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Abstract

CO2 concentrations and soil moisture conditions are important factors in photosynthesis of trees. This study investigated 
the photosynthetic CO2 responses in the leaves of Prunus sibirica L. and Pinus tabulaeformis Carr. under eight soil 
water conditions in a semiarid loess hilly region. CO2-response curves and physiological parameters were fitted using a 
rectangular hyperbola model, nonrectangular hyperbola model, exponential equation, and modified rectangular hyperbola 
model. Results revealed the relative soil water content (RWCs) for P. sibirica required to maintain higher photosynthetic 
rate ranging from 46.5 to 81.6%, and that for P. tabulaeformis ranging from 35.4 to 84.5%. When RWCs exceeded these 
ranges, the net photosynthetic rate of both species decreased. CO2-response curves and three parameters, carboxylation 
efficiency, CO2-compensation point, and photorespiration rate, were well fitted by the four models when RWCs was 
appropriate for P. sibirica and P. tabulaeformis. When RWCs exceeded the optimal ranges, only the modified rectangular 
hyperbola model could precisely simulate the CO2-response curves and photosynthetic parameters of both species.
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Introduction

Plant photosynthesis is a complex process affected greatly 
by CO2 concentrations and soil moisture conditions (Drake 
et al. 2017, Guan et al. 2018). Soil moisture affects plant 
growth and development severely (Karimi et al. 2018, 
Bhusal et al. 2019), as well as limits plant photosynthesis 
through carbon metabolism (Bellasio et al. 2018, Wang 
et al. 2019). However, plants display adaptability and 
resistance to water deficits (Renninger et al. 2014, Falqueto 
et al. 2017). Moreover, in a certain range of soil moisture, 
higher photosynthetic efficiency is related to plant species 
and their photosynthetic mechanism (Xia et al. 2016, Liu 
and Luo 2019). CO2 is the substrate of photosynthesis, 
and its atmospheric concentration is predicted to reach 
~ 700 µmol mol–1 by the end of the century (IPCC 2013, 
Ha et al. 2019). Global water shortages are exacerbated 
by changes of increasing CO2 concentrations and climate 
warming (Reich et al. 2018, Brito et al. 2019). The increase 
of CO2 causes global climate change and directly affects 
plant metabolism and growth (Davidson et al. 2016, Jin 
et al. 2019). Photosynthetic CO2 response is an important 

part of plant physiology and ecology research, and its 
measurement and simulation are the main ways to study 
plant photosynthesis. CO2-response model has played 
an important role in increasing our understanding of 
photosynthetic carbon uptake, which has thereby improved 
our understanding and predictions of plant photosynthetic 
physiology and its response to environmental changes and 
biogeochemical systems (Nickelsen 2015, Liang and Liu 
2017). CO2-response curves can reflect the quantitative 
relationship between plant photosynthetic rate and CO2 
concentration, and can be used to estimate photosynthetic 
parameters, such as the maximum net photosynthetic rate 
(PNmax) and CO2-saturation point (Cisat) (Sun et al. 2014, 
Niinemets et al. 2015).

CO2-response process and parameters have been fitted 
using biochemical models (Farquhar et al. 1980), empirical 
models (Wang et al. 2012, von Caemmerer 2013), and 
optimized models (Ali et al. 2016, Liu et al. 2019b) 
based on biochemical models. Biochemical models can 
calculate two key parameters, the maximum rate of carbo-
xylation (Vcmax) and the maximum electron transport rate 
(Jmax) (King et al. 2012, Walker et al. 2017). Empirical 
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models include the Michaelis-Menten model (Harley 
et al. 1992), rectangular hyperbola model (Baly 1935), 
nonrectangular hyperbola model (Wang et al. 2012), 
and exponential equation (Watling et al. 2000), which 
have been applied in most crops (Singh and Reddy 2016, 
Bellasio 2019) and some woody species (Groenendijk  
et al. 2011, Ellsworth et al. 2015). Ye (2010) thought the 
Michaelis-Menten and rectangular hyperbola models were 
essentially the same. In recent years, some studies have 
proposed the modified rectangular hyperbola model, an 
improved rectangular hyperbola model (Ye and Gao 2009, 
Ye and Yu 2009). This model has been applied to some 
gramineous plants (Kang et al. 2014, Ye et al. 2017, 2018), 
other herbs (Hu et al. 2008, Ye and Gao 2008), and some 
woody plants (Jiao and Wei 2010, Lv et al. 2016). Results 
revealed that this new model could overcome the limitations 
of traditional models fitting the CO2-response curve and 
its characteristic parameters accurately. Previous studies 
on photosynthetic CO2-response models mostly focused 
on the estimation and optimization of key parameters in 
field crops (Dubois et al. 2007, Sharkey 2016). However, 
the applicability of different models simulating the CO2-
response data of tree species under different soil water 
conditions has been rarely reported.

P. sibirica and P. tabulaeformis are common afforesta-
tion species in the arid and semiarid regions of Northern 
China, which have high economic value and play an 
important role in ecological restoration and soil and water 
conservation (Wang et al. 2015). P. sibirica is a broadleaf, 
deciduous tree species that is part of the Rosaceae family 
and is resistant to barren and dry conditions (Liu et al. 
2019a). P. tabulaeformis is evergreen and timber tree 
species of Pinaceae, heliophilous and deep-rooted (Wang 
et al. 2015). In recent years, studies have focused on the 
growth (Bao 2015, Guo et al. 2017), water transpiration 
(Liu et al. 2015, Lu et al. 2017), and photosynthetic light-
response characteristics (Lang et al. 2013, Wu et al. 2019) 
under different soil moisture conditions, while continuous 
observation and the examination of photosynthetic CO2 
response have not been addressed at many soil moisture 
gradients during the accelerated soil drought process. 
Therefore, the quantitative relationship between the 
photosynthetic CO2-response process and soil moisture  
remains unclear.

In this study using potted seedlings of P. sibirica and  
P. tabulaeformis, CO2-response curves and parameters 
were evaluated and fitted with the rectangular hyperbola 
model, nonrectangular hyperbola model, exponential 
equation, and modified rectangular hyperbola model 
under different soil moisture conditions. The goals of 
this study were to define the quantitative relationship 
between photosynthetic CO2-response processes and soil 
moisture, as well as explore the applicability of different 
CO2-response models to fit CO2-response processes 
and parameters in leaves of two species. The findings 
of this study will provide an in-depth understanding of 
the photosynthetic characteristics and cultivation of two 
species in the loess hilly-gully region of Northern China. 
Furthermore, the applicability of different CO2-response 
models can be evaluated from these findings and used in 
future studies.

Materials and methods

Study area: The experimental site was located in the 
Tuqiaogou watersheds (37°36'58''N, 110°02'55''E) of 
Yukou Town, Fangshan County, Shanxi Province, China, 
a portion of the gully-hilly area of the Loess Plateau in the 
middle reaches of the Yellow River, which has a subarid, 
warm temperate, continental monsoon climate. The 
average annual precipitation is 525.0 mm with more than 
70% of the precipitation concentrated between July and 
September. The annual potential evaporation is 1,839.7 mm 
with the greatest amount of evaporation occurring between 
April and June. The annual frost-free period lasts 140 d. 
The soil is classified as medium loessial soil, and the soil 
texture is uniform with a pH value ranging from 8.0 to 
8.4. Vegetation consists mainly of trees, shrubs, lianas, 
and subshrubs. Tree species are predominantly Robinia 
pseudoacacia, Platycladus orientalis, Syringa oblata, 
and Ulmus pumila. Shrubs are mainly Ulmus macrocarpa 
and Rosa xanthina. Herbs consist of Compositae and 
Gramineae. Most of the forest land is sparse, and the stand 
stability is poor.

Materials and water treatments: Two-year-old P. sibirica 
and P. tabulaeformis were used as the experimental materials 
and were selected carefully to ensure consistency in their 
height, diameter, and growth. Plants were investigated and 
marked one by one before transplantation. In March 2018, 
seedlings were transplanted in containers (50 cm in height, 
35 cm in diameter) with drainage holes in the bottom. Six 
basins with one plant in each pot were used. RWCs and 
photosynthetic CO2 responses were determined in the 
leaves of two species in August. Three strong plants were 
selected and watered to saturation, and the initial RWCs 
was obtained; the first CO2 response was also determined. 
Then, soil moisture gradients were obtained every 2 d 
through the natural water consumption method after 
artificially supplying water. The soil mass water content 
(MWC) was measured by the stoving method (Heyam 
2012). The RWCs was considered as the ratio of MWC 
to the field water capacity (FC). The potting soil FC was 
roughly 24.3%, and the soil bulk density was 1.26 ± 0.13 
g cm−3. Eight RWCs gradients of P. sibirica were obtained, 
i.e., 92.3, 81.6, 66.8, 53.7, 46.5, 35.7, 26.2, and 21.5%; 
that of P. tabulaeformis were 92.6, 84.5, 73.7, 56.8, 44.9, 
35.4, 26.9, and 22.1%. The experiment was carried out 
under a canopy covered with plastic film in rainy days to 
prevent rain from interfering with RWCs.

CO2-response determination: Three strong, mature leaves 
of two species were selected and marked. CO2-response 
curves were measured using a CIRAS-2 (PP Systems, 
Amesbury, MA, USA) portable photosynthesis system 
under different soil moisture conditions. The light-satura-
tion point for P. sibirica was 1,200 μmol(photon) m−2 s−1 
(Lang et al. 2013), while that of P. tabulaeformis was  
1,300 μmol(photon) m−2 s−1 (Wu et al. 2019). Measurements 
were obtained under each soil moisture condition on 
separate days. The time of measurements lasted from 
08:30 to 11:00 h in completely clear weather to reduce 
the effects of outside light fluctuations. The atmospheric 
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temperature ranged from 24 to 26°C, and the relative 
humidity was approximately 60 ± 5.0%. CO2 concentration 
in the leaf chamber was controlled and regulated from  
0 to 1,400 μmol mol−1 by a small cylinder with high CO2. 
The CO2 concentration gradients were 1,400; 1,200; 
1,000; 800, 600, 400, 200, 180, 150, 120, 90, 60, 30, and 
0 μmol mol−1. The measurement lasted 120 s at each CO2 
concentration, and the apparatus automatically recorded 
the photosynthetic physiological parameters, including PN 
and intercellular CO2 concentration (Ci).

Data analysis: CO2-response curves were drawn with 
Ci as the horizontal axis and PN as the vertical axis. 
According to the trends of measured data point, Cisat, PNmax, 
and Γ were estimated and regarded as measured values. 
Using the traditional linear regression method, CE0, the 
carboxylation efficiency at Ci = 0, CEΓ, the carboxylation 
efficiency at Ci = Γ, CEΓ0, the slope of the line between  
Ci = 0 and Ci = Γ, and Rp were calculated, and used as the 
measured values to compare to the fitted values of the four 
models.

Statistical analyses were performed using Microsoft 
Excel 2003 (Microsoft Corp., Redmond, WA, USA). Signi-
ficant differences were analyzed by a one-way analysis of 
variance (ANOVA) and Duncan's post-hoc test. Nonlinear 
regression was analyzed using SPSS v. 18.0 (IBM Corp., 
Chicago, IL, USA). All of the measurements were per-
formed three times; the means and calculated standard 
deviations (SD) were reported. Significant differences 
between CO2-response parameters were interpreted at the 
level of 0.05 (p=0.05). The CO2-response curve was fitted 
using the rectangular hyperbola model, nonrectangular 
hyperbola model, exponential equation, and modified 
rectangular hyperbola model.

The rectangular hyperbola model is expressed as follows 
(Baly 1935):
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where the line y = PNmax intersects the approximately 
straight line of CO2-response curve when Ci is below  
200 μmol mol–1, and the value of the intersected point on 

the x-axis is Cisat (Wang et al. 2005).

The nonrectangular hyperbola model is expressed as 
follows (Wang et al. 2012):
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where k is the curved angle of the nonrectangular hyper-
bola; the definitions of other parameters are the same as 
above.

CEΓ, CE0, and CEΓ0 are as follows:
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where the line y = PNmax intersects the approximately 
straight line of CO2-response curve when Ci is below  
200 μmol mol−1, and the value of the intersected point on 
the x-axis is Cisat (Ye 2010).

The exponential equation is expressed as follows (Wat-
ling et al. 2000):
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where the definitions of all parameters are the same as 
above.

CEΓ, CE0, and CEΓ0 are as follows:
Nmaxi/–

iN   )  ('CE PCeCP 
                                  (12)

CE0 = PN'(Ci = 0) = α                                                     (13)

CEΓ0 = |Rp/Γ|                                                                  (14)

Γ can be calculated by:

Nmax

pNmaxNmax ln
– P

RPP 


  
                                          (15)

where the line y = PNmax intersects with the approximately 
straight line of CO2-response curve at Ci ≤ 200 μmol mol−1, 
and the value of the intersected point on the x-axis is Cisat 
(Dong et al. 2007).

The modified rectangular hyperbola model is expressed 
as follows (Ye and Gao 2009, Ye 2010):
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where b and c are coefficients; the definitions of other 
parameters are the same as above.
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CEΓ, CE0, and CEΓ0 are as follows:
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Cisat and PNmax can be calculated by:
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Results

Photosynthetic CO2 response: Soil moisture significantly 
affected the photosynthetic CO2 response of two species 
(Fig. 1). Under different soil moisture conditions, PN 
increased rapidly as Ci increased when Ci was below ~ 
200 μmol mol–1, then PN increased slowly when Ci was 
from ~ 200 μmol mol–1 to saturation, and the maximum 
PNmax appeared at the CO2-saturation point. CO2 response 
showed obvious differences when Ci was at saturation 
under different soil water conditions (Table 1). When 
RWCs ranged from 46.5 to 81.6% for P. sibirica, and 35.4 
to 84.5% for P. tabulaeformis, PN of each CO2-response 
curve of two species changed slightly as Ci increased after 
Ci reached the CO2-saturation point. When RWCs was 
out of the above ranges, PN decreased considerably with 
increase of Ci after Ci reached saturation; PN in each curve at 
the highest Ci was significantly smaller than its PNmax under 
the same soil moisture conditions. Clearly, CO2-saturated 
inhibition occurred. Furthermore, the CO2 responses to 
soil moisture showed an obvious RWCs threshold. The 
overall level of PN in each CO2-response curve increased 
initially and then decreased as RWCs decreased. The PN 
was the highest when RWCs of P. sibirica was 66.8%, 
and that of P. tabulaeformis was 73.7%; thus, an increase 
or decrease in RWCs led to a decrease in the overall PN. 
PNmax and Cisat were high and PN did not decrease at high 
CO2 concentrations when RWCs of P. sibirica ranged from 
46.5 to 81.6%, and 35.4 to 84.5% for P. tabulaeformis; 
thus, these RWCs ranges were considered suitable for 
photosynthesis of both species.

Simulation of CO2-response curves and characteristic 
parameters: The simulated effects of the four models 
fitting the CO2-response data were notably different under 
different soil moisture conditions (Tables 2, 3). CO2-
response curves were well simulated by the four models, 
and the determination coefficients were all > 0.991 when 
RWCs was within the appropriate ranges of photosyn-
thesis, i.e., 46.5 to 81.6% for P. sibirica, and 35.4 to 
84.5% for P. tabulaeformis. Moreover, within the above 
RWCs ranges, only the modified rectangular hyperbola 
model fitted PNmax and Cisat well, which were closer to 
the measured value. The PNmax values fitted by the other 

three models were significantly higher than their observed 
values, while the fitted values of Cisat were significantly 
lower than their observed values. When RWCs exceeded 
the suitable ranges, PN, PNmax, and Cisat of the two species 
decreased, only the modified rectangular hyperbola 
model could accurately simulate the CO2-response curves  
(R2 > 0.992) and characteristic parameters.

Discussion

Water deficit is the main constraint factor for vegetation 
reconstruction and ecological restoration in the loess, hilly-
gully region of China. RWCs not only seriously affects 
the light-response curves and photosynthetic parameters, 
but also profoundly affects the CO2-response curves and 
physiological parameters (Wang et al. 2017). The classical 
form of CO2-response curves can be summarized in 
three stages (Chen et al. 2006, Kathilankal et al. 2011).  
First, an approximately linear segment is observed when 
Ci ≤ 200 μmol mol–1. Thus, PN increases rapidly as 
Ci increases, the slope of the straight line is CE, which 
reflects the assimilative capacity of plant responses to low 
CO2 (Wang et al. 2010, Ye et al. 2017). Second, the curved 
segment is observed when Ci is from ~ 200 μmol mol–1 
to saturation, and PN increases slowly as Ci increases. 

Fig. 1. Photosynthetic CO2 response of Prunus sibirica and Pinus 
tabulaeformis under different soil water conditions. Values are 
means ± SD (n = 3). Ci – intercellular CO2 concentration; PN – net 
photosynthetic rate; RWCs – relative soil water content.
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Third, the almost linear segment when Ci reaches its satu- 
ration point, PN changes insignificantly with the increase 
of Ci, photosynthetic rate at this stage reaches PNmax, 
which reflects photosynthetic electron transfer rate and 
photophosphorylation activity (Xu 2013, Ye et al. 2018).

The form of CO2-response curves changes when plants 
encounter stressful conditions, such as drought. However, 
the quantitative relationship between this change and soil 
moisture has remained unclear. This study demonstrated 
that CO2-response curves of two species exhibited a 
classical shape, with PNmax, CE, Cisat, and Rp being high 
and Γ being low within the suitable RWCs range (i.e., 
46.5–81.6% for P. sibirica, and 35.4–84.5% for P. tabu-
laeformis); PN values were the highest when RWCs of 
P. sibirica was 66.8%, and that of P. tabulaeformis was 
73.7%. Three photosynthetic parameters, PNmax, CE, and 
Cisat, declined dramatically when the soil moisture content 
exceeded the above ranges. Two species exhibited wide 
photosynthetic adaptability to soil moisture compared to 
the suitable RWCs ranges of Robinia pseudoacacia L. 
(50.0–81.6%), Platycladus orientalis L. (45.3–75.0%) 
(Zhang et al. 2003), Syringa oblata Lindl. (58.8–76.6%) 
(Chen et al. 2004), and Ziziphus jujube (46.0–80.5%) 
(Yang et al. 2018).

CE is usually obtained by a traditional linear regression 
method, whereby CE is the slope of the straight line of 
CO2-response curve at a low CO2 concentration (Ci ≤  
~ 200 μmol mol–1) (Xu 2013, Kang et al. 2014). CE values 
of different plants vary greatly (Yiotis and Manetas 2010, 
Feng and Dietze 2013, Zhao et al. 2017). Although Hu  
et al. (2008) showed that soil moisture greatly affected the 
CE values of plants, the quantitative relationship between 
CE and soil moisture has remained unclear. According 
to previous studies, CO2-response curve does not have a 

strictly linear relationship at the low CO2 concentration 
(Ye and Gao 2008, Ye and Yu 2009).

CO2-response models are mainly used to fit the process 
of CO2 response and its characteristic parameters to 
extract the variables with specific physiological meaning; 
these parameters can be used to describe the physio-
logical response of leaves to different treatments (Zeng 
et al. 2010, Bernacchi et al. 2013). For example, CEΓ, 
the carboxylation efficiency at the CO2-compensation 
point, CE0, the carboxylation efficiency when the CO2 
concentration is 0, CEΓ0, the absolute value of the slope 
of the line between Ci = 0 and Ci = Γ can be fitted, and 
they have clear physiological meanings and unique values. 
However, the applicability and simulated effect of the 
empirical models are limited by their asymptotic form with 
no extreme values (Ye and Gao 2009, Ye 2010). Simulated 
PNmax was much larger than the measured values, while 
simulated Cisat was far lower than the measured values (Ye 
and Gao 2008, Jiao and Wei 2010, Lv et al. 2016). The 
same problem was noted in this study.

Although the modified rectangular hyperbola model 
proposed in recent years can fit and analyze various 
forms of CO2-response curves more accurately (Lv et al. 
2016, Ye et al. 2017), overcoming the limitations of other 
models to a certain extent, there are few reports regarding 
its application in plants under different soil moisture 
conditions. This study indicated that when the soil moisture 
was within a suitable RWCs range, the CO2-response 
curves and characteristic parameters were well fitted by 
the four models (R2 > 0.991), where the nonrectangular 
hyperbola model and modified rectangular hyperbola 
model fit the data better than the other two models. When 
soil moisture was too high or too low, only the modified 
rectangular hyperbola model was obviously better than the 

Table 1. Photosynthetic CO2-response parameters of two species under different soil water conditions. Values are means ± SD (n = 3). 
Different small letters following each value within a line indicate significant differences at p<0.05. CE0 – carboxylation efficiency at  
Ci = 0; CEΓ – carboxylation efficiency at Ci = Γ; CEΓ0 – slope of the line between Ci = 0 and Ci = Γ; Cisat – CO2-saturation point;  
Γ – CO2-compensation point; PNmax – maximum net photosynthetic rate; Rp – photorespiration rate; RWCs – relative soil water content.

Tree species CO2-response parameter Measured value

P. sibirica RWCs [%] 92.3 81.6 66.8 53.7 46.5 35.7 26.2 21.5
CE0 [mol m−2 s−1] 0.0395d 0.0461b 0.0537a 0.0482b 0.0436c 0.0369e 0.0353e 0.0294f

CEΓ [mol m−2 s−1] 0.0367d 0.0423c 0.0504a 0.0452b 0.0402c 0.0337d 0.0318d 0.0259e

CEΓ0 [mol m−2 s−1] 0.0382d 0.0447b 0.0522a 0.0467b 0.0415c 0.0355e 0.0336e 0.0271f

Cisat [μmol mol−1] 690d 1011b 1166a 996b 920c 600e 550f 500g

PNmax [μmol(CO2) m−2 s−1] 15.4d 25.1b 29.8a 22.7c 20.9c 13.3d 9.6e 8.5e

Γ [μmol mol−1] 90b 83a 79a 81a 85a 92b 95c 100d

Rp [μmol m−2 s−1] 3.44c 3.71b 4.12a 3.78b 3.53c 3.27d 3.19d 2.71e

P. tabulaeformis RWCs [%] 92.6 84.5 73.7 56.8 44.9 35.4 26.9 22.1
CE0 [mol m−2 s−1] 0.0449d 0.0578b 0.0658a 0.0617b 0.0565b 0.0493c 0.0421d 0.0343e

CEΓ [mol m−2 s−1] 0.0425d 0.0557b 0.0632a 0.0577b 0.0541b 0.0476c 0.0394e 0.0306f

CEΓ0 [mol m−2 s−1] 0.0438d 0.0568b 0.0647a 0.0595b 0.0554b 0.0484c 0.0407d 0.0323e

Cisat [μmol mol−1] 658c 1090b 1200a 1100b 995b 990b 631c 600d

PNmax [μmol(CO2) m−2 s−1] 15.3d 28.1b 35.2a 29.4b 27b 20.3c 12.9d 9.8e

Γ [μmol mol−1] 85c 75a 70a 73a 76a 80b 90d 105e

Rp [μmol m−2 s−1] 3.72c 4.26b 4.53a 4.34b 4.21b 3.87c 3.66c 3.39d



795

EVALUATION OF CO2-RESPONSE MODELS

other three models fitting the CO2-response process and 
its characteristic parameters in the leaves of two species. 

Conclusions: This study indicated that soil moisture 
content affected the CO2-response process in the leaves 
of two species. The photosynthetic CO2-response curves 
presented classical form when the RWCs ranged from 
46.5 to 81.6% for P. sibirica, and 35.4 to 84.5% for  
P. tabulaeformis, photosynthetic efficiency and the PN were 
the highest when RWCs of P. sibirica was ~ 66.8%, and 
that of P. tabulaeformis was ~ 73.7%. Three photosynthetic 
parameters, PNmax, CE, and Cisat, declined dramatically 
when the soil moisture exceeded the suitable water ranges 
for photosynthesis of the two species. Thus, the suitable 
RWCs was 46.5 to 81.6% for P. sibirica, and 35.4 to 84.5% 

for P. tabulaeformis, and the most suitable RWCs was  
~ 66.8% for P. sibirica, and ~ 73.7% for P. tabulaeformis. 

The CE values of P. sibirica and P. tabulaeformis 
were significantly different under different soil moisture 
conditions. CEΓ0 of P. sibirica ranged from 0.0271 to 
0.0522, with a comparatively higher value in the RWCs 
range of 46.5–81.6%; the maximum appeared when RWCs 
was ~ 66.8%; CEΓ0 of P. tabulaeformis ranged from 0.0323 
to 0.0647, with a comparatively higher value in the RWCs 
range of 35.4–84.5%, the maximum appeared when RWCs 
was ~ 73.7%. The results of this study showed that the CE 
values of two species had obvious threshold responses to 
soil moisture.

When soil moisture was within the suitable RWCs 
range, the CO2-response curves and characteristic para-

Table 2. Photosynthetic CO2-response parameters of Prunus sibirica fitted by four models under different soil water conditions. Values 
are means ± SD (n = 3). CE0 – carboxylation efficiency at Ci = 0; CEΓ – carboxylation efficiency at Ci = Γ; CEΓ0 – slope of the line 
between Ci = 0 and Ci = Γ; Cisat – CO2-saturation point; Γ – CO2-compensation point; PNmax – maximum net photosynthetic rate;  
Rp – photorespiration rate; RWCs – relative soil water content.

CO2-response model CO2-response parameter RWCs [%]
92.3 81.6 66.8 53.7 46.5 35.7 26.2 21.5

Rectangular CE0 [mol m−2 s−1] 0.0509 0.0485 0.0562 0.0511 0.0472 0.0452 - -
hyperbola model CEΓ [mol m−2 s−1] 0.0483 0.0459 0.0534 0.0478 0.0448 0.0417 - -

CEΓ0 [mol m−2 s−1] 0.0496 0.0471 0.0551 0.0493 0.0455 0.0435 - -
Cisat [μmol mol−1] 464 473 487 445 434 378 - -
PNmax [μmol(CO2) m−2 s−1] 32.94 37.61 45.81 33.64 30.3 18.45 - -
Γ [μmol mol−1] 81.85 80.84 75.61 78.73 81.5 83.86 - -
Rp [μmol m−2 s−1] 4.06 3.81 4.17 3.88 3.71 3.65 - -
determination coefficient R2 0.804 0.991 0.992 0.995 0.993 0.816 - -

Nonrectangular CE0 [mol m−2 s−1] 0.0468 0.0472 0.0546 0.0521 0.0481 0.0474 - -
hyperbola model CEΓ [mol m−2 s−1] 0.0433 0.0435 0.0515 0.0457 0.0437 0.0442 - -

CEΓ0 [mol m−2 s−1] 0.0450 0.0459 0.0534 0.0476 0.0441 0.0460 - -
Cisat [μmol mol−1] 539 596 610 585 571 445 - -
PNmax [μmol(CO2) m−2 s−1] 25.21 38.97 40.46 34.21 30.36 21.08 - -
Γ [μmol mol−1] 84.04 82.03 77.97 78.9 83.34 87.37 - -
Rp [μmol m−2 s−1] 3.78 3.77 4.16 3.76 3.67 4.02 - -
determination coefficient R2 0.885 0.998 0.999 0.998 0.998 0.892 - -

Exponential equation CE0 [mol m−2 s−1] 0.0496 0.0478 0.0562 0.0499 0.0461 0.0445 0.0439 0.0434
CEΓ [mol m−2 s−1] 0.0469 0.0436 0.0531 0.0467 0.0435 0.0415 0.0401 0.0387
CEΓ0 [mol m−2 s−1] 0.0472 0.0465 0.0544 0.0486 0.0447 0.0423 0.0412 0.0403
Cisat [μmol mol−1] 495 550 605 535 520 517 309 301
PNmax [μmol(CO2) m−2 s−1] 25. 68 37.11 45.17 33.65 29.97 23.67 21.58 19.67
Γ [μmol mol−1] 82.76 81.54 76.79 78.82 82.28 87.9 89.6 88.93
Rp [μmol m−2 s−1] 3.91 3.79 4.18 3.83 3.67 3.72 3.69 3.58
determination coefficient R2 0.845 0.996 0.996 0.998 0.996 0.853 0.725 0.609

Modified rectangular CE0 [mol m−2 s−1] 0.0437 0.0468 0.0547 0.0492 0.0459 0.0392 0.0373 0.0317
hyperbola model CEΓ [mol m−2 s−1] 0.0401 0.0436 0.0523 0.0469 0.0423 0.0341 0.0338 0.0292

CEΓ0 [mol m−2 s−1] 0.0412 0.0455 0.0531 0.0479 0.0432 0.0374 0.0357 0.0305
Cisat [μmol mol−1] 685 1118 1178 994 935 614 539 513
PNmax [μmol(CO2) m−2 s−1] 15.69 24.96 29.98 22.8 20.37 13.51 10.38 9.13
Γ [μmol mol−1] 88.14 82.46 80.34 79.88 87.55 90.42 93.12 102.69
Rp [μmol m−2 s−1] 3.63 3.75 4.27 3.82 3.78 3.38 3.32 3.13
determination coefficient R2 0.995 0.999 0.999 0.999 0.998 0.996 0.993 0.992
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meters were well fitted by the four models. The nonrectan-
gular hyperbola model and modified rectangular hyperbola 
model were better than the other two models. However, 
when soil moisture exceeded the suitable RWCs ranges, 
only the modified rectangular hyperbola model fit the CO2-
response curves and photosynthetic parameters accurately. 
Compared to the other three models, the modified rectan- 
gular hyperbola model demonstrated extensive applicabi-
lity for fitting photosynthetic CO2-response process under 
different soil moisture conditions.
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