chloroplasts. The gₒ was obtained as the sum of mesophyll and stomatal conductance to CO₂ considering that both are in series \(l_s + l_m + l_p = 1 \). The values of \(l_s \) and \(l_m \) were used here as a proxy for the rate of mitochondrial respiration in the light (Rᵢ). Five curves were used per treatment, and average estimates of the limitations were calculated per treatment.

Anatomical measurements of photosynthetic stems: From stems previously used in gas-exchange measurements, 8–12 fragments of ca. 2–3 mm were cut and immediately vacuum fixed in a phosphate buffer (0.1 M at pH 7.2, 4% glutaraldehyde and 2% paraformaldehyde), during 48 h. Afterwards, samples were washed three times with 0.01 M PBS at pH 7.4 for 15 min, and stained/fixed with OsO₄ in 0.01 M PBS at pH 7.4 for 2 h at 4°C. A further
wash with PBS at pH 7.4 for 15 min was made, previous to dehydration with an increasing gradient of ethanol at room temperature (50, 70, 95, and 100%; for a minimum 30 min each). Dehydrated fragments were included in Spurr’s resin following manufacturer prescription (http://www.emsdiasum.com/microscopy/technical/datasheet/14300.aspx). Semi-thin cross sections of 1 mm wide were performed using a diamond blade (DIATOME Histo 45°) with an ultramicrotome (Ultratome Nova, LKB, Bromma), stained with toluidine blue and mounted on microscope slides. Images were taken at 200 × magnification with the optic microscope Olympus Provix AX70 equipped with an Olympus Camedia C-2000 Z camera (Olympus Optical Co., Ltd., Tokyo, Japan).

Anatomical measurements were performed in three different plants per water treatment with Image J (Ambronnoff et al. 2004), dividing each section into four equal portions (i.e. ¼ portions) that were analyzed separately, resulting in n = 12 per plant for area measurements, namely, mesophyll airspaces (Mesair), mesophyll cells (Mescell), sclereids (Scl), and vascular tissue (Vas); whereas total mesophyll area (Mesmes) was the sum of Mesair and Mescell. To perform area measurements, images were previously modified with Adobe Photoshop CS5 (v. 12.1, Adobe, San José, CA, USA) as in Fig. 1A, allowing a precise selection and separation of the different parts analyzed. Linear measurements included maximum stem diameter of the cross section and epidermis thickness (Ep), the latter being measured in four equidistant points for each ¼ portion, considering their average as the single value per ¼ portion.

Rubisco catalytic characterization: Rates of Rubisco 14CO2-fixation using fresh leaf protein extract were measured in 7-mL septum-capped scintillation vials, containing reaction buffer (yielding final concentrations of 100 mM Bicine-NaOH, pH 8.0, 20 mM MgCl2, 0.4 mM RuBP, and about 100 W-A units of carboxic anhydrase) and one of nine different concentrations of CO2 (0 to 80 μM, each with a specific radioactivity of 3.7 ± 1,010 Bq mol−1), each at two concentrations of O2 [0 and 21% (v/v)], as described previously (Galmés et al. 2014). Assays (1.0 mL of the total volume) were started by the addition of activated plant extract, and the maximum velocity for carboxylase activity (Vmax), together with the Michaelis-Menten constant (Km) for CO2 (Kc) determined from the fitted data. The Km for the oxygenase activity was calculated from the relationship Kc2O2cat = Kc(O2gas) (1 + [O2]/Ko). The [O2] was assumed to be 265 μM, but corrected for partial pressure by taking account of the atmospheric pressure and water saturated vapor pressure. Replicate measurements (n = 3) were made using protein preparations from four different stems of different individuals grown under WW conditions. For each sample, the maximum rate of carboxylation (kcat) was extrapolated from the corresponding Vmax value after allowance was made for the Rubisco active site concentration, as determined by 14C]CPBP binding (Yokota and Canvin 1985). Rubisco CO2/O2 specificity (S14) was measured as described (Galmés et al. 2005) using enzyme purified by PEG precipitation and ion exchange chromatography, and the values given for each species were the mean of five to ten repeated determinations. The maximum rate of oxygenation (kcat) was calculated using the equation S14 = (kcat/Kc)/kcat/Kc. All kinetic measurements were performed at 25°C.

The concentration of active Rubisco sites was calculated dividing the in vivo Vmax by the in vitro kcat measured for each species.

Statistical analysis: One-way analysis of variance (ANOVA) was performed to reveal the differences between treatments in the studied parameters. The univariate general linear model for unbalanced data (Proc. GLM) was applied, with type III sum of squares, and significant differences were revealed by Duncan’s post-hoc tests (at P<0.05) using IBM SPSS Statistics 20 software package (SPSS Inc., Chicago, IL, USA). The relationships among the parameters were tested with the square of the correlation coefficient observed for linear regressions using the tool implemented in SigmaPlot 11.0 (Sigma, St Louis, MO, USA). All statistical tests were considered significant at P<0.05.

Results

Growth and water consumption: As compared to well-watered conditions (WW), long-term exposure to severe water deficit conditions (WD) had a dramatic effect on total plant biomass (Bt) in M. ferulaceum, with more than 4-fold reduction (Table 1). The water consumption during the water treatments application (WC) was 6-fold lower under WD and, thus, proportionally higher than Bt reduction. Consequently, water-use efficiency at the whole plant level (WUE, as Bt/WC) might be on average higher under WD than under WW conditions, but differences between treatments were insignificant (Table 1). Plants under WD had 2-fold higher root/shoot ratio (R/S) than that of WW plants and, thus, this species responded to severe water deficit by a notorious increase in the proportion of root biomass (Table 1). The relative water content in the stems (RWC) was also significantly affected by the water deficit, with a 12% lower value under WD (Table 1).

Stem anatomy: Stems under WD were significantly thinner than that under WW, with the stem section and separation of the different parts analyzed. Linear measurements included maximum stem diameter of the cross section and epidermis thickness (Ep), the latter being measured in four equidistant points for each ¼ portion, considering their average as the single value per ¼ portion.

Table 1. Growth and water-use parameters for Myriolimon ferulaceum grown under field capacity (WW) and severe water deficit (WD). Bt – total plant biomass; R/S – root to shoot ratio; WC – water consumed during the period between 29 June and 13 September; WUEs – water-use efficiency at the whole plant level; RWC – stem relative water content. ANOVA P-value is indicated for each parameter. Data are means ± SE (n = 5).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>WW</th>
<th>WD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bt [g]</td>
<td>11.5 ± 0.7</td>
<td>2.7 ± 0.4</td>
<td><0.001</td>
</tr>
<tr>
<td>R/S</td>
<td>0.53 ± 0.06</td>
<td>1.07 ± 0.21</td>
<td><0.001</td>
</tr>
<tr>
<td>WC [L plant−1]</td>
<td>10.6 ± 1.3</td>
<td>1.8 ± 0.1</td>
<td><0.001</td>
</tr>
<tr>
<td>WUEs [g L−1]</td>
<td>0.80 ± 0.10</td>
<td>0.71 ± 0.08</td>
<td>0.243</td>
</tr>
<tr>
<td>RWC [%]</td>
<td>77 ± 1</td>
<td>65 ± 1</td>
<td><0.001</td>
</tr>
</tbody>
</table>
the stem diameter being 20 and 10% smaller, respectively (Fig. 1A, Table 2). Considering the components in the stem section, all were reduced except the area of the total mesophyll (Mestot), and the area of the mesophyll airspaces (Mesac) in the chloroplast stroma (C\textsubscript{total}). Therefore, the latter two components proportionally increased under WD to remain similar between treatments despite of the reduction on the total stem thickness under WD. This proportional increase in Mestot and Mesac was at expenses of a proportionally higher reduction in the mesophyll cells (Messa), sclereids (Scl), and vascular tissue (Vas), but not epidermis (Ep), which was thicker under WD (Fig. 1B, Table 2).

Photosynthesis and gas exchange: The WD treatment had also an important effect on the photosynthesis performance of Myriolimon ferulaceum, with differences between treatments in the measured parameters (Table 3). There was a 3.6-fold lower stem \(P_{\text{n}} \) under WD as compared to WW, and a significant relationship was observed between \(P_{\text{n}} \) and \(B_{\text{r}} \) (\(R^2 = 0.76, P < 0.001 \); data not shown). There was also a 6.3-fold lower stem \(g_s \) under WD, very similar to the 6-fold difference in WC between treatments. A significant relationship was also observed between \(g_s \) and WC (\(R^2 = 0.59, P < 0.001 \); data not shown). Different from WUE\(_{\text{r}}\), the intrinsic water-use efficiency (WUE\(_{\text{r}}\), as \(P_{\text{n}}/g_{\text{c}} \)) was 1.7-fold higher under WD as compared to WW (Table 3).

The mesophyll conductance \(g_{\text{c}} \) was 2.3-fold lower under WD which, added up to the difference in \(g_{\text{c}} \), resulted in a 4-fold lower \(g_{\text{c}}/g_{\text{st}} \) under WD (Table 3). The \(g_{\text{c}}/g_{\text{st}} \) ratio increased from 1.3 under WW to 3.1 under WD (Table 3), and positively correlated with WUE\(_{\text{r}}\), under both treatments (WW, \(R^2 = 0.932; \) WD, \(R^2 = 0.887; \) \(P < 0.001 \) in both cases) and also considering both treatments together (Fig. 2), denoting a similar scale-up of \(g_{\text{c}}/g_{\text{st}} \) and WUE\(_{\text{r}}\) under WD as compared to WW.

The CO\(_2\) concentration at the chloroplast stroma (C\textsubscript{c}) was 1.6-fold lower under WD, being responsible for the lower \(P_{\text{n}} \) values in this treatment (Table 3). When considering the gross photosynthesis (\(P_{\text{n}} \)), the photosynthetic efficiency (\(P_{\text{n}}/C_{\text{c}} \)) was 2-fold lower under WD, whereas photorespiration (considering the electron transport rate, \(i.e. \) ETR/\(P_{\text{n}} \)), was 1.6-fold higher under WD (Table 3). The maximum rate of photosynthetic electron transport (\(J_{\text{max}} \)) was also severely depressed under WD.

Rubisco-related traits and Rubisco kinetic properties: There were differences in the Rubisco active sites between treatments, being 2.1-fold lower under WD, and agreeing with the 2.1-fold lower maximum rate of Rubisco carboxylation velocity (\(V_{\text{max}} \)) under this treatment (Table 3).

Regarding the catalytic parameters of Rubisco from Myriolimon ferulaceum (Table 4), the maximum rates of carboxylation (\(k_{\text{cat}}^{\text{c}} \)) and oxygenation (\(k_{\text{cat}}^{\text{o}} \)) were 2.9 s\(^{-1}\) and 1.4 s\(^{-1}\), respectively. The Michaelis-Menten constants affinity for CO\(_2\) (\(K_{\text{m}}^{\text{c}} \)) and O\(_2\) (\(K_{\text{m}}^{\text{o}} \)) were 7.4 and 466 \(\mu \text{M} \), respectively, and the specificity factor (\(S_{\text{cat}} \)) was 102.5 mol mol\(^{-1}\).

The quantitative limitation analysis of photosynthetic CO\(_2\) assimilation showed a similar importance of the three limitations under WW. Under WD, the biochemical limitation (\(l_{\text{b}} \)) decreased and stomatal conductance limitation (\(l_{\text{s}} \)) increased as compared to WW (Fig. 3). In spite of the proportional changes in the limitations components, \(P_{\text{n}} \) correlated with both \(g_{\text{c}} \) and \(V_{\text{max}} \) (Fig. 4).

Discussion

Leafless plant habit is frequently considered an adaptive strategy to cope with severe drought conditions \(e.g. \) Nilsen and Sharifi 1997, Galmés et al. 2005, Correia and Ascensão 2017). However, similar to leafed species, stems in the leafless Myriolimon ferulaceum suffered important modifications to withstand stressful conditions. As compared to the close relative and leafed Limonium species, the leafless strategy in Myriolimon presented higher limitations to overcome severe water deficit.
Table 2. Anatomical differences between the well-watered (WW) and severe water deficit (WD) treatments for the whole cross section, and for epidermis (Ep), mesophyll airspaces (Mesair), mesophyll cells (Mescell), sclereids (Scl), and vascular tissue (Vas) of Myriophyllum ferulaceum. A shoot section was measured from three different plants per treatment. Values are averages with SE. Differences between treatments by one-way ANOVA are indicated (P-values). See Fig. 1 for a reference.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>WW</th>
<th>WD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section area [(\mu m^2]]</td>
<td>272,307 ± 11,037</td>
<td>218,874 ± 7,168</td>
<td>0.001</td>
</tr>
<tr>
<td>Cross section maximum diameter [(\mu m]]</td>
<td>635.5 ± 11.9</td>
<td>569.1 ± 13.5</td>
<td>0.002</td>
</tr>
<tr>
<td>Ep thickness</td>
<td>22.0 ± 0.6</td>
<td>24.0 ± 0.7</td>
<td>0.032</td>
</tr>
<tr>
<td>Mesair area [(\mu m^2]]</td>
<td>206,319 ± 11,065</td>
<td>181,290 ± 6,704</td>
<td>0.124</td>
</tr>
<tr>
<td>Mescell area [(\mu m^2]]</td>
<td>52,327 ± 5,354</td>
<td>55,487 ± 7,304</td>
<td>0.712</td>
</tr>
<tr>
<td>Scl area [(\mu m^2]]</td>
<td>153,992 ± 7,243</td>
<td>125,802 ± 4,302</td>
<td>0.020</td>
</tr>
<tr>
<td>Vas area [(\mu m^2]]</td>
<td>13,135 ± 953</td>
<td>4,448 ± 265</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 3. Average values for the main photosynthetic parameters in Myriophyllum ferulaceum under field capacity (WW) and severe water deficit (WD) treatments. Net CO\(_2\) assimilation rate (\(P_c\)), stomatal, mesophyll, and total leaf conductances (\(g_s\), \(g_m\), \(g_{\text{tot}}\), respectively), intrinsic water-use efficiency (WUE\(_i\)), CO\(_2\) concentration in the chloroplast (\(C_i\)), CO\(_2\) assimilation rate (\(P_c\)), and electron transport rate (ETR) were obtained from steady state measurements at a PPFD of 1,500 \(\mu mol\) (photon) m\(^{-2}\) s\(^{-1}\), with a leaf temperature of 25ºC, and a CO\(_2\) concentration in the chamber of 400 \(\mu mol\) mol\(^{-1}\). Maximum velocity of carboxylation (\(V_{\text{carb}}\)) and maximum electron transport rate (\(J_{\text{max}}\)) were estimated from \(P_{c}/C_i\) curves. The active Rubisco sites were calculated dividing in vivo \(V_{\text{carb}}\) by the in vitro maximum rate of carboxylation (\(k_{\text{cat}}\)). ANOVA P-value is indicated for each parameter. Data are means ± SE (\(n = 5\)). All area-based parameters were corrected to account for the semicircular surface of the stems, dividing the measured value by \(\pi/2\).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>WW</th>
<th>WD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_c) [(\mu mol\ \text{m}^2\ \text{s}^{-1})]</td>
<td>14.1 ± 1.5</td>
<td>3.9 ± 0.3</td>
<td><0.001</td>
</tr>
<tr>
<td>(g_s) [(\text{mol} (\text{H}_2\text{O}) \text{ m}^2\ \text{s}^{-1})]</td>
<td>0.19 ± 0.03</td>
<td>0.03 ± 0.01</td>
<td><0.001</td>
</tr>
<tr>
<td>(g_m) [(\mu mol\ \text{m}^2\ \text{s}^{-1})]</td>
<td>0.14 ± 0.02</td>
<td>0.06 ± 0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>(g_{\text{tot}}) [(\mu mol\ \text{m}^2\ \text{s}^{-1})]</td>
<td>0.08 ± 0.01</td>
<td>0.02 ± 0.01</td>
<td><0.001</td>
</tr>
<tr>
<td>WUE, [(\mu mol\ \text{mol}^{-1})]</td>
<td>78 ± 5</td>
<td>135 ± 5</td>
<td><0.001</td>
</tr>
<tr>
<td>(g_{\text{tot}}/g_m) [(\mu mol (\text{CO}_2) \text{ mol}^{-1}(\text{CO}_2))]</td>
<td>1.3 ± 0.2</td>
<td>3.1 ± 0.5</td>
<td>0.012</td>
</tr>
<tr>
<td>(C_i) [(\mu mol\ \text{mol}^{-1})]</td>
<td>151 ± 4</td>
<td>94 ± 6</td>
<td><0.001</td>
</tr>
<tr>
<td>(P_c/C_i) [(\text{mol} \text{m}^2\ \text{s}^{-1})]</td>
<td>0.10 ± 0.01</td>
<td>0.05 ± 0.01</td>
<td><0.001</td>
</tr>
<tr>
<td>ETR/(P_c)</td>
<td>8.1 ± 0.1</td>
<td>12.6 ± 0.9</td>
<td>0.001</td>
</tr>
<tr>
<td>(V_{\text{carb}}) [(\mu mol \text{m}^2\ \text{s}^{-1})]</td>
<td>75.5 ± 7.6</td>
<td>35.3 ± 1.0</td>
<td><0.001</td>
</tr>
<tr>
<td>(J_{\text{max}}) [(\mu mol \text{m}^2\ \text{s}^{-1})]</td>
<td>125.8 ± 11.9</td>
<td>53.1 ± 2.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Active Rubisco sites [(\mu mol \text{m}^2)]</td>
<td>26.0 ± 2.6</td>
<td>12.2 ± 0.3</td>
<td><0.001</td>
</tr>
</tbody>
</table>

The adaptation of *M. ferulaceum* to severe water shortage resulted in dramatic reductions of WC (6-fold) and B\(_r\) (4-fold) but with no significant differences in WUE\(_s\) (Table 1). The latter could indicate that this leafless species did not trigger mechanisms improving biomass produced per unit water consumed under harsh conditions. However, WD plants had a 2-fold higher R/S (Table 1). Proportionally larger roots as compared to shoots would allow higher soil exploration, and higher root biomass per unit stem – transpiring – biomass. A similar WUE\(_s\) between treatments achieved through a proportionally lower photosynthetic biomass indicates that morpho-physiological adaptations increasing photosynthetic efficiency took place in the WD stems.

The severe water shortage entailed a ca. 6-fold reduction of \(g_s\) under WD (Table 3). As a result, Rubisco had to operate at lower \(C_i\), which imposed a limitation to maximum \(P_c\) and resulted in lower photosynthetic efficiency (\(P_c/C_i\)) (Table 3). However, WUE\(_i\) was 1.7-fold higher under WD. This, together with the 2.3-fold higher \(g_m\) and 4-fold higher \(g_{\text{tot}}\) (Table 3), and the tight control of \(P_c\) driven by \(g_{\text{tot}}\) (Fig. 4A), indicated that the morpho-physiological adaptations under WD improved CO\(_2\) diffusion per unit water transpired. Changes in WUE\(_i\) were positively correlated with the \(g_{\text{tot}}/g_m\) ratio (Fig. 2), which increased from 1.3 under WW to 3.1 under WD (Table 3). The WD stems were thinner, with a 20% reduction of the stem section area through a decrease of Scl, Vas, and Mesair, but maintaining Mescell and Mesair areas similar to those in WW, corresponding to a proportional increase of mesophyll airspaces under WD (Fig. 1, Table 2). Increase of airspaces is a common mechanism leading to increased \(g_m\) because of higher access of the mesophyll cells to CO\(_2\) (Flexas et al. 2013, 2016; Galmés et al. 2013). Also, it would be expected that thinner stems under WD might have lower WUE\(_i\), because of lower proportion of

926
photosynthetic mesophyll cells (i.e. volume-related) per unit transpiring surface (i.e. area-related). This can be related at least to three reasons. First, maximization of P_n vs. light penetration into thicker stems (Pfanz et al. 2002), i.e. thinner stems may enhance maximum P_n in most mesophyll cells. Second, the reduction in vascular tissue under WD may limit water availability for outermost cells in thicker stems. It has been demonstrated that the widely known coordination between hydraulic conductance and P_n in leaves (e.g. Scoffoni et al. 2016) also occurs in photosynthetic stems (Avila-Lovera et al. 2017). Third, a reduction in sclereids under WD may limit plant ability to sustain stems and thus, forcing stems to be thinner.

Agreeing with the importance of the g_{w}/g_{s} ratio in explaining WUE, improvement (Fig. 2), the quantitative limitation analysis of photosynthetic CO$_2$ assimilation (Fig. 3) showed that the main limitation under WD was stomatal conductance (l_{s}), with a similar importance of mesophyll diffusion (l_{d}) and biochemical (l_{b}). On the contrary, under WW the most restricting factor was biochemistry and the least mesophyll diffusion (Fig. 3). Predominance of biochemical limitation under nonstressing conditions and stomatal limitation under drought is a common pattern in angiosperms from arid and semi-arid habitats like the Mediterranean (Tomás et al. 2013, Flexas et al. 2014, Carriqui et al. 2015), and particularly in the Mediterranean Limonium species (Galmés et al. 2017), which are close relatives of M. ferulaceum and inhabiting very similar environments.

From the three Rubisco haplotypes described in Limonium, the haplotype I, which is basal to the remaining two (Galmés et al. 2014), showed a biochemical limitation almost as high as the stomatal limitation under WD (Galmés et al. 2017). The derived haplotypes II and III had slower velocity (lower k_{cat}^{o}), higher specificity for CO$_2$ (S_{co}) and consequently lower P_n than that of haplotype I, which indicates that Rubisco evolution in the harsh habitats of Limonium favored Rubiscos with higher efficiency under low C_{i} (lower g_{w}) (Galmés et al. 2014, 2017). As compared to Limonium haplotypes, M. ferulaceum Rubisco better resembled those of haplotypes II and III, with stomatal limitations being ca. 50% of the total limitations (Fig. 3; Galmés et al. 2017). However, the kinetics of M. ferulaceum Rubisco did not match with the values reported for the Limonium haplotypes. It resembled the haplotypes II and III in having lower K_{c}, K_{s}, and k_{cat}^{o}, but resembled haplotype I in having high k_{cat}^{w} and k_{cat}^{o}/K_{c} and low S_{co} and k_{cat}^{w}/K_{c}. In fact, M. ferulaceum Rubisco had lower S_{co} and k_{cat}^{w}/K_{c} and higher carboxylase catalytic efficiency (k_{cat}^{o}/K_{c}) than any Limonium species (Table 4; Galmés et al. 2014).

Regarding this intermediate behavior between haplo-
types I and II–III, there is larger number of differences between the rbcL amino acid sequence of *M. ferulaceum* (Genbank number: KJ608035.1) and any of the *Limonium* Rubiscos (i.e. 14 residues), than between *Limonium* Rubiscos (i.e. 6 residues) (Table 1S). *M. ferulaceum* differs from *Limonium* haplotypes I, II, and III in 9, 11, and 12 positions, respectively. Consequently, *M. ferulaceum* rbcL has higher similarity with haplotype I. In *Limonium*, changes in residues 309, 328, and 340 were related to higher specificity for CO$_2$ and lower carboxylation velocity in haplotypes II–III (Galmés et al. 2014). In *M. ferulaceum* rbcL, positions 309 and 328 are coincident with haplotype I and position 340 is coincident with haplotypes II–III (Table 1S). Nevertheless, further work is needed to ascertain an impact of these amino acid changes in the different kinetics observed among Rubiscos of *M. ferulaceum* and *Limonium*.

The P_{n} values of *M. ferulaceum* (Table 3) fall within the maximum stem P_{n} documented, ranging from 1.7 to 20.9 μmol(CO$_2$) m$^{-2}$ s$^{-1}$, which mostly correspond to species from arid environments having also leaf photosynthesis. In such species, leaves attain most of the year-round photosynthetic function, although stem photosynthesis can be similar or exceed that of the leaf in particular cases (reviewed in Ávila et al. 2014).

When comparing the leafless *M. ferulaceum* with leaves *Limonium* species grown under the same conditions, not only P_{n}, but also g_m, g_s, $P_{\text{d}}/C_{\text{i}}$, $V_{\text{c,max}}$, and J_{aux}, and active Rubisco sites were lower in the former species than in most *Limonium* (Table 3; Galmés et al. 2017) denoting the limitations to photosynthesis and gas exchange of the stems. Under WW, B_1 in *M. ferulaceum* was higher than 8 out of 13 *Limonium* species (Table 1; Conesa et al. 2019), indicating that the leafless plant habit is actually not detrimental when compared to leaved species. In this regard, WUE in *M. ferulaceum* was among the highest values in *Limonium* (Table 3; Galmés et al. 2017), pointing to this as one of the main factors driving higher growth capacity of *M. ferulaceum* stems as compared to many *Limonium* leaves under nonstressing conditions. One of the most relevant benefits in arid species for switching to stem photosynthesis in the toughest season is the higher WUE, as compared to leaves, which has been related to the presence of sunken stomata, the vertical orientation of the stem diminishing photoinhibitory damage, and the lower sensitivity to environmental factors, such as drought, high temperature, low VPD, and low resources availability, among others (reviewed in Ávila et al. 2014, 2017; Santiago et al. 2016). The stem CO$_2$ assimilation in these species has shown to be higher in the dry than in the wet season because of seasonal acclimation to higher light and temperature (Ávila-Lovera et al. 2017).

Contrary to the above, *M. ferulaceum* does not have sunken stomata (Fig. 3S), and photosynthesis and growth were dramatically affected under WD (Tables 1, 3). Hence, as compared to *Limonium* and paralleling WW, under WD, *M. ferulaceum* had much lower values of most of the measured photosynthetic parameters, much higher difference between treatments than those reported for *Limonium* species (Table 3; Galmés et al. 2014), and lower B_1 than any *Limonium* species (Conesa et al. 2019). Consequently, stem photosynthesis appears as a worse adaptive strategy to severe water deficit than that in the leaved *Limonium* species.

Altogether, results show that the thin and branched stems in *M. ferulaceum* cope well with the function of leaves in C$_3$ species under WW conditions, but have important limitations to minimize growth reduction under harsh environments, as compared to leaves in *Limonium*. The severe water deficit resulted in high decreases in growth and water consumption but also adaptations related to increased water-use efficiency, such as increased R/S, and increased mesophyll airspaces leading to increased g_m and especially the g_m/g_s ratio. There was a tight control of P_{n} by $V_{\text{c,max}}$ and g_m, whereas the main limitation to P_{n} under WW was biochemical (i.e. Rubisco concentration and activity) and under WD diffusive (mostly stomatal).

Given the distribution of *M. ferulaceum* in the Mediterranean Basin, with narrow and disjunct populations (Lledó et al. 2003), increased intensity and duration of drought periods as predicted by the climate change scenario may have a negative impact for population survivorship,
with dramatic effects on the species' distribution. Thus, despite the resilience to stress supposed to leafless species inhabiting harsh environments, _M. ferulaceum_ showed less adaptability as compared to _Limonium_ species, which may be considered to properly define managing strategies for conservation purposes.

References

Curriquí M., Cabrera H.M., Conesa M.A. et al.: Diffusional limitations explain the lower photosynthetic capacity of fens as compared with angiosperms in a common garden study. – Plant Cell Environ. 38: 448-460, 2015.

© The authors. This is an open access article distributed under the terms of the Creative Commons BY-NC-ND Licence.